
Copyright c© 2007 Tech Science Press SDHM, vol.3, no.2, pp.87-105, 2007

Strength Failure Conditions of the Various Structural Materials: Is there
some Common Basis existing?

Ralf G. Cuntze1

Abstract: The paper deals with the application
of phenomenological, invariant-based strength
conditions (fracture failure) and their interrela-
tionships. The conditions have been generated
and are just applied here for a variety of mate-
rials. These might possess a dense or a porous
consistency, and belong to brittle and ductile be-
having isotropic materials, brittle unidirectional
laminae and brittle woven fabrics. The derivation
of the conditions was based on the author’s so-
called Failure Mode Concept (FMC) which basi-
cally builds up on the hypotheses of Beltrami and
Mohr-Coulomb.
Essential topics of the paper are: ‘global fitting’
versus ‘failure mode fitting’, a short derivation
of the FMC, the presentation of the FMC-based
strength failure conditions for the material fami-
lies mentioned above, and the visualization of a
variety of conditions. Various links or interrela-
tionships between the materials are outlined.
Conclusions which may be drawn from the labo-
rious investigations: 1. The application of Bel-
trami’s assumption together with the consider-
ation of material friction forms a common ba-
sis in the determination of strength conditions.
2. The FMC is an efficient concept because it
very strictly utilizes a ‘thinking in failure modes’
as well as an application of material symmetry-
related invariants. It has proven to be a help-
ful tool in simply fitting the course of multi-axial
strength test data, and it finally can capture several
failure modes in one equation avoiding the short-
comings of the usual ‘global fitting’ strength con-
ditions. 3. Different but similar behaving materi-
als can be basically treated with the same strength
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1 Introduction

Design Verification (see Fig. A1) demands for re-
liable reserve factors and these – besides a reliable
structural analysis – for reliable strength condi-
tions. Such a condition is the mathematical for-
mulation of a failure curve or of a failure sur-
face. In aerospace, the static design verification
has to be performed for onset of (global) yield-
ing on flight load level and for onset of fracture
(cracking) on Design Ultimate Load (DUL) level.
The former usually requires a yield condition and
the latter requires one or more fracture conditions
as strength failure conditions.

In general, such failure conditions shall assess
a multi-axial stress state which acts in the crit-
ical material point by utilizing just one uniaxial
strength R and the equivalent stress σeq repre-
senting the multi-axial stress state above. Fur-
ther, they shall allow for inserting stresses from
the utilized various coordinate systems (COS)
into stress-formulated failure conditions, and op-
timally into invariant-based ones, if possible.

Failure conditions have to be generated for dense
& porous, ductile & brittle behaving materials.
These can be isotropic materials, transversally-
isotropic (UD := unidirectional) materials and
rhombically-anisotropic materials (woven fab-
rics) and in future for even ‘higher structural tex-
tiles’, stitched or braided or knitted. The struc-
tural build-up of the latter may require in future
a quasi-ductile treatment for these entirely brittle
behaving textile ‘materials’.
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Most often, failure conditions map a course of
multi-axial test data by one global equation (i.e.
Tsai and Wu (1971)) not taking care whether the
data belong to one or more failure mechanisms
or failure modes. Therefore, extrapolations out
of the mapping domain may lead to erroneous re-
sults. Further, if a correction change in the do-
main of one failure mode has to be made it may
affect the failure surface or the curve domain of
another independent failure mode. This is a math-
ematical consequence but not a physically correct
one [Hart-Smith (1993), Cuntze et al (1997)].

Driven from the shortcomings of such a ‘global
fitting’ the author looked since 1995 for a ‘fail-
ure mode-related fitting’. The procedure ‘How
to determine such mode failure conditions?’ he
termed the Failure Mode Concept FMC [Cuntze
(1999)]. This FMC is a concept that very strictly
uses the failure mode thinking (more than other
authors, such as Christensen (1997) and Hashin
(1980). Mises with the HMH hypothesis, 1913,
faced a single failure mode, the yielding, only).

