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Damage Assessment Based on the Frequencies’ Ratio Surfaces Intersection
Method for the Identification of the Crack Depth, Location and Orientation

Jean-Jacques Sinou1

Abstract: This paper aims to establish a dam-
age identification methodology, called the Fre-
quencies’ Ratio Surfaces Intersection method
(FRSI-method), for predicting not only the loca-
tion and depth of the crack but also the crack ori-
entation in a circular cross section beam. Two
new criterions %Δcracked

i and %Ψcracked
i, j that con-

sider only the ratio of the natural frequencies of
the cracked beam are introduced and discussed in
order to detect the crack parameters. In order to
avoid worse diagnostic, it is demonstrated that a
robust identification of crack location is possible
by investigating the emergence of extra antireso-
nance peaks on Frequency Response Functions.
The size, location and orientation of the crack are
identified by finding the intersection of the sur-
faces that correspond to the natural frequencies’
ratios of the lower vertical and horizontal modes.
One of the advantages of the proposed approach
is that, unlike other vibration-based damage iden-
tification procedures, it does not use a priori ac-
curate knowledge of the angular frequencies of
the uncracked structure and its material proper-
ties. Only the Frequency Responses Functions
and natural frequencies of the cracked structure
are needed to identify the crack parameters (i.e.
the non-dimensional crack depth, the crack loca-
tion and the crack orientation).
It is demonstrated that damage identification
methodology, called the Frequencies’ Ratio Sur-
faces Intersection method (FRSI-method), can be
used for the detection of the crack size, location
and orientation with satisfactory precision, even
if noise level has been added to the simulations.
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1 Introduction

For many years, vibration of cracked struc-
tures and damage identification methods have
been studied by a number of researchers. Di-
marogonas (Dimarogonas 1996), Doebling et al.
(Doebling et al. 1998) and Wauer (Wauer 1990)
gave a review of the research on vibration of
cracked structures and damage detection and lo-
cation using vibration data.

A variety of methods has been developed to iden-
tify the crack size and location. These approaches
are mainly based on the change in modal prop-
erties of cracked structures (Adams et al. 1978;
Morassi 1993; Hearn and Testa 1991;
Liang 1992; Cerri and Vestroni 2000;
Khiema and Lien 2004), the damage-induced
shifts in the first natural frequencies and the
corresponding amplitudes (Owolabi et al. 2003),
the mode shapes variation due to the pres-
ence of the crack, and force response
measurements (Dharmaraju et al. 2002;
Dharmaraju et al. 2004). For example, some
researchers proposed to consider the point
of intersection of contour lines that corre-
spond to the frequency changes in terms of
the non-dimensional crack depth and loca-
tion (Nahvi and Jabbari 2005; Li et al. 2005;
Owolabi et al. 2003; Swamidas et al. 2004). In
these studies, the identification of the crack size
and location is possible under the situation that
measured natural frequencies of crack beams are
set as input.
Recently, Dilena and Morassi
(Dilena and Morassi 2002) and Gladwell and



134 Copyright c© 2007 Tech Science Press SDHM, vol.3, no.3, pp.133-163, 2007

Morassi (Gladwell and Morassi 1999) pro-
posed a damage identification based on the
changes in the nodes of mode shapes. Then
they demonstrated that an appropriate use
of resonances and antiresonances may be
used in order to avoid the non-uniqueness of
the damage location for symmetrical beams
(Dilena and Morassi 2004). Bamnious et al
(Douka et al. 2004; Bamnios et al. 2002) pro-
posed a simplified method for detecting crack
size and location. They used the shift in the
antiresonances of the cantilever cracked beam.
Moreover, they indicated that the driving-point
mechanical impedance changes not only due to
the crack size and location but also the force
location. It may be noted that the importance and
significance of antiresonances in experimental
structural analysis was previously investigated
by Wahl et al.(Wahl et al. 1996). Even if Dhar-
maraju and Sinha (Dharmaraju and Sinha 2005)
demonstrated that the identification of the crack
location due to the change in antiresonance could
be difficult, they concluded that a more robust
identification based on the previous methodology
has to be developed for practical applications.
The purpose of the present work is to establish
a new methodology for predicting not only the
location and depth of a crack in a circular cross
section beam, but also the crack orientation.
Moreover, the objective of this research is to
demonstrate that the knowledge of the natural
frequencies of the cracked beam is sufficient in
order to identify all the crack parameters (i.e. the
non-dimensional crack depth, the crack location
and the crack orientation). So, two new criterions
(%Δcracked

i and %Ψcracked
i, j ) will be introduced

and discussed in order to undertake the damage
identification without needing an accurate knowl-
edge of the material propoerties (i.e. the Young’s
modulus and the density), and the values of the
natural frequencies of the uncracked structure.
Then, an extension of the frequency contour
lines method, called Frequencies’ Ratio Surfaces
method (FRS-method) will be developed in
order to obtain a robust detection of crack size,
location and orientation in beams. Finally, in
order to avoid the non-uniqueness of the damage
location problem due to the structural symmetry

of structures, the emergence of antiresonances on
the Frequency Response Functions is used.
The paper is set up as follows: first the model
of the crack beam is given and the effects of
the crack parameters (the non-dimensional crack
depth, the crack orientation and the crack loca-
tion) are briefly investigated in order to explain
the possible coupling of the two lateral bending
vibrations due to the presence of a transverse
crack. Secondly, the damage identification tech-
nique based on the Frequencies’ Ratio Surfaces
Intersection method (FRSI-method) and the
criterion %Δcracked

i that allows the identification
of the crack size, orientation and location is
presented. Finally, an extension of the previous
criterion (the generalized criterion %Ψcracked

i, j )
is introduced in order to allow the detection of
the crack parameters for complex structures.
The efficiency and robustness of the proposed
identification technique is demonstrated through
numerical simulations corresponding to different
non-dimensional crack depths, crack orientations
and crack locations without noise and when
uniform random noise is added to the numerical
simulations.

2 The model of the simply supported cracked
beam and the effects of cracks

In this section, details of the crack model and the
complete modeling of the system are firstly pre-
sented. Secondly, the effects of a transverse crack
on the two lateral bending vibrations and shift in
the resonances of the cracked beam are briefly dis-
cussed.

2.1 Crack model

A circular cross section beam that is simply
supported at each end is studied. The physical
parameters of the beam are given in Table 1.
The beam element has been discretized
into 30 Euler-Bernouilli beam finite el-
ements with four degrees of freedoms
at each node (Nelson and Nataraj 1986;
Lalanne and Ferraris 1990), as illustrated in
Figure 1.
The presence of a transverse surface crack
on the circular beam introduces a local flex-
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ibility due to strain energy concentration
in the vicinity of the crack tip under load.
Mayes and Davies (Davies and Mayes 1984;
Mayes and Davies 1984) proposed to theoreti-
cally model a transverse crack by reducing the
second moment of area of the element at the
location of the crack by ΔI

ΔI = I0

(
1+
(

R
l

(
1−ν2)F (μ)

)−1
)

(1)

where I0, R , l, and ν are the second mo-
ment of area, the shaft radius, the length of
the section and the Poisson’s ratio, respectively.
μ is the non-dimensional crack depth and is
given by μ = h

