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An Investigation into Active Strain Transfer Analysis in a Piezoceramic
Sensor System for Structural Health Monitoring Using the Dual Boundary

Element Method
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Abstract: The coupled electromechanical be-
haviour of a thin piezoceramic sensor bonded to
a stiffened panel subjected to membrane mechan-
ical loadings is examined. The sensor is charac-
terised by an electrostatic line model bonded to
a damaged panel modelled by the dual bound-
ary element method. Numerical results obtained
demonstrate that the proposed method is capable
of modelling changes in the signal output due to
presence of cracks. Also presented is a numeri-
cal model for detecting fatigue crack growth in a
stiffened panel using piezoceramic sensors.
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1 Introduction

To ensure structural integrity and hence main-
tain safety, in-service health and usage monitor-
ing techniques are employed in many engineer-
ing areas Staszewski, et al (2004). The state of
damage, i.e. structural health, can be established
either directly or indirectly. The direct approach
checks for the damage type (e.g. cracks, corro-
sion or delaminations) by applying an appropri-
ate inspection technique. The established inspec-
tion techniques vary from visual inspection by
the naked eye to passing the structure through a
fully automated inspection gantry. In the indirect
approach structural performance or rather struc-
tural behaviour is measured and compared with
the supposedly known global response character-
istics of the undamaged structure.

Monitoring crack initiation and growth in ad-
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vanced material systems and structures is an im-
portant task. It has several applications in struc-
tural health monitoring (SHM) of aerospace ve-
hicle, civil structures, and other critical mechani-
cal components. The initiation and the growth of
damage or cracks can be identified by measuring
the appropriate field, such as strain field, electric
field etc, which are affected by the change in the
localized material and geometrical properties. For
example, a straightforward approach is to mea-
sure the strain field with the help of a conventional
strain gage that is indicative of stress intensity at
the crack tip Ali, et al (2005).

Indirect approaches can be based on (a) mea-
surement of the electrical conductivity across the
damage zone, (b) measurement of the interfero-
metric change due to change in the refractive in-
dex or chance in the opto-acoustic coupling coef-
ficients at the location of damage, (c) measure-
ment from infrared thermography and (d) mea-
surement of the electrical field by introducing
the piezoelectric effect in the material system,
which falls in the category known as the electro-
mechanical impedance method.

For conventional engineering materials such as
metals or fiber reinforced composites, the use of
MEMS capacitive sensors is of particular advan-
tage. The basic mechanism of such a sensor is
based on the piezoelectric property of the sensor
material that produces a change in voltage due
to localized deformation during the damage pro-
cess. However, due to the very small size of such
a MEMS sensor, one may need an array of such
sensors in order to identify the stress gradient near
the damage zone Ali, et al (2005).

In the work presented here, the Dual Bound-
ary Element Method is applied together with the
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coupled effect of the piezoelectric materials to
show an efficient way to predict cracks in critical
structures and to monitor the crack growth using
the concept of MEMS (micro-electro-mechanical
system).

2 Dual Boundary Element Method

The Boundary Element Method (BEM) has
emerged as a powerful numerical technique for
solving crack problems. Its most attractive feature
is the reduction of the dimensionality of the prob-
lem. This means that high stress gradients near
the crack tip can be modelled more efficiently, in
comparison with the FEM, as demonstrated by
Aliabadi and Rooke (1991). The Dual Bound-
ary Element Method (DBEM), as presented by
Portela et al. (1992) and Mi and Aliabadi (1992),
is capable of analysing configurations involving
any number of edges and embedded cracks in
any given geometry. The DBEM was extended
to deal with multiple crack growth analysis of
stiffened panel by Salgado and Aliabadi (1996),
where both continuously and discretely attached
stiffeners were considered.

The Dual Boundary Element Method (DBEM),
as presented by Aliabadi (1997) is capable of
analysing configurations involving any number of
edges and embedded cracks in any given geome-
try. The need for dividing the problem in different
regions, common to many boundary element for-
mulations, is avoided by using the displacement
equation when collocating at one crack surface
and the dual traction equation when collocating
at the other crack surface.

The boundary integral displacement equation, for
a source point x′ at the boundary Γ of a finite sheet
is give by:

ci j(x′)u j(x′)+
∫

Γ
Ti j

(
x′,x

)
u j(x)dΓ(x)

=
∫

Γ
Ui j

(
x′,x

)
t j(x)dΓ(x) . . .

. . .+
∫∫

Ω
Ui j(x′,X)b j(X)dΩ(X) (1)

where Ti j(x′,x) and Ui j(x′,x) are the Kelvin trac-
tion and displacement fundamental solutions, re-
spectively, u j(x) and t j(x) are the displacements

and tractions at boundary field points x, b j(X) are
body forces acting at field points X inside the do-
main Ω and ci j is a coefficient that can be deter-
mined by rigid body movement considerations.