The FMC is also based – as far as the material
homogenization permits to do it – on material
symmetry-related invariants, which have proven
to be a helpful tool in simply fitting multi-axial
strength test data. The application of invariants
in the generation of strength failure conditions
has benefits due to the fact that material symme-
try [Cuntze (1999)], together with the findings of
Beltrami (1885), support the choice of an invari-
ant to be utilized in a distinct failure condition.
An invariant is a combination of stresses – pow-
ered or not powered – the value of which does
not change when altering the coordinate system.
Invariants are optimal for the formulation of the
advantageous scalar strength failure conditions.
Idea is that the FMC enables to simply capture
several failure modes in one equation without the
short-comings of classical global conditions.

Existing links in the mechanical behaviour show
up: fully different structural materials can pos-
sess similar material behaviour and may belong
to the same class of material symmetry. For in-
stance: a brittle porous concrete in the compres-
sion domain can be basically described by the
same failure condition like a very ductile behav-

ing light-weight steel in the high tension domain
when pores (void nucleation) have been gener-
ated.

This has the consequence: The same failure
function F can be used for different materi-
als and more information is available for pre-
dimensioning and modelling from past experi-
mental results of a similarly behaving material.
Therefore the message is: Use these benefits by
thinking about a procedure which -in case of a
new material- more simply and less costly will en-
able the designer for an engineering assessment
of multi-axial stress states, early in the product
development, on basis of a less big test campaign
plus the available information from the similar be-
having material.

Special aim of the paper – in the given page
frame – shall be a global view of the mate-
rial links/coincidences/interrelationships and not
a detailed information on the presented failure
conditions. The strength failure of non-cracked
structural parts is addressed only, and not stabil-
ity failure or damage tolerance (see the figure in
the Annex) or physical and material nonlineari-
ties in the analysis (for this aspect, see for e.g. for
UD material [Cuntze and Freund (2004), Cuntze
(2004)]).

2 Stress States & Invariants

There are various kinds of stresses which may
be inserted into a strength failure condition. In
the case of isotropic materials one faces: prin-
cipal stresses, structural component stresses, and
Mohr’s fracture plane stresses, [Mohr (1900),
Paul (1961)]. These kinds of stresses can be trans-
ferred into each other. Fig. 1 outlines all these
stresses and the associated invariants for isotropic
materials.

Formulations of strength failure conditions may
follow, such as performed by Hashin/Puck for
unidirectional laminae, Mohr’s postulate: “Frac-
ture is determined by the stresses in the fracture
plane!” This has a formulation advantage but
makes the determination of the angle of the in-
clined fracture plane necessary. The failure con-
dition is not scalar any more.
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The stress states in the various COS can 
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Figure 1: Isotropic Material, 3D stress states & invariants
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Figure 2: Transversely-isotropic material, 3D stress states & invariants
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In the case of transversely-isotropic material
(UD composite) the associated stresses and invari-
ants are depicted in Fig. 2. It is to be seen that
three kinds of stresses are applied: lamina COS-
based stresses, Mohr stresses, and – as there is
a quasi-isotropic plane existing – quasi-principal
stresses.

In the case of orthotropic material (rhombically-
anisotropic, Fig. 3), just a formulation in fabric’s
lamina stresses makes sense. Now, one has to deal
with more, however simpler invariants.

3 Observed Strength Failure Modes and
Strengths

Of high interest for the establishment of material
strength conditions is the number of strength fail-
ure modes and the number of strengths, observed
in the fracture tests, Masters (1994).

For the various isotropic materials several failure
modes can be differentiated which are typical for:
a) brittle behaviour/dense consistency, b) brittle
behaviour/ porous consistency, and c) ductile be-
haviour/dense consistency. Their features are:

a) Two failure modes: Normal Fracture (NF)
under tension and Shear Fracture (SF) un-
der compression are recognized. NF is also
termed, due to the poor deformation prior to
fracture and the smooth fracture surface (frac-
tography reveals it), cleavage fracture. SF ex-
hibits shear deformation prior to fracture, a
knowledge, which is helpful for the choice of
invariants when formulating the strength con-
dition. Two strength have to be measured.