R where h defines the crack
depth of the shaft, as illustrated in Figure 1.
F (μ) is the non-linear compliance functions that
can be obtained from a series of experiments
with chordal cracks (Davies and Mayes 1984;
Mayes and Davies 1984). For convenience, let
the principal η-axis be aligned with the crack
front. The moments of inertia about the par-
allel centroidal axes, Iη and Iξ , are given by
(Sinou and Lees 2005)

Iη =
R4

4

(
(1−μ)

(
1−4μ +2μ2

)
γ +

α
2

)
(2)

Iξ = R4
(

π
4

+(1−μ) γ
(

2γ2

3
+

1−4μ +2μ2

4

)

+ sin−1 (γ)− 4
9

(
(1−μ)γ +

α
2

)−1
γ6
)

(3)

where R is the shaft radius, μ is the crack depth,
and γ =

√
2μ −μ2 for convenience. α is the

crack angle (as shown in Figure 1). It may be
observed that the change of I0 on the axis ξ is
relatively small in comparison to the change on
the axis η (Gasch 1993; Sinou and Lees 2005).
Then, the stiffness matrix due to the transversal
crack Kη ,ξ

crack can be obtained at the crack location
in η and ξ coordinate axis, by using stan-
dard finite elements (Nelson and Nataraj 1986;
Lalanne and Ferraris 1990). The matrice
Kη ,ξ

crack for a two node Timoshenko beam
element of length l and Young’s mod-
ulus E corresponding to the dof vector

[u1 v1 θ1 ψ1 u2 v2 θ2 ψ2] , as
shown in Figure 1, can be written as below

Kη ,ξ
crack =

E
l3

⎡
⎢⎢⎢⎣

12Iη 0 0 6lIη −12Iη 0 0 6lIη
12Iξ −6lIξ 0 0 −12Iξ −6lIξ 0

4l2 Iξ 0 0 6lIξ 2l2 Iξ 0

4l2 Iη −6lIη 0 0 2l2 Iη
12Iη 0 0 −6lIη

12Iξ 6lIξ 0

Sym. 4l2 Iξ 0

4l2 Iη

⎤
⎥⎥⎥⎦
(4)

Consequently, the stiffness matrix in X and Y co-
ordinate axis is given by

Kcrack =

diag
(
PT PT PT PT)×Kη ,ξ

crack ×diag(P P P P)
(5)

where P is given by

P =
[

cosχ sinχ
−sinχ cosχ

]
(6)

χ defines the angle between the orientation of the
crack front and the vertical X-axis, as shown in
Figure 1.

2.2 System equation of motion

The equation of motion for the simply supported
cracked beam can be written as

MẌ+CẊ + K̃X = F(t) (7)

where X is the vector of nodal degrees of freedom
of the system. t defines the time instant. M is
the mass matrix, K̃ is the global stiffness matrix,
F(t) is the external force vector, and dot repre-
sents the derivative with respect to the time. C
defines the proportional damping matrix and can
be expressed as C = αM + β K (with α and β
real constants). K̃ contains the stiffness reduction
Kcrack at the crack location .
Let the force vector be defined as F(t) = F0eiωt

where ω is the forcing frequency, and F0 defines
the force amplitude vector. Therefore, the re-
sponse vector may be assumed as X(t) = X0eiωt

and Equation 7 is given by(−ω2M+ iωC+ K̃
)

X0 = F0 (8)
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(a) Geometry of the cracked-beam section (b) Description of the Dof in the ξ -η axis

Figure 1: Finite-element model

Table 1: Physical parameters of the beam

Notation Description Value
R radius of the rotor shaft 0.05m
L length of the rotor shaft 1m
E Young’s modulus of elasticity 2.1 1011N.m−2

ρ density 7800kg.m−3

ν Poisson ratio 0.3
β coefficient of damping 2 10−6

α coefficient of damping 0.32
f1, f2 first and second frequencies of the uncracked rotor 198.85Hz
f3, f4 third and fourth frequencies of the uncracked rotor 795.4Hz
f5, f6 fifth and sixth frequencies of the uncracked rotor 1789.66Hz

Due to the fact that K̃ contains the contribution of
the crack Kcrack at the cracked element degrees-
of-freedom and the assembled stiffness matrix of
the uncracked beam, the previous equation may
be rewritten as

(−ω2M+ iωC+K
)[X0

c

X0
uc

]
= F0−Fc

=
[

F0
c

F0
uc

]
−
[

Fc
c

0

]
(9)

where K defines the stiffness matrix of the un-
cracked system. The subscripts c and uc represent
the cracked and uncracked elements, respectively.

F0 contains the external force vector, and Fc rep-
resents the force vector only due to the contribu-
tion of the crack. It may be observed that the vec-
tor Fc contains non-zero terms only at the crack
nodal degrees of freedom and Fc

c is given by

Fc
c = KcrackX0

c (10)

2.3 Effects of crack on the lateral bending vi-
brations

The objective of this section is to explain the pos-
sible coupling of the two lateral vibrations due to
the presence of cracks. The role of cracks on the
two lateral vibrations of the cracked beam will be
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used in the following parts of the paper in order to
avoid the non-uniqueness of the crack location.
Assuming modal viscous damping and using the

normal mode substitution X = Φ̃ΦΦq =
n
∑

r=1
qrΦ̃ΦΦr, the

equation set 7 is diagonalized as follows:

∀r
(

ω̃2
r −ω2 +2iζrω̃rω

)
qr = fr (11)

where fr is the generalized modal force (i.e. fr =
Φ̃ΦΦT

r F
mr

with mr = Φ̃ΦΦT
r MΦ̃ΦΦr). ω̃r is the rth mode un-

damped natural frequency of the cracked beam

(ω̃r =
√

k̃r
mr

with k̃r = Φ̃ΦΦT
r K̃Φ̃ΦΦr). ζr is the rth mode

damping ratio (ζr = cr
2mrωr

with cr = αmr + β kr

due to the orthogonality property of M and K̃;

here ωr =
√

kr
mr

is the rth undamped natural fre-

quency of the uncracked beam; kr = ΦΦΦT
r KΦΦΦr

where K defines the stiffness matrix of the un-
cracked system; and ΦΦΦr is the eigenvectors of the
uncracked beam).
Finally, the relationship between the ouput vector
X(ω) and the input vector F(ω) is given by

X(ω) = H(ω)F(ω)

=
n

∑
r=1

Φ̃ΦΦrΦ̃ΦΦ
T
r

mr

(
ω̃2

r −ω2 +2iζrω̃rω
)F(ω) (12)

where H(ω) defines the Frequency Response
Function matrix. H(ω) is the linear combination
of each mode. Thereby, the Frequency Response
Function Hkl (ω) (i.e. the excitation force is only
applied at the lth degree of freedom and the re-
sponse is located at the kth degree of freedom) is
given by

Hkl (ω) =
n

∑
r=1

Φ̃lrΦ̃kr

mr

(
ω̃2

r −ω2 +2iζrω̃rω
) (13)

Considering Equation 11, it clearly appears that
the crack induces shifts in the natural frequencies
of the beam due to the stiffness change. More-
over, the amplitude of the resonance peaks are af-
fected by the crack size and crack location due to
the fact that ω̃r and Φ̃ΦΦr are functions of the crack
properties.