The corresponding traction boundary integral
equation, presented below, can be obtained by
differentiation of equation (1), application of the
Hooke’s law and multiplication by the outward
normal,

1
2

t j(x′)+ni(x′)
∫

Γ
Si jk

(
x′,x

)
uk(x)dΓ(x)

= ni(x′)
∫

Γ
Di jk

(
x′,x

)
tk(x)dΓ(x) . . .

. . .+ni(x′)
∫∫

Ω
Di jk(x′,X)bk(X)dΩ(X) (2)

where Si jk(x′,x) and Di jk(x′,x) contain derivatives
of Ti j(x′,x) and Ui j(x′,x), respectively and ni(x′)
denotes the i-th component of the unit outward
normal to the boundary at the source point x′.

3 Sensors Equations

The sensors mounted on the plate can be embed-
ded in the Dual Boundary Element Methodology
with the use of the compatibility equations. The
plate is considered to be thin, so that the inter-
actions forces exchanged with the sensors can be
treated as action-reaction body forces. The plate
displacement and traction equations can be de-
rived by considering equations (1) and (2) which
assume the presence of body forces. If, instead of
being distributed over the whole domain, the body
forces are confined to straight lines inside it, the
domain integrals in equations (1) and (2) reduce to
line integrals over the body forces loci. The dis-
placement and traction equations for a thin plate
with N sensors continuously bonded to it can thus
be written as:

ci j(x′)u j(x′)+
∫

Γ
Ti j(x′,x)u j(x)dΓ(x)

=
∫

Γ
Ui j(x′,x)t j(x)dΓ(x) . . .

. . .+
1
h

N

∑
n=1

∫
ΓSn

Ui j(x′,X)bSn
j (X)dΓSn(X) (3)
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and

1
2

t j(x′)+ni(x′)
∫

Γ
Si jk(x′,x)uk(x)dΓ(x)

= ni(x′)
∫

Γ
Di jk

(
x′,x

)
tk(x)dΓ(x) . . .

. . .+ni(x′)
1
h

N

∑
n=1

∫
ΓSn

Di jk(x′,X)bSn
k (X)dΓSn(X)

(4)

where ΓSn stands for the sensors loci, bSn
k repre-

sents the unknown sensor attachment forces and h
is the plate thickness.

In-plane loads will be not be imposed on the sen-
sors, and the distributed load acting throughout
the length of each sensor will be used to com-
pute its output signal. The relative displacement
Δv j(y) with respect to a rigid body motion of the
sensor are given by:

Δv1(y) = v1(y)−v1(0)

= yχ(0)+
1

ASGS

∫ y

0
(y−η) f1(η)dη

− 1
ISES

∫ y

0

1
6
(y−η)

3

f1(η)dη

(5)

Δv2(y) = v2(y)−v2(0)

=
1

ASES

∫ y

0
(y−η) f2(η)dη

(6)

where the indices 1 and 2 indicate the transverse
and the longitudinal direction respectively, y is an
arc length parameter (0 ≤ y ≤ L), v j(0) and χ(0)
are rigid body translation and rotation of the refer-
ence point (y = 0), AS is the sensors cross section
area, IS is the sensors cross sectional second mo-
ment of inertia, ES and GS are the sensor material
Young’s modulus and shear modulus respectively.

For the sensors to be in equilibrium, the following
equations have to be satisfied:

∫ L

0
f2(y)dy = 0 (7)

∫ L

0
f1(y)dy = 0 (8)

∫ L

0
(L−y) f1(y)dy = 0 (9)

4 Attachment Conditions

The displacement compatibility conditions for
points along the sensors attachment region are
based on the assumption that the displacement u j

of a point X’ (X ′ ∈ ΓSn) at the plate and uSn
j of

a corresponding point at the n-th sensor, has to
be compatible with the shear deformation of the
adhesive layer connecting the sensor to the plate.
They are expressed, with respect to a reference
point X0 at the same sensor locus

(
X0 ∈ ΓSn

)
, by

N sets of relations as:

Δu j(X ′)−ΔuSn
j (X ′) =

hAd

GAd
ΔτAd

j (X ′) (10)

where hAd is the thickness of the adhesive
layer, GAd is the coefficient of shear de-
formation of the adhesive material, τAd

j is
the shear stress at the adhesive, Δu j(X ′) =
u j(X ′)− u j(X0), ΔuSn

j (X ′) = uSn
j (X ′)− uSn

j (X0),
ΔτAd

j (X ′) = τAd
j (X ′)− τAd

j (X0). For the line sen-

sors, the adhesive shear stress τAd
j are equal in

value to the attachment forces bSn
j divided by the

width of the adhesive line wAd . The displacement
compatibility equation can be written in terms of
the body forces as:

Δu j(X ′)−ΔuSn
j (X ′) = ΦAdΔbSn

j (X ′) (11)

where ΔbSn
j (X ′) = bSn

j (X ′)−bSn
j (X0) and

ΦAd =
hAd

wAdGAd
(12)

is the coefficient of shear deformation of the ad-
hesive.