b) Two failure modes are found: NF and Crush-
ing Fracture (CrF). The latter shows a volu-
metric deformation prior to fracture which will
be helpful for the choice of invariants, too. Re-
markable for the compression test is here that
there is a full decomposition of the texture,
a hill of fragments (crumbs) remains. Two
strength have to be measured.

c) Just one failure mode can be identified: SF
under tension. Shear deformation is observed
prior to fracture (at maximum load) and then
occurs diffuse and later local necking + void
growth (means a volumetric change) prior to

rupture in the so-called ‘Gurson domain’, Gur-
son (1997). This SF is also termed tearing
fracture and shows dimples under tension.
One strength, the load-controlled value Rt

m, is
to be measured. The corresponding compres-
sive strength is neither existing nor necessary
for design, because deformation-limiting func-
tional design requirements will not permit to
go that far. However, if the vicinity of a highly
strained location will take over the load lo-
cally and if it happens that σeq > Rt

m, then the
deformation-controlled multiaxial strength at
rupture (‘Gurson domain’) may be considered
in design [Cuntze (2002)]. Then true stresses
and true strengths should be applied.

For the brittle uni-directional lamina, which can
be modelled as a transversely-isotropic mate-
rial, the fractography of test specimens reveals
(Fig. 5) that 5 Fracture modes exist in a UD lam-
ina: 2 FF (Fibre Failure) + 3 IFF (Inter Fibre Fail-
ure). From basic knowledge and test experience
is known: It’s still common practice to measure 5
strengths for accurate designing.

Of highest importance for failure are the FF, how-
ever, learned from component tests, Puck’s wedge
failure mode IFF3 might be hazardous like an FF.
Its criticality depends on the stack and the entire
loading.

For rhombically-anisotropic or orthotropic
material (woven fabrics, Fig. 6) from testing and
theory is learned: there are more strength fail-
ure modes existing than for a UD material. This
causes more mode interaction domains, however
the designer is just faced with simple invariants
and can hope that a simpler formulation of the in-
dividual strength conditions is possible.

Unfortunately for most of the textiles, fractogra-
phy will not exhibit clear failure modes. In these
materials always multiple cracking is caused un-
der tension, compression, bending, or shear. No
clear mode-related strengths are observed. There-
fore, they have to be defined according to the
number orthotropic material symmetry is fixating,
see [Cuntze (1999)].

From the left part of the Fig. 6 can be concluded:
Modelling depends on fabrics type.
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Figure 6: Fracture failure of woven fabrics material

Due to the various fibre pre-forms: from rov-
ing, tape, weave, and braided (2D, 3D), knitted,
stitched, or mixed as in a pre-form hybrid it be-
comes obvious that a large variety of failure con-
ditions has to be developed in case of the ‘higher
level structural textiles’.

4 Attempt for a Systematization

The design process is faced with numerous differ-
ent materials, different material behaviour, vari-
ous failure modes and a lot of more or less val-
idated strength failure conditions. So, the ques-
tions arise: “Is there a possibility in this com-
plex design business to find a procedure to figure
out failure conditions which are simple, however,
describe physics of each failure mechanism suffi-
ciently well?” And therefore ”Might be a system-
atization helpful?”

Fig. 7 displays a scheme of (material) strength
failure modes for isotropic materials and di-
rectly compares them with the brittle UD mate-
rials which are only used as structural materials,
presently.

What may be learned from the ‘isotropic part’ of
the figure and from studying the associated fail-
ure conditions? The same mathematical form of
a failure condition (means interaction of stresses
within one mode) is valid from onset of yielding
to onset of fracture, if the physical mechanism
remains, such as with shear yielding in case of
ductile steels. In general, the growing yield body
(SY) is confined by the fracture surface (SF or
NF). The figure emphasizes that one failure mode,

Normal Yielding (NY), should also exist accord-
ing to the proposed system. PMMA (plexiglass)
with its chain-based texture really shows NY!

The arrows denote the coincidences between brit-
tle UD laminae and brittle isotropic materials. De-
lamination failure of laminates – built up from the
UD laminae as building blocks – is not addressed
here.

Regarding Fig. 7 the establishment of strength
failure conditions needs to be structured as it will
be proposed in the next chapter.