Equation 13 may be expressed by rearranging the
equation of motion and extracting the force vector

due to the contribution of the crack (see Equations
9 and 10). We obtain

X(ω) =
n

∑
r=1

Φ̃ΦΦrΦ̃ΦΦ
T
r

mr (ω2
r −ω2 +2iζrωrω)

F0 (ω)

−
n

∑
r=1

Φ̃ΦΦrΦ̃ΦΦ
T
r

mr (ω2
r −ω2 +2iζrωrω)

Fc (X,ω) (14)

where ωr =
√

kr
mr

is the rth undamped natural fre-

quency of the uncracked beam.
Considering Equation 14, the possible coupling
of the two lateral vibrations due to the crack can
be clearly explained. The first term of Equation
14 corresponds to the effect of the external force
F(t) = F0eiωt where ω is the forcing frequency.
The second term of Equation 14 indicates the role
of the crack in order to induced vibrations. First
of all, if the external force is on the direction of
the crack front (i.e. on the principal η-axis), no
coupling between the two lateral vibrations is ob-
served. Effectively, the first term of Equation 14
induces only vibrations in the direction of the ex-
ternal force. Then, the term Fc (X,ω) introduces
only excitation force in the same direction (see
Equations 4-6, 9 and 10). Thereby, the crack does
not induce excitation on the principal ξ -axis. So
no vibration on the ξ -axis exists, and there is no
coupling between the two lateral vibrations (on
the principal ξ -axis and η-axis).
Now, the case of an external force situated on the
vertical direction will be considered in order to
explain the coupling between the two lateral vi-
brations. If the crack is fully or partially open and
the crack front is different from the vertical X-axis
(i.e. the external force is not on the same direction
than the crack front), Fc (X,ω) introduces an ex-
citation force due to the crack on the horizontal Y -
axis. Consequently, the second term of Equation
14 indicates that new peaks appear on the hori-
zontal Y -axis and vertical X-axis corresponding
to the natural frequencies of the horizontal modes.
Moreover, resonances peaks on the Y -axis corre-
sponding to the natural frequencies of the vertical
modes appear. This indicates the coupling of two
lateral vibrations that may be observed on the hor-
izontal and vertical axis.
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Figure 2: Evolution of the absolute vertical and horizontal responses as a function of the crack front ori-
entation for μ = 1 and Lcrack = 0.716m (uncracked −; cracked with · · · χ = π

3 rad., −− χ = π
2 rad.,

−.− χ = 0rad.)

2.4 Illustrations of the crack effects

In this section, numerical studies will be in-
vestigated in order to illustrate the previous
explanations and the effects of the crack size,
the crack location and the crack orientation. We
consider a sinusoidal excitation at 0.167m from
the left end of the simply supported beam in the
vertical direction. First of all, Figures 2 illustrate
the vertical and horizontal displacements of the
uncracked and cracked beams as a function of
the crack front orientation. As explained in the
previous section, no coupling between the two
lateral vibrations is observed if the crack front
orientation and the direction of the external force
are the same. Then if the crack is fully or partially
opened (and the orientation of the crack front is
not equal to 0rad.), there are new resonances on
the two lateral axis (for the vertical and horizontal
displacements). They correspond to the natural
frequencies of the original vertical and horizontal
modes. This indicates the coupling of the two
lateral horizontal and vertical vibrations due to
the presence of the crack.

Secondly, Figures 3 and 4 illustrate the vertical
and horizontal displacements of the cracked
beams as a function of the crack depth and the
crack location, respectively (with the orientation
of the crack front χ = 1

3 π). If the crack location
is close to the mode shape nodes, the associated
modes are not greatly affected and the coupling
for these modes is not clearly observed on the
vertical and horizontal directions. Considering
Figures 2, 3 and 4, the crack size, the crack loca-
tion and the crack orientation influence the shift
of the resonances and antiresonances. Moreover,
this could be easily observed that the decrease
in the resonances is greatest for a crack located
where the bending moment is greatest. Therefore,
the changes in frequencies and coupling of the
two lateral vibrations appear to be not only a
function of crack depth, crack location, and crack
front orientation but also of the mode number.
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Figure 3: Evolution of the absolute vertical and horizontal responses as a function of the non-dimensional
crack depth μ for χ = π

3 rad. and Lcrack = 0.716m(− μ = 0.25, −− μ = 0.5, · · · μ = 1, −.− μ = 1.5)
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Figure 4: Evolution of the absolute vertical and horizontal responses as a function of the crack position Lcrack

χ = π
3 rad. and μ = 1 (− Lcrack = 0.483m, −− Lcrack = 0.916m, · · · Lcrack = 0.65m, −.− Lcrack = 0.716m)
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3 The Frequencies’ Ratio Surfaces Intersec-
tion method (FRSI-method)

3.1 Crack identification based on an extension
of the frequency contour lines method: the
Frequencies’ Ratio Surfaces Intersection
method

Many researchers proposed to detect the posi-
tion and size of cracks by considering the first
three changes in the natural frequencies of a
cracked beam. Some used the intersection of
the three contour lines of the first three natu-
ral cracked frequencies that indicates the possi-
ble crack position and crack size (Li et al. 2005).
This methodology is only based on a careful
evaluation of the cracked natural frequencies and
so requires the knowledge of the material prop-
erties (the Young’s modulus E and the den-
sity ρ). Others proposed to take into account
the intersection of the three contour lines of
the lower order normalized frequencies that are
given by the ratios of cracked beam natural fre-
quencies to the uncracked beam natural frequen-
cies (Swamidas et al. 2004; Owolabi et al. 2003;
Nahvi and Jabbari 2005). In this last case, the
knowledge of the material properties (the Young’s
modulus E and the density ρ) are not required, but
the natural frequencies of the uncracked beam are
needed.
In this paper, an alternative criterion will be pre-
sented in order to avoid a careful determination
of the material properties or the knowledge of the
uncracked frequencies of the beam. Even if the
estimation of material properties may be easily in-
vestigated, the criterion that will be developed in
the next section has the advantage to save experi-
mental time and to obtain a robust damage identi-
fication.
Moreover, these methodology will be extended by
considering not only the identification of the crack
size and location but also the orientation of the
crack χ , as indicated in Figure 1.
The proposed criterion is based on the two follow-
ing facts :

• the changes in the ratios of two natural fre-
quencies is not affected by the material prop-
erties (i.e. the Young modulus E and the den-

sity ρ),

• the natural frequencies associated with the
vertical (first, third and fifth frequencies)
and horizontal (second, fourth, and sixth
frequencies) modes are equal in the case
of an uncracked beam, but are different for
the cracked beam due to the size, position
and orientation of the crack (as illustrated in
Figures 2, 3 and 4).