If the reference point X0 is taken to coincide with
the sensor starting point (y = 0), the relative dis-
placement ΔuSn

j in equation (11) can be expressed
as a function of the unknown interaction forces
bSn

j , by using the expressions (5) and (6). The re-
lationship between the relative displacements and
forces expressed in terms of the plate and the sen-
sors coordinate systems is given by:

ΔuSn
i = ΘSn

i j ΔvSn
j (13)

and

bSn
i = ΘSn

i j f Sn
j (14)
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The transformation matrix being:

ΘSn =
[
+cosϕSn −sinϕSn

+sinϕSn +cosϕSn

]
(15)

where φ Sn is the angle between the plate direction
x2 and the n-th sensor axis.

The plate relative displacements Δu j(X ′) =
u j(X ′)− u j(X0) in equation (11) can be then fi-
nally written as:

Δu j(X ′) =
∫

Γ

[
Ui j(X ′,x)−Ui j(X0,x)

]
t j(x)dΓ(x)

−
∫

Γ

[
Ti j(X ′,x)−Ti j(X0,x)

]
u j(x)dΓ(x)

+ . . .

+
1
h

N

∑
n=1

∫
ΓSn

[
Ui j(X ′,X)−Ui j(X0,X)

]

·bSn
j (X)dΓSn(X)

(16)

5 Piezoelectric Effect

According to the IEEE compact matrix notation
[see IEEE Standards (1978)], the coupled elec-
tromechanical constitutive equations of a linear
piezoelectric material are written as
direct piezoelectric effect:

D = εT E +dσ (17)

converse piezoelectric effect:

ε = sEσ +d′E (18)

where D (charge/area) and E (voltage/length) are
the electric displacement and electric fields re-
spectively. ε and σ are the mechanical strain and
stress, d, εT and sE are the piezoelectric strain
constant, dielectric permittivity and compliance
constant, respectively. The superscripts E and T
indicate values of the constant obtained at a con-
stant electrical and stress fields, respectively.

For the sensor model, according to Lin and Yuan
(2001) and assuming that the sensor is sufficiently
small to consider the strain constant inside the
sensor area, the output voltage can be written as

Vout =
d31EphpεR

4K3ε0π(1−υp)
(19)

where d31 is the piezoelectric charge coefficient
equal to 130×10−12 m V−1, Ep is the young mod-
ulus equal to 76 × 109, hp is the thickness, K3

is the relative dielectric constant equal to 1280,
and ε0 is the dielectric permittivity of a free space
equal to 8.85× 10−12 for PKI-402 piezoelectric
sensor.

6 Evaluation of the Static Strain to Crack
Identification

As demonstrated in Liang and Hwu (2001) accu-
rate on-line measurement of static strains is pos-
sible by applying highly developed smart materi-
als. Difference in signals from the pristine state
to a damaged state can indicate the position of the
crack and also its size.

7 Numerical Examples

In order to allow for comparisons, similar exam-
ples as those presented in Tua et al (2004) will
be studied. In Tua et al (2004) it was shown that
Lamb waves can be used to detect cracks. Here
static evaluation of strain fields in a plate will be
used as an alternative way of demonstrating the
problem of crack detection.

First, we should demonstrate that for the pristine
state, the position of sensors in the plate does not
alter the value of the output voltage in the sensors.
A square plate of width 600mm is considered in
figure 1. Also shown in the figure is the distri-
bution of the sensors. A boundary element mesh
with 24 quadratics elements was used to analyse
the problem.

The table 2 shows the properties from the PZT
sensors.

Figure 2 presents the output voltage related to dif-
ferent positions of sensors on the plate. The max-
imum difference for the output voltage is 0.13 %,
and therefore considered as constant and not in-
fluenced by the position of sensors in the plate.

8 Determination of a Crack in a Square Alu-
minium Plate

In all numerical examples analysed the coefficient
of shear deformation for the adhesive is taken as
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Figure 1: Aluminium plate with different position of 4 sensors.

Table 1: Geometrical and material properties of aluminium plate.

Dimensions (mm3) 600×600×2
Young’s modulus, E (GPa) 72.5
Shear modulus, G (GPa) 27.25
Mass density, ρ (kg m−3) 2700
Poisson Coefficient, υ 0.33

Table 2: Geometrical and material properties of PZT – ceramic (PKI-402)

Dimensions (mm3) 8×8×0.5
Young’s modulus, Ep (GPa) 76
Shear modulus, Gp (GPa) 29
Mass density, ρp (kg m−3) 7600
Poisson Coefficient, υp 0.31
Relative dielectric constant K3 1280
Piezoelectric charge coefficient d31, (m V−1) 130×10−12

Thickness, h (cm) 0.05
Dielectric permittivity of a free space, ε0 (F m−1) 8.85×10−12 F m−1
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Figure 2: Output from the sensors in different position on the plate.