Fig. 8 gives an overlook on homogenizing a ma-
terial on different structural levels or scales. In
the case of elasticity modelling a homogenization
or ‘smearing’ is applicable for pre-assessment of
elasticity properties whereas in case of strength
modelling the smearing process may not be so ef-
fective due to the fact that, e.g. for UD, the mi-
cromechanical fibre strength σ1 f determines frac-
ture and not the macro-mechanical tensile stress
σ1, utilized in the lamina model.

Material symmetry shows that the number of
strengths is identical to the number of elasticity
properties! Using material symmetry in mate-
rial modelling requires that homogeneity is a pre-
requisite. However, the application of material
symmetry beneficially fixes the number of prop-
erties to be measured to a minimum one. In this
context should be mentioned: The choice of the
material model is always dependent on the effi-
ciency a structural task can be solved and the qual-
ity required.

Structural analysis and design verification
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Figure 8: Material homogenizing + modelling and material symmetry aspects

Figure 9: Proposed classification of homogenized materials
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strongly depend on the behaviour and the con-
sistency of the material. In Fig. 9 the author
proposes a coarse classification of the various
homogenized materials considering the so-called
failure type which is linked to brittle and ductile
behaviour, and further considering the material’s
consistency. Practically, design driving on the
two static design verification levels is for the
fracture-related design ultimate load (DUL) a
brittle behaviour describing strength condition
and for design yield load (DYL) or pressure a
ductile behaviour describing one.

Structural composites usually display brittle be-
haviour.

5 Short Derivation of the Failure Mode Con-
cept (FMC)

Applying the FMC, Cuntze tries to formulate
easy-to-handle homogeneous invariant-based fail-
ure conditions with stress terms of the lowest
possible order. The conditions in mind shall be
‘engineering-like’ and shall not make a search of
the fracture plane necessary which would be nec-
essary when using a typical Mohr-Coulomb for-
mulation.

So, the essential requirements for the develop-
ment of the failure conditions are:

- physically-based,
- simply formulated + numerically robust and
- practically just need the information on the

strengths available at pre- dimensioning; fur-
ther model parameters shall be assessable on the
safe side

- condition shall be a mathematically homoge-
neous function.

There are two different formulations possible: a
‘global formulation’ and a ‘mode-wise formula-
tion’. The associated equations read, [Cuntze et
al (1997), Cuntze (1999)].:

One global failure condition:
F({σ},{R}) = 1 (usual formulation) ,

Several mode failure conditions:
F({σ},Rmode) = 1 (used in the FMC).

A failure condition is the mathematical formu-
lation, F = 1, of a failure curve or surface. In

the case of a global formulation the condition
has to capture several failure modes including all
stresses and strengths (F >=< 1 is termed fail-
ure criterion). In contrast, the FMC includes the
mode active stresses and just the mode-governing
strength.

From application of global conditions the lesson
had to be learned: A change, necessary in one fail-
ure mode domain, may have an impact on other
physically not related failure mode domains, but
in general not on the safe side (see e.g. Hart-
Smith (1993)).

Possibilities of formulating a failure condition are
given by applying:

- stresses (strains have the disadvantage of ne-
glecting residual stresses) or

- invariants (FMC employs stress invariants).

Experience on isotropic and UD material shows,
see also Christensen (1998):

• Each of the observed fracture failure modes
is linked to one strength

• Material symmetry says:
Number of strengths = number of elasticity
properties
Example UD material:
Rt
||, Rc

||, R⊥||, Rt
⊥, Rc

⊥ and
E||, E⊥, G||⊥, ν⊥||, ν⊥⊥.

• Application of invariants for composites is
also possible.

Due to the experience above the FMC postu-
lates in its ‘phenomenological engineering ap-
proach’: Number of failure modes equals num-
ber of strengths! This means for isotropic mate-
rial 2 and for transversely-isotropic UD material
5 properties.

Mind: In general, failure conditions
include yielding and fracture failure
modes. A fracture failure surface which
may consist of several parts confines the
growing yield surface. A yield surface
is usually describing just one mode, the
shear yielding SY (for PMMA there are
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2 yield modes however: SY + NY),
whereas the fracture surface usually
describes several independent fracture
modes. A yielding failure mode and a
fracture failure mode can be described
by the same procedure but the equations
are usually different except if the mate-
rial’s yielding behaviour will remain till
fracture.