Therefore, the proposed criterion is based on the
ratio changes of the natural frequency of the ver-
tical and horizontal modes of the cracked beam

%Δcracked
i (μ ,χ ,Lcrack) =

100×ωcracked
2i−1 (μ ,χ ,Lcrack)−ωcracked

2i (μ ,χ ,Lcrack)
ωcracked

2i−1 (μ ,χ ,Lcrack)
(15)

where ωcracked
2i−1 and ωcracked

2i correspond to the nat-
ural frequency of the ith vertical and horizontal
modes, respectively. The evolutions of %Δcracked

i
(for i = 1, . . .,3) are shown in Figures 5: it may
be observed that this criterion %Δcracked

i is depen-
dent on the non-dimensional crack depth μ , the
crack location Lcrack and the crack orientation χ ,
and is obtained by only considering the cracked
natural frequencies of the beam. Here, it is as-
sumed that the open crack area remains constant
which allows the determination of Δcracked

i .
In order to illustrate the Frequencies’ Ratio Sur-
faces Intersection method , a crack is added on
the beam: the value of the non-dimensional crack
depth is μ = 0.8, the crack orientation is χ =
π
3 rad. and the crack is located at Lcrack = 0.15m
(see case 1 in Table 2). Then, Table 3 gives the
values of %Δcracked

i (with i = 1, . . . ,3) for this as-
sumed crack. Figures 6 illustrate the combina-
tions of different crack locations, crack depths
and crack orientations which have the same ratio
changes %Δcracked

i (μ ,χ ,Lcrack) (for i = 1, . . .,3).
Each combination may be plotted as a surface
with crack location Lcrack, crack depth μ , and
crack orientation χ as its axes.
Then, the intersections of the three surfaces
of the first three percentage ratio changes
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%Δcracked
i (μ ,χ ,Lcrack) define the different possi-

ble combinations of crack locations, crack depths
and crack orientations for the cracked beam un-
der study. It clearly appears that the inter-
sections of the three surfaces defines two sim-
ilar contour lines indicating two values for the
crack location Lcrack and couples of values (μ ,χ)
for the crack size μ and the crack orientation
χ . These two intersections of the three surfaces
are indicated by the red lines in Figures 6. It
is well known that the non-uniqueness of the
damage location Lcrack is only due to structural
symmetry of the beam (Dilena and Morassi 2004;
Swamidas et al. 2004).
Then, due to the fact that it is assumed that
the portion of the crack lying below the neu-
tral axis is opened under the effect of self
weight bending, the area of the open crack may
correspond to various orientations of the crack
front χ and non-dimensional crack depths μ .
The two lines that correspond to the intersec-
tion of the three surfaces, define all the pos-
sible couples of values (μ ,χ) for the cracked
beam under study. As required for the frequency
contour lines method (Swamidas et al. 2004;
Owolabi et al. 2003; Nahvi and Jabbari 2005), a
minimum of three ratio frequency surfaces
%Δcracked

i is required. Effectively, if the crack is
situated at the node of the ith vertical and hori-
zontal modes, ωcracked

2i−1 and ωcracked
2i remain almost

unchanged. Thereby, the associated ratio change
Δcracked

i is equal to zero and the identification is
not possible.
In conclusion, the Frequencies’ Ratio Surfaces
Intersection method is based on a new criterion
%Δcracked

i that only considers the natural frequen-
cies of the cracked beam. The natural frequencies
of the uncracked beam are not used, and an ac-
curate knowledge of the material properties (i.e.
the Young’s modulus E and the density ρ) is not
needed.
The process considers the surfaces which have
the same ratio changes %Δcracked

i resulting in a
combination of different crack locations, crack
depths and crack orientations can be plotted as
a curve with crack location and crack depth as
its axes. Then, the intersections of the surfaces
%Δcracked

i (μ ,χ ,Lcrack) for the three lower modes

(for i = 1, . . .,3) indicates all the possible combi-
nations of the crack position, the crack size and
the crack orientation.

3.2 Non-uniqueness of the damage location
based on antiresonances

As indicated in Figures 6, the identification
procedure presented in the previous section is
not sufficient to eliminate symmetrical solutions
in the damage location problem. Effectively,
it is well known that a crack at any end of the
simply supported beam produces identical shifts
in natural frequencies, and identical changes in
the criterion Δcracked

i .
In order to avoid the non-uniqueness of the
damage location problem, some researchers
(Swamidas et al. 2004; Sinou 2007) proposed
to add an off-center placed mass to the simply
supported beam from the left or right end. Due
to this added off-center mass, the previous
symmetry of the uncracked supported beam
does not exist and the crack location may be
identified. However, it was demonstrated that this
methodology may be difficult to be used (see for
example (Sinou 2007)).
Recently, Dilena and Morassi
(Dilena and Morassi 2004) proposed an ap-
propriate use of resonances and antiresonances in
order to avoid the non-uniqueness of the damage
location problem due to structural symmetry.
One of the advantages of using antiresonances is
that no additional tests is necessary, contrary to
the previous methodology. Moreover, it should
be noted that antiresonances like resonances are
easily measurable.
As previously explained in Section 2.3, the
presence of cracks may induced coupling of
the two lateral vibrations if the crack is fully or
partially open and if the crack front is different
from the direction of the external force that is
assumed to be directed on the vertical X-axis.
It may be noted that no displacement will be
observed in the horizontal direction if the system
is uncracked due to the fact that the excitation is
only in the vertical direction.

Then, as explained by Wahl et al.
(Wahl et al. 1996), the resonances and an-
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Table 2: Values of the crack depth, crack location and crack orientation for the five cases under study

Case Non-dimensional crack depth μ Crack location Lcrack (m) Crack orientation χ (rad.)
1 0.8 0.15 π

3
2 0.3 0.62 π

5
3 0.5 0.28 2π

3
4 0.7 0.48 π

2
5 0.9 0.42 π

10

Table 3: Values of %Δcracked
i

μ Lcrack(m) χ(rad.) Angle (rad.) open crack area (mm2) %Δcracked
1 %Δcracked

2 %Δcracked
3

0.8 0.15 π
3 χ 2092 99.551 98.645 98.279

χ +π/2 2689 98.934 96.864 96.258
χ +π 841 99.977 99.928 99.899

χ −π/2 244 99.999 99.998 99.998
0.3 0.62 π

5 χ 739 99.936 99.968 99.985
χ +π/2 710 99.944 99.972 99.987

χ +π 0 100 100 100
χ −π/2 29 100 100 100

0.5 0.28 2π
3 χ 294 99.997 99.996 99.999

χ +π/2 1535 99.544 99.352 99.866
χ +π 1242 99.77 99.666 99.93

χ −π/2 0 100 100 100
0.7 0.48 π

2 χ 1225 99.646 99.995 99.684
χ +π/2 2450 96.686 99.952 97.311

χ +π 1225 99.646 99.995 99.684
χ −π/2 0 100 100 100

0.9 0.42 π
10 χ 3246 91.937 98.104 96.475

χ +π/2 2103 98.104 99.529 99.094
χ +π 182 99.999 100 99.999

χ −π/2 1325 99.573 99.891 99.786

tiresonances alternate continuously only for the
Frequency Response Function of the driving
point where the response co-ordinate and the
excitation co-ordinate are identical. Moreover,
by increasing the distance between the excita-
tion co-ordinate and the response co-ordinate,
the number of antiresonance ranges decreases.
Considering Equations 9 and 14, the presence
of a transverse crack introduces an excitation
force at the crack location in the horizontal and
vertical directions. So, if the external force is
only directed on the vertical axis (and the crack
front is different from the direction of the external
force), the Frequency Response Functions of

the horizontal degrees-of-freedom appear only
due to the crack force’s excitation. Thereby, the
response co-ordinate where the resonances and
antiresonances alternate continuously defines the
vicinity of the crack location. Figures 7 illustrate
the Frequency Response Functions for all the
horizontal degrees-of-freedom of the cracked
beam (at several locations along the shaft named
by "shaft"-axis in the figures) when the sinusoidal
external excitation is situated at the left end (see
Figure 7 (a)) or the right end (see Figure 7 (b)) of
the simply supported beam. It is clearly shown
that the non-uniqueness location of the crack may
be avoid by using antiresonances. If the external
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force and the crack location are close, it may be
observed that resonances and antiresonances can
alternate for all the degrees-of-freedom of the
beam (see Figure 7 (a)). However, considering
Figure 7 (b), it clearly appears that the resonances
and antiresonances alternate continuously only
at one end of the beam. So the non-uniqueness
of the damage location may be avoid by only
considering the Frequency Response Functions
and the use of the driving point FRF that is
characterized by a successive change in the
resonances and antiresonances.