0.085. Different values to this parameter can be
considered if deemed necessary. The mesh uti-
lized consists of 28 quadratic elements.

A crack of 2 mm is introduced into the square
plate analysed previously. To investigate the in-
fluence of crack on the sensor output, different
proximities of a crack to sensors are analysed as
shown in figure 3. As it can be observed from fig-
ure 4, a change in signal is detected when sensor
1 is within a distance approximately three times
the length of the sensor. It can also be seen that a
greater signal voltage is achieved when the crack
is in direction perpendicular to the sensor. There-
fore, both relative proximity and orientation ap-
pear to influence the output signal. The results
indicate no change to the signal from sensors 2 to
4, which can therefore be considered too far from
the crack

Next, the influence of crack size on the sensor
signal is investigated. Several cracks of different
lengths are introduced under sensor 4 as shown in
figure 5. This is purely a theoretical case as in
practice the resulting strain due to a crack would
be too large for sensor 4 and the sensor will break.
In figure 6 the resulting signals are shown. As it
can be seen there are considerable increases in the
signal as the crack size increases.

9 Example of Multiple-Crack Growth Prop-
agation in Stiffened Panel

The DBEM was successfully applied by Salgado
and Aliabadi (1996) to predict multiple crack
growth in a stiffened sheet. Here the same exam-
ple is used there to demonstrate the use of sensors
in detecting crack growth.

Consider the panel with riveted stiffeners pre-
sented in figure 7. The sheet is 2.3mm thick
and the stiffeners are made of aluminium alloy
A2024-T3 with the following properties: Young’s
modulus: 78 500 MPa; Poisson’s Coefficient:
0.32; shear modulus: 29 000 MPa. The stiffen-
ers cross-sectional properties are: area: 300 mm2;
second moment of inertia: 1800 mm4. The rivets
are considered to be rigid. In figure 8 the same
structure is presented but now with two cracks
on the plate, one emanating from a rivet hole in
the centre of the panel and the second emanat-
ing from the circular opening. The correspondent
rivet is rendered ineffective and the central stiff-
ener is broken. The panel is subjected to tensile
stress of 10 MPa, applied at the top and bottom
edges. The stiffeners are subjected to the same
stresses applied at their extreme points.

The difference in the signal captured by the sen-
sors from the pristine state and the crack growth’s
initial state is shown in figure 9. From the fig-
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Figure 3: Sensitivity of the signal to the relative position of the sensors and the crack. – (a) Sensor’s position
to crack 1; (b) Sensor’s position to crack 2; (c) Sensor’s position to crack 3; (d) Sensor’s position to crack 4.
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Figure 5: Sensitivity of the signal to different size cracks
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Figure 6: Output from the sensors with increasing crack size.
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Figure 7: Aluminium panel with rivet stiffeners.

Figure 8: Aluminium panel with rivet stiffeners and cracks.
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Figure 9: Signal in the sensors for the pristine state and initial state of crack growth.

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900

Figure 10: Crack growth path.



An Investigation into Active Strain Transfer Analysis 131

Sensor's response

0

4

8

12

16

20

24

28

32

36

40

Sensor1 Sensor2 Sensor3

V
o

lta
g

e 
(V

/V
0)

Initial Crack Increment 1

Increment 2 Increment 3

Figure 11: Signal output for different increments of crack extension.

ure we can note a difference between the signal of
the sensor 1 with sensors 2 and 3, which is due to
the presence of the hole. The introduction of the
cracks into the panel results in a greater relaxation
of the strain gradients over the panel and hence
more uniform signal output from the sensors.

Next, we investigate the use of the sensors in de-
tecting fatigue crack growth. The crack growth
parameters used are: Paris law coefficients: Cp =
0.183× 10−11 and mp = 3.284. Fatigue crack
growth is simulated, considering that the load is
applied in cycles of constant amplitude, the stress
ratio being 0. Four crack extension increments
were calculated. The final path to the cracks
growth is presented in figure 10.

In the Figure 10 we can see the behaviour of
the signal produced by the sensors in compari-
son with the initial signal. The crack growth can
be monitored since the values change significantly
with small increments of the crack.

10 Conclusions

Accurate computation of strain fields inside
cracked plates and simple modelling of the sen-
sorised panel with the proposed Dual Boundary

Element Method allows for possibility of struc-
tural health monitoring using static strain fields. It
was noted that the calculated strain field can mon-
itor with precision the behaviour of the cracks in-
side plates.
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