Reasons for choosing invariants when generat-
ing failure conditions are presented by Beltrami
(1885). He assumes: “At ‘onset of yielding’ the
material possesses a distinct strain energy den-
sity W”. This is composed of two portions: the di-
latational energy (I2

1 ) and the distortional energy
(J2 ≡ Mises) in

W ·6E = (1−ν) · I2
1 +(2+2ν) · J2,

wherein E is the Young’s modulus, I2
1 describes

the volume change of the cubic material element
and J2 its change of the shape. These changes can
be witnessed by the fracture morphology.

In order to formulate a relatively simple scalar
failure condition one chooses as invariant a term
that respects whether the cubic material element
will experience a volume change in the consid-
ered mode or a shape change. The same is valid
for UD material. In the case of brittle behaving
materials one energy term is to be added, the fric-
tion energy, which is linked to a Mohr-Coulomb
behaviour.

So, from Beltrami, Mises (HMH), and
Mohr/Coulomb (friction) may be derived
“Each invariant term in the failure function F
may be dedicated to one physical mechanism in
the solid = cubic material element”, see Table 1:

The idea behind the FMC was: A possibility
exists to very generally formulate failure condi-
tions failure mode-wise (e.g. shear yielding of
Mises or later Puck for inter fibre fracture failures
of UD materials) and stress invariant-based (J2

etc.). The latter has still been performed for the
isotropic materials by Huber-Mises-Hencky and
later numerous other authors, and for UD mate-
rial Boehler (1995), Hashin (1980), Christensen
(1997), Jeltsch-Fricker (1996) etc., and for fabrics
[Boehler (1995), Meckbach (1998)].

So, the question arose What is new with the FMC?
This is:

• the strict thinking in failure modes

• the individual interaction of a failure mode
with the other modes by having no impact
on another pure failure mode domain

• an a-priori reduction of the possibilities to
formulate failure conditions.

Concluding on the previous context the following
detail aspects can be listed:

• 1 failure mode represents 1 independent fail-
ure mechanism

• 1 failure condition represents 1 failure mech-
anism (interaction of stresses)

• 1 failure mechanism is governed by 1
strength.

What is finally missing is the interaction of failure
modes. This shall be performed here by a prob-
abilistic theory-based ’rounding-off’ approach’
formulated as a series failure system model

(E f f )m = (E f f mode 1)m +(E f f mode 2)m

+ .+ .+ . = 1

with the so-called (global) stress effort Eff, repre-
senting the actual portion of the ‘load’-carrying
capacity of the material, and with the (Weibull-
related) interaction coefficient m. The mode stress
efforts are the contributions of each participating
failure mode. Each failure mode is characterized
by one strength and therefore an equivalent stress
is given for each mode according to

E f f mode = σmode
eq /Rmode.

For an example, namely the UD material, the in-
teraction of the 3 IFF shall be visualized. All three
IFF failure modes are interacted together with the
FF in one single (global) failure equation

E f f m = (E f f τ
|| )

m +(E f f σ
|| )

m +(E f f σ
⊥)m

+(E f f⊥||)m +(E f f τ
⊥)m = 1.
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Table 1: Interrelationships of the invariants with physical mechanisms and energy

- volume change :   I1
2 (dilatational energy) I1

2, I2
2

- shape change   :    J2 (HMH, ‘Mises’)    (distortional energy) I3 , I4

- friction               :  I1 (Mohr-Coulomb) (friction energy)  I2.
      isotropic invariants                                               UD invariants 

Herein, the stress efforts of the 3 pure IFF modes
(form straight lines in Fig. 10) read:

E f f⊥|| =
|τ21|

R⊥|| −μ⊥|| ·σ2
, E f f σ

⊥ =
σ2

R
t
⊥

,

E f f τ
⊥ =

−σ2

R
c
⊥

.

For usually applied UD materials the value of
m is 2.5 − 3. Approximately the same value
may be taken for all interaction zones. Fig.
10 is based on a hoop wound GFRP tube, E-
glass/LY556/HT976. It depicts the straight pure
mode curves and the interaction curve (σ2, τ21).