3.3 Identification of the crack depth and crack
orientation

As previously explained, the two contour lines
that corresponds to the intersection of the three
surfaces having the same ratio changes %Δcracked

i
(for i = 1, . . .,3), result in a combination of differ-
ent crack locations, crack depths and crack orien-
tations. The damage location being obtained by
using the antiresonances, only the size and ori-
entation of the crack need to be determined. So,
the contour line of Figures 6 illustrates all the
combinations of the non-dimensional crack size
μ and the crack orientations χ that correspond to
the equivalent open crack (i.e. the portion of the
crack lying below the neutral axis under the effect
of self weight bending).
By rotating the beam by chosen angles, the por-
tion of the crack lying below the neutral axis
changes. So the combinations of the crack size
μ and the crack orientation χ that corresponds to
the new equivalent open crack also change. Fig-
ure 8 illustrates the different contour lines that
may be obtained for various chosen rotations of
cracked beam. In our cases, three successive an-
gle rotations (−π

2 , π
2 and π) have been chosen. It

may be noted that all these lines define the com-
bination of the crack orientations and crack sizes
for a given orientation of the crack beam. So,
knowing the angle variation between two contour
lines (i.e. the angle rotation that has been chosen),
the uniqueness of the crack orientation and crack
size may be determined graphically, as indicated
in Figure 8: effectively, all the combinations of
different crack orientations and crack depths can

be plotted as a curve with crack orientation and
crack depth as its axes. The intersection of the
contour lines indicates the non-dimensional crack
depth μ and the crack orientation χ (in regard to
the first initial orientation of the cracked beam).
It may be noted that the identification of the non-
dimensional crack depth and crack orientation can
be defined by the intersection of two, three or four
contour lines due to the fact that the transverse
crack may be totally closed for some orientations
of the cracked beam and partially opened for the
others, as indicated in table 3.
Finally, it may be observed that the point that cor-
responds to the intersections of the different con-
tour lines may be defined as the intersection of all
the surfaces %Δcracked

1 , %Δcracked
2 and %Δcracked

3
for the various chosen rotations of cracked beam.

In conclusion, the crack size, crack orientation
and crack location have been identified. The pro-
posed method, called the Frequencies’ Ratio Sur-
faces Intersection method (FRSI-method), only
considers the natural frequencies of the cracked
beams and does not require an accurate knowl-
edge of the material properties (i.e. the Young’s
modulus E and the density ρ).

3.4 Numerical validation

In order to numerically demonstrate the efficiency
of the proposed methodology in the case of a
simply supported beam with various crack lo-
cations, depths and orientations, four additional
cases will be undertaken, as indicated in Ta-
ble 2. The intersections of the three surfaces
of %Δcracked

i (μ ,χ ,Lcrack) (for i = 1, . . .,3) are
given in Figures 9 for the four last cases. Ta-
ble 3 indicates the values of the associated fac-
tors %Δcracked

i . It may be observed that theses in-
tersections are double for each case. So, using
the Frequency Response Functions and antireso-
nances enable us to identify the crack location, as
illustrated in Figures 10. It may be observed that
the use of antiresonances is possible even if the
equivalent area of the open crack is small (due to
the combination of the crack orientation and crack
depth, as indicated in Table 3).
Finally, the identification of the non-dimensional
crack depth and the crack orientation is obtained
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by rotating the beam by three angles (−π
2 , π

2 and
π). The intersections of the contour lines that in-
dicate the crack depth and crack orientation are
shown for the four cases in Figures 11. In con-
clusion, the crack depth, crack location and crack
orientation are identified in all cases.

4 Extension of the FRSI-method and robust
identification

4.1 Extension of the Frequencies’ Ratio Sur-
faces Intersection method

The previous RFSI-method may be extended by
considering the ratio of the ith and jth natural
frequencies. In this case, the previous criterion
%Δcracked

i may be generalized by considering the
new factor

%Ψcracked
i, j (μ ,χ ,Lcrack) =

100×
(

ωuncracked
i

ωuncracked
j

− ωcracked
i (μ ,χ ,Lcrack)

ωcracked
j (μ ,χ ,Lcrack)

)

(16)

where ωuncracked
i and ωcracked

i correspond to the ith

natural frequencies of the uncracked and cracked
simply supported beams, respectively.
It may be observed that the factor %Δcracked

i cor-

responds to the expression 16 where
ωuncracked

i

ωuncracked
j

is

equal to one that defines an uncracked symmetri-
cal beam. Effectively, we have

%Δcracked
i = 100× ωcracked

2i−1 −ωcracked
2i

ωcracked
2i−1

= 100×
(

1− ωcracked
2i

ωcracked
2i−1

)
= %Ψcracked

2i,2i−1 (17)

Considering the case of a simply supported un-
cracked beam with a circular cross section, the
classical expression of the nth natural frequency
is given by (Harris and Piersol 2002)

ωuncracked
n = n2π2

√
EI

ρSL4 =
n2π2R

2L2

√
E
ρ

(18)

where n are the modes numbers (n = 1,2, . . .). L
and R are the length and the radius of the un-
cracked beam. E and ρ define the Young’s modu-
lus and density, and so correspond to the material

properties. I and S are the moment of inertia and
area of the beam section.
Due to the symmetrical properties of the un-
cracked beam, it may be observed that the factor
%Ψcracked

i, j (μ ,χ ,Lcrack) for the ith and jth pulsa-
tions can be rewritten by

%Ψcracked
2α−a,2β−b (μ ,χ ,Lcrack) =

100×
((

α
β

)2

− ωcracked
2α−a (μ ,χ ,Lcrack)

ωcracked
2β−b (μ ,χ ,Lcrack)

)
(19)

with a and b are equal to 0 or 1, and α ∈ ℵ∗

and β ∈ ℵ∗. If the numbers i and j are odd
numbers (respectively even numbers), the factor
%Ψcracked

i, j defines the ratio of the ith and jth

natural frequencies that are only measured in
one direction. If the number i is odd number
(respectively even number) and the number j
is even number (respectively odd number), the
factor %Ψcracked

i, j defines the ratio of the ith and
jth natural frequencies that are measured in
horizontal (respectively vertical) and horizontal
(respectively vertical) directions. Considering
Equation 19, it is clear that the factors %Ψcracked

i, j
are not only a function of crack depth, location
and orientation, but also of the frequency number
and the associated mode shape. Moreover, the
factors %Ψcracked

2α−a,2β−b need only the knowledge of
the natural frequencies of the simply supported
cracked beam and do not change with the varia-
tions of the material properties.