6 Visualizations of some Derived Failure
Conditions

The failure conditions addressed here are most
often termed strength criteria (the term condi-
tion is more accurate due to the fact that F =
1 is applied). They employ the strength prop-
erties required by the material symmetry asso-
ciated with the chosen (homogenized) material
model (isotropic, transversely isotropic, rhombi-
cally anisotropic). This material model is an ideal
one and is treated as a crystal. However, to formu-
late a strength condition for a real material miss-
ing parameters are to be determined. These are
the internal friction properties of the brittle mate-
rials for which this work is necessary to do, only.

For a variety of differently behaving materials
failure conditions have been derived and applied
to available own and multi-axial strength test data
from literature. The results are visualized in the
Figs. 11 through 18:

* At first, the fracture failure curve for a grey cast
iron (data Coffin) is presented in Fig.11a. The
data are well mapped by the given pure mode con-
ditions and the interaction equation. The 2D curve

is substantiated by two 3D figures, Figs.11b, in
a Lode coordinates diagram which demonstrate
the applicability of the conditions. Viewing the
scatter of the data, the difference between the so-
called tensile and the compressive meridian (com-
pare the next material, concrete) can be neglected
and a rotationally symmetric fracture body as-
sumed. Learned from application to an epoxy ma-
trix: the same failure condition can be taken.

* In case of concrete, the situation is more com-
plex. The test data show a big bandwidth. The
reason for this bandwidth is not only the test scat-
ter but the stress-state dependent failure probabil-
ity causing non-coaxiality in the octahedral plane.
The difference between the tensile (extension)
meridian and the compressive meridian is to be
considered. Now the isotropy-inherent ‘120˚ ma-
terial (crystal) symmetry’ comes to act, Fig.12a.

Usually, the invariant J3 is applied [de Boer
and Dresenkamp (1989)] to describe this non-
coaxiality. This has been done without any phys-
ical explanation. The author however is believing
(based on own calculations) that the ‘120˚ pop-in’
is the result of a joint failure probability, due to
a doubly activated failure mode, see also [Awaji
and Sato (1978), Rackwitz and Cuntze (1987)].
The application of J3 looks a little simpler.

In the failure condition Fc
τ in Fig. 12 the volume

change term I2
1 becomes active when the concrete

is porous and not dense. Then the friction term I1

will vanish.

* For brittle, porous monolithic ceramics, Fig.
13 depicts the highly porosity-dependent failure
curve. Learned: the same failure condition as for
porous concrete can be applied.

* For the brittle, dense glass C 90-1 a 2D failure
curve in the principal stress plane is displayed and
a 3D failure surface in the Lode diagram. The
interaction of the test data is good. Learned: the
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Figure 10: Visualization of the interaction procedure (2D formulation with simple E f f⊥|| equation [Cuntze
(2007)])

same failure condition as for grey cast iron can be
applied.

* From Thielicke (1997) the following set of
strength data has been provided forC/C fibre-
reinforced ceramics. It is a brittle porous ceram-
ics lamina based on a UD tape. Invariants, applied
in 3D case were: for friction (I3, I2), for shear (I4),
and friction (I2). This reduces for a plane stress-
ing to the interaction equation including the three
IFF failure modes, indicated with the respective
failure condition in Fig. 15.

* For UD lamina fibre reinforced plastics the in-
plane stresses-caused fracture is visualized in Fig.
16. Learned: Same failure condition as with UD-
CMC.

For 2D visualizations of other UD materials the
reader be referred to [Cuntze, R.G. and Freund
(2004), Cuntze (2004, 2006)]. As delamination
conditions are not a topic of this paper the reader
may be referred to [Cuntze (2007)].

Remark: The invariant-based UD failure condi-
tions – as all others – have been 2D-validaded
(sufficient 3D test data are world-wide missing)
by 14 test cases of the World-Wide Failure Ex-
ercise (1993-2003, Hinton et al (2002), Hin-
ton et al (2004)). Winner of the contest were
the FMC-conditions [Cuntze, R.G. and Freund
(2004), Cuntze (2004)] and Puck’s action-plane
conditions [Puck, A. and Schürmann (2002)],
both, non-funded elaborations. Later, the author
further simplified his UD FMC failure conditions
[Cuntze (2006, 2007)].

Recently, a WWFE-II [Kaddour and Hinton,
M.J.] has been started to predict again in a Part A
a set of fracture curves and stress-strain curves for
12 test cases consisting of UD laminae and vari-
ous UD laminae-composed laminates subjected to
different stress states in the multi-axial compres-
sion domain. This exercise aims for a 3D valida-
tion. A Part B, planned for 2008, will contain the
comparison with the test curves.

* For two other carbon fibre-reinforced fabrics
ceramics, Fig. 17, failure curves are presented.
The utilized test data have been published in Gei-
witz et al (1997) and Cuntze (1998).

The interaction mapping worked for this specific
stress combination. Here it is to be noted: for wo-
ven fabrics, test information for a real validation
is not yet available.

* As a last example it should be mentioned wrt
one failure mode (e.g. yielding) that the applica-
tion of the invariants for failure conditions of ad-
hesives in a bonded joint is principally the same
as for soil and rock material. In these cases how-
ever the interaction of several failure modes is in
practice globally executed.

7 Conclusions

Material relationships:

* Many material (behaviour) links have been out-
lined, e.g. a compressed brittle porous concrete
can be described like a tensioned ductile porous
metal in the Gurson domain

� Drawing conclusions from the lessons learned
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Figure 11a: 2D failure curves of grey cast iron (brittle, dense, microflaw-rich)
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Figure 12: 3D and 2D failure surfaces/failure curves of concrete (brittle, microflaw-rich)
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Figure 14: 3D and 2D failure surfaces/failure curves of glass C 90-1 (brittle, dense; Kowaltschuk and
Giginjak (1983))

Figure 15: In-plane shear-transversal normal stress failure curve of a UD-based C/C, [Thielicke (1997)]{
R
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Figure 16: 2D failure surface of FRP UD lamina (brittle, dense, microflaw-rich, VDI 2014)

Figure 17: 2D failure curve of C/SIC (brittle, porous fabric, [Geiwitz et al (1997) and Cuntze (1998)])
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on the various failure conditions and skipping the
more sophisticated parts in them a Common Basis
is obvious: It’s more or less Beltrami’s hypothesis
+ the consideration of friction all the conditions
are based on!

FMC validation:

* From Failure Mode Concept applications can be
concluded the FMC is an efficient concept, that
improves and simplifies design verification. It is
simply applicable to brittle/ductile, dense/porous,
isotropic/anisotropic materials, if clear failure
modes can be identified, and if the homogenized
material element experiences a volume change or
a shape change or material internal friction.

* It delivers a global formulation of ‘individu-
ally‘ combined independent failure modes, with-
out the well-known short-comings of global fail-
ure conditions which mathematically combine in-
dependent failure modes.

Design hints and remarks:

* Even in smooth stress regions a strength con-
dition can be only a necessary condition which
may be not sufficient for the prediction of ‘onset
of fracture’, i.e. for the in-situ lateral strength in
an embedded lamina see Flaggs and Kural (1982),
Leguillon (2002).

* When applying test data from (isolated lamina)
tensile coupons to an embedded lamina in a lami-
nate, one has to consider that tensile coupon tests
deliver test results of weakest link type. An em-
bedded or even an only one-sided constraint lam-
ina, however, possesses redundant behaviour,

* In case of discontinuities such as notches with
steep stress decays only a toughness + char-
acteristic length-based energy balance condition
may form a sufficient fracture condition, [VDI
2014 (2006)]. Attempts to link ‘onset of frac-
ture/cracking’ prediction methods for structural
components are actually undergone, [Leguillon
(2002)]

-More representative multi-axial test data should
be available. They are necessary to really make a
three-dimensional validation of the various failure
conditions of the presently used structural materi-
als possible, even of some standard ones.

Acknowledgement: The author thanks all per-
sons who have discussed with him aspects of
this non-funded research work and thereby con-
tributed to an improvement of its contents.
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