In order to illustrate the role of the factor
%Ψcracked

i, j , Figures 12 show the variations of

%Ψcracked
3,1 , %Ψcracked

5,1 and %Ψcracked
5,3 with the non-

dimensional crack depth, the crack size and the
crack orientation. From the results obtained in
these figures, it may be concluded that the mode
of ith natural frequency is more affected by the
crack than the mode of jth natural frequency if
%Ψcracked

i, j is higher than 0. And so, if %Ψcracked
i, j is

lower than 0, the more affected mode corresponds
to the jth natural frequency.
Effectively, Figures 12(a) and (b) indicate that
when the crack location is between [0 0.3] or
[0.7 1] (for the non-dimensional crack depth μ = 1
and the orientation of the crack χ = 0rad.), the
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(c) μ = 0.7, χ = π
2 rad., Lcrack = 0.48m (d) μ = 0.9, χ = π

10rad., Lcrack = 0.42m
Figure 10: Identification of the the crack location based on the vertical amplitudes and antiresonances
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first natural frequency that corresponds to the first
vertical mode is comparatively much less affected
than the third natural frequency that corresponds
to the second vertical mode. For a crack situ-
ated between [0.3 0.7], the scenario is reversed.
The same observations may be done for the com-
parison of the third and fifth natural frequencies
that are associated with the second and third ver-
tical modes of the cracked beam: when the crack
is located between [0.15 0.4] and [0.6 0.85] (for
μ = 1 and χ = 0rad.), the third natural frequency
is more affected than the fifth natural frequency of
the cracked beam.
Considering Figure 12, it can be seen that the
factor %Ψcracked

i, j and the local associated minima
and maxima indicate the trends of changes of the
bending moment and its effect on both the mode
of jth natural frequency and the mode of ith natu-
ral frequency.
Then, the minimum of the factor %Ψcracked

i, j re-
flects the fact that the jth natural frequency is
almost unaffected for a crack whereas the mode
of ith natural frequency is greatly affected. See
for example Figure 12 when the crack is situated
at one node of mode shapes (i.e. the middle of
the beam for the second vertical and horizontal
modes, and one-third of one end of the beam for
the third vertical and horizontal modes).

4.2 Numerical validation

So the damage detection technique that has
been explained in Section 3 can be extended
by considering the evolutions of the factors
%Ψcracked

i, j (μ ,χ ,Lcrack). As required for the fac-
tors %Δcracked

i (μ ,χ ,Lcrack), a minimum of three
ratio frequency surfaces %Ψcracked

i, j (μ ,χ ,Lcrack)
is needed. For example Figures 13 show the three
surfaces of the factors %Ψcracked

3,1 , %Ψcracked
5,1 and

%Ψcracked
5,3 . These surfaces define all the com-

binations of the different crack location Lcrack,
crack depth μ and crack orientation χ which have
the same ratio changes of the factors %Ψcracked

3,1 ,
%Ψcracked

5,1 and %Ψcracked
5,3 for the cracked beam

under study. The values of the factors %Ψcracked
3,1 ,

%Ψcracked
5,1 and %Ψcracked

5,3 are given in Table 4. It

clearly appears that the factors %Ψcracked
i, j increase

rapidly with increasing of the non-dimensional
crack depth μ . Therefore, the detection of lower
crack detph appears to be easily done.
As previously indicated in Section 3, the inter-
sections of the three surfaces define two similar
contour lines indicating two values for the crack
location Lcrack and the combinations (μ ,χ) of the
crack size μ and the crack orientation χ .
These intersections of the three surfaces are
given in Figures 13 by the red contour lines. It
may be observed that only the first, second and
third vertical modes (and the associated natural
frequencies) of the cracked beam are used.
Then, the non-uniqueness of the crack location
is avoid by considering the driving point Fre-
quency Response Function that is characterized
by a successive change in the resonances and
antiresonances (see Section 3.2 and Figures 7).
As indicated in Section 3.3, the non-dimensional
crack depth μ and the crack orientation χ are
determined graphically by rotating the beam
by specified chosen angles, as illustrated in
Figures 8. It may be observed that the com-
binations of the non-dimensional crack size
μ and the crack orientation χ are the same
for both the factors %Δcracked

i (μ ,χ ,Lcrack) and
%Ψcracked

i, j (μ ,χ ,Lcrack). Effectively, the area
of the crack that is open is the same, so the
calculated possible combinations (μ ,χ) are
equivalent.
Finally, Figures 14 illustrate the surfaces’ in-
tersections of the factors %Ψcracked

3,1 , %Ψcracked
5,1

and %Ψcracked
5,3 for the four last cases that are

given in Table 2. All the associated values of the
factors %Ψcracked

i, j (μ ,χ ,Lcrack) are given in Table
4. In all cases, the crack location agrees with the
previous identification done in Section 3.1.

In conclusion, it is shown that the identification of
the crack parameters (location, depth and orien-
tation) can be performed by considering the Fre-
quencies’ Ratio Surfaces Intersection method and
the generalized factors %Ψcracked

i, j (μ ,χ ,Lcrack).
The use of this generalized factor %Ψcracked

i, j al-
lows to undertake an additionnal damage identifi-
cation by verifying the previous identification for
the crack location that has been obtained by us-
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Table 4: Values of %Ψcracked
i j

μ Lcrack(m) χ(rad.) Angle (rad.) %Ψcracked
31 %Ψcracked

51 %Ψcracked
53

0.9 0.42 π
10 χ -39.819 -63.4 5.955

χ +π/2 -16.334 -24.565 2.927
χ +π -1.082 -1.554 0.22

χ −π/2 -8.623 -12.677 1.646
0.7 0.48 π

2 χ -11.225 -1.815 5.7
χ +π/2 -30.088 -9.041 13.638

χ +π -11.225 -1.815 5.7
χ −π/2 0 0 0

0.8 0.15 π
3 χ 10.192 34.67 3.011

χ +π/2 15.638 49.753 3.790
χ +π 3.323 12.262 1.206

χ −π/2 0.950 3.600 0.367
0.5 0.28 2π

3 χ 0.868 -2.283 -1.061
χ +π/2 4.445 -14.125 -6.099

χ +π 3.561 -10.737 -4.729
χ −π/2 0 0 0

0.3 0.62 π
5 χ -2.811 -9.747 -0.85

χ +π/2 -2.692 -9.342 -0.815
χ +π 0 0 0

χ −π/2 -0.110 -0.390 -0.035

ing the factor %Δcracked
i . Moreover, these last fac-

tors may be usesul for the damage identification in
structures where the natural frequencies are only
measured in one direction (for example in rectan-
gular cross section beams).

4.3 Sensibility of the FRSI-method and robust
identification of the crack parameters

It is well known that experiments are frequently
perturbed by noise measurement and that the pro-
posed damage identification technique (Frequen-
cies’ Ratio Surfaces Intersection method) may be
particularly sensitive to experimental and/or mod-
eling errors. In this case, the identification of the
crack location, size and orientation can be less or
more difficultly obtained depending on the effect
of uncertainties due to measurement errors and
environmental conditions. So the robustness and
sensibility of the Frequencies’ Ratio Surfaces In-
tersection method through these hypotheses will
be undertaken in this section with various noise
levels for cases 1, 2 and 3.

In order to simulate correctly the presence of
noise on measurements, several uniform random
noises are added on the previous deterministic
computational experiments (i.e. each frequency
of the cracked system is modified by an uniformly
distributed random noise level). Table 5 gives the
values of the first sixth frequencies for cases 1,
2 and 3 without noise. Then, Tables 6, 7 and 8
show the evolutions of the frequencies for cases
1, 2 and 3 with various uniform random noise lev-
els, respectively. The corresponding evolutions of
the parameters %Ψcracked

i j are indicated in Tables
9, 10 and 11. Firstly, Figures 15 show the sur-
faces %Ψcracked

31 , %Ψcracked
51 and %Ψcracked

53 with
various noise levels for case 1 (μ = 0.8, χ = π

3
and Lcrack = 0.15m). Table 12 gives the estimated
crack location that corresponds to the centroid of
the three surfaces. Due to the presence of noise
measurement, the three surfaces do not intersect
in an unique line. However, the centroid of the
crack location that is given in Table 12 indicates
that the crack location is correctly identified even
if noise level have been added in the numerical
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Figure 16: Identification of the crack size μ and the crack orientation χ with various noise levels for the
case 1 (μ = 0.8, χ = π
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Figure 18: Identification of the crack size μ and the crack orientation χ with various noise levels for the
case 2 (μ = 0.3, χ = π

5 rad. and Lcrack = 0.62m) and the case 3 (μ = 0.5, χ = 2π
3 rad. and Lcrack = 0.28m)

and with the contour lines of %Ψcracked
15 (−χ , −.−χ + π

2 rad., −−χ +πrad., · · ·χ − π
2 rad.)
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Table 5: Evolution of the frequencies in Hz for the cases 1,2 and 3 without noise

Case μ Lcrack (m) χ(rad.) Angle (rad.) f1 f2 f3 f4 f5 f6

1 0.8 0.15 π
3 χ 196.4 197.29 765.6 776.12 1699.54 1729.3

χ +π/2 194.99 197.09 749.47 773.73 1657.9 1722.35
χ +π 198.08 198.12 785.73 786.29 1758.4 1760.19

χ −π/2 198.63 198.63 792.64 792.65 1780.53 1780.58
2 0.3 0.62 π

5 χ 196.06 196.19 789.75 790 1783.66 1783.92
χ +π/2 196.17 196.29 789.98 790.2 1783.9 1784.13
χ +π 198.85 198.85 795.4 795.4 1789.66 1789.66

χ −π/2 198.74 198.74 795.17 795.17 1789.41 1789.41
3 0.5 0.28 2π

5 χ 198.09 198.09 790.62 790.66 1787.29 1787.31
χ +π/2 194.37 195.26 768.83 773.85 1776.77 1779.16
χ +π 195.39 195.84 774.62 777.21 1779.52 1780.76

χ −π/2 198.85 198.85 795.4 795.4 1789.66 1789.66

Table 6: Evolution of the frequencies in Hz for the case 1 (μ = 0.8, χ = π
3 rad. and Lcrack = 0.15m) and

various noise levels

Noise (%) Angle (rad.) f1 f2 f3 f4 f5 f6

1 χ 196.3 196.64 769.19 775 1691.88 1733.71
χ +π/2 194.17 197.78 749.93 772.33 1655.82 1728.69
χ +π 198.72 197.22 786.49 789.83 1754.69 1767.03

χ −π/2 198.16 198.06 794.75 793.97 1773.96 1773.37
2 χ 196.8 197.7 768.04 771.2 1704.18 1717.9

χ +π/2 195.69 195.41 743.03 766.18 1648.85 1722.91
χ +π 198.62 197.22 785.77 793.34 1769.94 1774.89

χ −π/2 198.31 197.49 785.28 786.01 1769.19 1774.89
4 χ 196.42 196.68 770.51 781.51 1730.63 1707.98

χ +π/2 198.37 194.23 750.12 785.96 1687.23 1710.99
χ +π 198.37 196.07 778.69 790.71 1739.4 1772.96

χ −π/2 197.59 194.76 782.87 788.84 1763.03 1785.53
6 χ 194.35 195.87 742.63 758.95 1699.02 1681.4

χ +π/2 194.83 197.04 766.72 771.75 1687.66 1684.54
χ +π 194.52 193.22 774.38 791.47 1765.34 1772.01

χ −π/2 195.11 193.26 773.42 794.86 1737.36 1783.51
8 χ 196.2 194.23 778.75 793.62 1663.86 1687.2

χ +π/2 197.5 194.85 775.74 772.97 1603.65 1746.31
χ +π 194.51 190.9 760.2 780.63 1696.43 1711.87

χ −π/2 197.3 192.18 789.47 790.89 1765.1 1745.36
10 χ 197.3 193.03 755.71 742.33 1707.15 1787.47

χ +π/2 192.65 195.37 742.08 767.62 1637.5 1773.2
χ +π 195.76 193.23 773.38 794.4 1754.85 1737.01

χ −π/2 196.07 196.6 790.86 763.25 1777.66 1727.83
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Table 7: Evolution of the frequencies in Hz for the case 2 (μ = 0.3, χ = π
5 rad. and Lcrack = 0.62m) and

various noise levels

Noise (%) Angle (rad.) f1 f2 f3 f4 f5 f6

1 χ 195.45 196.4 787.46 793.94 1775.04 1782.85
χ +π/2 195.28 196.51 788.68 790.86 1776.87 1784.16
χ +π 198.5 197.95 791.52 793.32 1782.92 1781.92

χ −π/2 198.73 197.84 794.86 795.18 1789.27 1785.69
2 χ 196.94 198.04 792.98 794.77 1773.18 1781.91

χ +π/2 196.17 196.29 789.98 790.2 1783.9 1784.13
χ +π 197.23 197.81 788.86 792.12 1788.43 1773.39

χ −π/2 198.28 198.84 793.48 787.7 1780.91 1785.08
4 χ 196.46 193.95 794.98 783.96 1781.5 1784.34

χ +π/2 197.66 194.92 784.85 780.64 1776.84 1762.45
χ +π 196.34 196.54 794.99 792.14 1787.31 1789.15

χ −π/2 197.05 198.71 783.35 781.01 1767.32 1778.31

Table 8: Evolution of the frequencies in Hz for the case 3 (μ = 0.5, χ = 2π
3 rad. and Lcrack = 0.28m) and

various noise levels

Noise (%) Angle (rad.) f1 f2 f3 f4 f5 f6

1 χ 198.23 197.37 793.53 789.31 1787.08 1786.08
χ +π/2 194.02 194.33 767.72 775.74 1773.19 1773.48
χ +π 195.74 196.48 776.6 774.59 1780.45 1781.21

χ −π/2 198.63 198.76 792.83 795.18 1782.29 1787.24
2 χ 196.16 198.25 783.78 787.65 1781.57 1776.98

χ +π/2 193.61 193.36 761.22 781.4 1787.85 1788.78
χ +π 193.99 196.3 774.18 777.37 1774.01 1765.98

χ −π/2 198.23 198.68 791.35 788.12 1782.62 1772.95
4 χ 195.3 197.38 777.76 781.07 1786.23 1763.23

χ +π/2 194.6 195.29 768.32 770.06 1778.17 1768.16
χ +π 198.63 193.18 771.14 791.74 1748.68 1767.71

χ −π/2 194.89 195.77 786.36 780.12 1764.22 1768.72

simulations. Then, it may be noted that the non-
uniqueness of the crack location may always be
avoid by considering the driving point Frequency
Response Function that is characterized by a suc-
cessive change in the resonances and antireso-
nances even if noise level has been added on the
numerical simulations (see Section 3.2).

Secondly, Figures 16 illustrate the contour lines
of %Ψcracked

15 and the corresponding identification
of the crack size μ and the crack orientation χ
with various noise levels. Due to the presence
of measurements errors, the intersection of the
three curves does not exist. However, the cen-

troid of the different pairs of intersections may be
taken as the crack position and crack size when
the three curves do not meet exactly. Consider-
ing the results presented in Figures 16, it may be
concluded that measurement errors and uncertain-
ties on the frequencies inevitably degrade the ac-
curacy in practical cases. Effectively, the area de-
fines by the intersections of the different curves
%Ψcracked

15 for the various shaft rotoations increase
when the noise measurement increase. However,
the identifications of all the crack parameters (lo-
cation, size and orientation) are obtained with sat-
isfactory precisions even if 1%, 2%, and 4% uni-
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Table 9: Values of %Ψcracked
i j for the case 1 (μ = 0.8, χ = π

3 rad. and Lcrack = 0.15m) and various noise
levels

Noise (%) Angle (rad.) %Ψcracked
31 %Ψcracked

51 %Ψcracked
53

1 χ 8.167 38.138 5.044
χ +π/2 13.782 47.244 4.204

χ +π 4.214 16.992 1.897
χ −π/2 -1.063 4.788 1.791

2 χ 9.745 34.075 3.113
χ +π/2 20.296 57.404 3.092

χ +π 4.393 8.901 -0.249
χ −π/2 4.018 7.876 -0.294

4 χ 7.721 18.909 0.392
χ +π/2 21.868 49.468 0.07

χ +π 7.45 23.136 1.624
χ −π/2 3.784 7.717 -0.201

6 χ 17.886 25.788 -3.783
χ +π/2 6.467 33.782 4.887

χ +π 1.901 -7.537 -2.967
χ −π/2 3.588 9.532 0.368

8 χ 3.078 51.95 11.343
χ +π/2 7.221 88.027 18.275

χ +π 9.179 27.856 1.843
χ −π/2 -0.13 5.386 1.419

10 χ 16.976 34.742 -0.902
χ +π/2 14.812 50.028 4.336

χ +π 4.928 3.558 -1.906
χ −π/2 -3.361 -6.652 0.226

Table 10: Values of %Ψcracked
i j for the case 2 (μ = 0.3, χ = π

5 rad. and Lcrack = 0.62m) and various noise
levels

Noise (%) Angle (rad.) %Ψcracked
31 %Ψcracked

51 %Ψcracked
53

1 χ -2.897 -8.185 -0.413
χ +π/2 -3.865 -9.897 -0.297

χ +π 1.24 1.781 -0.253
χ −π/2 0.031 -0.35 -0.105

2 χ -2.65 -0.358 1.392
χ +π/2 1.969 -4.246 -2.18

χ +π 0.027 -6.782 -1.711
χ −π/2 -0.175 1.832 0.556

4 χ -4.644 -6.779 0.907
χ +π/2 2.921 1.043 -1.393

χ +π -4.909 -10.322 0.179
χ −π/2 2.469 3.129 -0.61
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Table 11: Values of %Ψcracked
i j for the case 3 (μ = 0.5, χ = 2π

3 rad. and Lcrack = 0.28m) and various noise
levels

Noise (%) Angle (rad.) %Ψcracked
31 %Ψcracked

51 %Ψcracked
53

1 χ -0.299 -1.496 -0.206
χ +π/2 4.313 -13.909 -5.968

χ +π 3.246 -9.606 -4.262
χ −π/2 0.847 2.702 0.2

2 χ 0.437 -8.227 -2.305
χ +π/2 6.833 -23.421 -9.868

χ +π 0.917 -14.491 -4.148
χ −π/2 0.797 0.74 -0.264

4 χ 1.757 -14.615 -4.662
χ +π/2 5.171 -13.774 -6.435

χ +π 11.763 19.615 -1.765
χ −π/2 -3.488 -5.24 0.646

Table 12: Estimation of the crack location for cases 1, 2 and 3 with various noise levels

Case Noise (%) Lcrack(m)
1 1 0.13

2 0.16
4 0.2
6 0.22
8 0.18
10 0.2

2 1 0.63
2 0.6
4 0.6

3 1 0.38
2 0.24
4 0.24

formly distributed random noise level is added to
the simulations. If the noise level is greater that
6%, the identification of the crack size and orien-
tation may be more difficult. Moreover, it may be
observed that the crack depth and orientation has
been detected with less accuracy than the crack
position. Finally, it may be noted that the use of
%Ψcracked

13 and/or %Ψcracked
35 could allow to under-

take an additionnal damage identification of the
crack size and orientation in orde to confirm the
previous identification with %Ψcracked

15 . In conclu-
sion, the quality of the experimental data that is an
important key in achieving reliable identification
with the RFSI-method.

Now, the sensibility of the RFSI-method and ro-
bust identification of the crack parameters is un-
dertaken for cases 2 and 3 that correspond to the
presence of "‘small"’ cracks. The identification
of the crack location and the corresponding re-
sults of the surfaces %Ψcracked

31 , %Ψcracked
51 and

%Ψcracked
53 with 1%, 2% and 4% noise levels are

presented in Figures 17. The associated results
for the identification of the crack size and orienta-
tion are given in Figures 18. Moreover, it clearly
appears that the crack location, orientation and
size may be evaluated by considering the centroid
of the surfaces %Ψcracked

i j and the different curves
%Ψcracked

15 for the four shaft rotations. However, it
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appears that the identification of the crack param-
eters is not possible if the noise level is more than
2% (see Figures 17(e) and (f)). So it may be con-
cluded that the quality of the measurements for
the identification of a small crack is an important
factor to take into account for a robust identifica-
tion of the crack location, size and orientation by
using the RFSI-method.

In conclusion, the identification of the crack pa-
rameters can be less or more difficultly obtained
depending on the effect of uncertainties due to
measurement errors and environmental conditions
and the characteristics of the crack. However,
if 1% or 2% uniformly distributed random noise
level is added to the numerical simulations, the
Frequencies’ Ratio Surfaces Intersection method
(FRSI-method) can be used for the detection of
the crack size, location and orientation with satis-
factory precision.

Conclusion

Two new criterions %Δcracked
i and %Ψcracked

i, j
and the Frequencies’ Ratio Surfaces Intersection
method are given in order to identify the non-
dimensional crack depth, the crack location and
the crack orientation. The FRSI-method considers
the intersection of the surfaces that correspond to
the natural frequencies’ ratio of the lower modes.
It is demonstrated that a robust identification of
the crack parameters is possible by only using the
natural frequencies of the cracked beam. More-
over, an accurate knowledge of the material prop-
erties (i.e. the Young modulus and the density)
is not required. The non-uniqueness of the crack
size location that is classically observed for struc-
tural symmetric beams when the Frequencies’ Ra-
tio Surfaces Intersection method method is used,
may be avoid by only considering the emerging of
extra antiresonances on the Frequency Response
Function of the crack beam.
The proposed methodology was numerically val-
idated in the case of a simply supported beam
with various crack locations, depths and orien-
tations. The obtained results demonstrate that a
certain level of accuracy for the measured data
is needed in order to allow a correct damage de-
tection. Moreover, the procedure developed here

works effectively only for measurement errors not
exceeding 2% for small levels of crack depth. So
it may be concluded that the quality of the experi-
mental data is an important key in order to achieve
reliable results due to the fact that the presence
of experimental errors and uncertainties may pro-
duce a modification in the identification of the
crack size and orientation.
Finally, the proposed methodology and the gen-
eralized criterion %Ψcracked

i, j has the potential as a
damage detection technique for rectangular cross
section beams or more complex structures.
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