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Abstract: It can be observed that usually, dur-
ing structures useful life they are submitted to de-
terioration processes that, depending on the inten-
sity, may affect their performance and load ca-
pacity and, as a result, their safety. In this case,
it is necessary to accomplish an inspection in or-
der to evaluate the conditions of the structure and
to locate and quantify the intensity of the dam-
age. Another important point is to study the be-
havior of brittle material beams with cracks, as an
attempt of understanding the rupture mechanism
and crack propagation phenomenon. In this paper,
the Residual Error Method (Genovese, 2000) is
applied to a concrete beam in order to identify and
quantify damages in its structure. This method
is based on the alteration produced by damage in
the dynamic properties of structures. The results
obtained by this method allowed to locate and to
quantify damages in a beam. The phenomenon
of crack propagation is studied by others methods
too: the Fracture Mechanics approaches and the
Discrete Element Method (DEM). Changes on the
dynamic behavior, crack trajectories, peak loads
and energy variations were observed during the
simulation.

Keyword: Damage, dynamic properties, brittle
materials, fracture mechanics, crack propagation.

1 Introduction

In general, the structures suffer deterioration pro-
cesses during their useful life. These processes
can be originated from corrosion phenomena,
chemical attack, carbonation, radiation, among
others. Besides these factors, the civil engineer-
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ing structures are submitted to several types and
forms of static and dynamic loads such as per-
manent or accidental loads, movement of people,
vibration of machines, wind forces, earthquakes,
impact, fatigues etc. The combination of load
conditions and deterioration processes, depend-
ing on the intensity, can produce different types
of structural damages.

This fact, obviously, results in a reduction in car-
rying capacity or a reduction in the structure’s
ability to control motions under imposed forces,
and, in extreme cases, it can compromise the
structures global stability. In this case, when there
are doubts about the structural integrity, it is nec-
essary to use certain techniques to evaluate the
global conditions of the structure. This is impor-
tant because if the damage is not identified, it can
result in the rupture of some components and af-
fect the performance of the structure, and, conse-
quently, its safety.

Normally, the techniques used to evaluate these
conditions require much time and money to be
applied. Therefore, the development of cheaper
and faster damage identification methods is very
important. The damages that appear in a struc-
ture are normally characterized by a local loss of
stiffness and mass, but the damage effect upon
the stiffness is in an extent much greater than the
one upon the mass. Then the loss of mass can be
considered null as observed by Hearn and Testa
(1991). The loss of stiffness can be expressed as a
reduction in the geometrical and/or physical prop-
erties of the structural component. The latter may
be caused by chemical processes implying in the
reduction of the Young’s Modulus.

The presence of damage in a structure causes
changes in the modal parameters such as natu-
ral frequencies, mode shapes and modal damp-
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ing values, as observed by several authors, such as
Adams et al. (1978) and Chen et al. (1995). De-
pending on the location and severity of the dam-
age the changes in the modal parameters may af-
fect each mode differently, offering the possibility
of detecting, locating and quantifying the damage
(Adams et al., 1978 and Salawu, 1997).

Many damage detection methods have been de-
veloped over the last years to locate and quantify
damages using dynamic properties, for example,
natural frequencies and mode shapes. Doebling
et al. (1998) and Zou et al. (2000) present an in-
terested and detailed review about this subject. In
the present work, however, just some ideas by a
small number of authors will be presented here.

Genovese (2000) developed a method to locate
and quantify damages in structures based on the
error that appears in the modal equation of the
intact structure when, the frequencies and mode
shapes of the damaged structure are used instead.
The author made an experimental and numerical
analysis of free-free beams. The damage iden-
tification was satisfactory for the most analyzed
cases. Brasiliano (2001) and Brasiliano et al.
(2004) also applied this method in other types
of structures, continuous beams and frame struc-
tures, obtaining very good results in the location
and quantification of the damage.

After that, Genovese (2005) applied the residual
error method to a dynamic test simulation of a
simple supported beam in order to verify its effi-
ciency. The displacements versus time, produced
by an impulsive load, were obtained at several
points of the beam. A white noise signal with
different levels was added to the obtained records
in order to simulate a suitable dynamic test. The
damage was simulated by the reduction of the ge-
ometric properties of the chosen element. It was
observed that the noise affects the structural eval-
uation process, and difficult the correct localiza-
tion and quantification of the damages region. It
was also observed that, the process of location
the damage is more efficient as compared to the
quantification one. The correct damage detection
depends, also, on the location and severity of the
damage.

Abdo and Hori (2002) presented a numerical

study of the relationship between damage char-
acteristics and the changes in the dynamic proper-
ties. In their studies, they verified that the rotation
of mode shapes was a sensitive indicator of dam-
age and the results showed that this rotation has
the characteristic of localization at the damaged
region even though the displacements modes are
not localized.

Ndambi et al. (2002) presented experimental re-
sults obtained within the framework of the devel-
opment of a health monitoring system for civil
engineering structures, based on the changes of
dynamic characteristics. The authors subjected
reinforced concrete beams to cracking processes.
The cracks were introduced in different steps and
the damage assessment consisted in relating the
changes observed in the dynamic characteristics
and the level of the crack damage. It was observed
that the eigenfrequencies were affected by accu-
mulation of cracks in the beams.

Besides locating and quantifying damages, it is
important to know which factors can contribute
to a structure collapse. This can be done, for ex-
ample, by studying the behavior of structures that
have cracks or discontinuities. One of the possi-
ble tools that allow this analysis is the Fracture
Mechanics that gives the fundamental rules about
crack propagation. In addition, the combination
of numerical methods, such as the Finite Element
Method (FEM), the Boundary Element Method
(BEM) and the Discrete Element Method (DEM),
make it possible to apply it to complex cases.

The Finite Element Method and the Boundary El-
ement Method can be used with accuracy to solve
various types of problems including those with
physical and geometrical non-linearity. Never-
theless, there are some restrictions related to the
application of these methods in the analysis of
crack propagation problems in which the contin-
uum theory is not valid anymore.

With the search of new models it will be possi-
ble to capture the conditions that may start the
crack propagation and represent the behavior of
the propagation process, including the possible
cases of crack derivations and, thus, stop the
crack growth. In this aspect, the Discrete Element
Method has been producing good results.



A Study of Damage Identification and Crack Propagation in Concrete Beams 55

The initial application of Fracture Mechanics con-
sisted of studying the instability of the rupture
mechanism of brittle materials. Its applicability,
however, increased with the advance of the re-
searches and, nowadays, it can be applied to var-
ious types of materials and structures. The first
successful analysis about the fracture problem is
assigned to Griffith’s works related to crack prop-
agation in glass. Griffith (1921) developed the
idea that a crack in a plate would grow if the rate
of the elastic energy stored in the plate became
equal or exceeds the work necessary to produce a
fracture surface. His theory permits to state the
quantitative relation between the material resis-
tance and the crack size, establishing a rupture
criterion, the energetic criterion. When his model
was applied to ductile materials, such as metals,
however, the results were not satisfactory. In or-
der to become the Griffith’s theory applicable to
ductile materials, Irwin (1958) proposed an alter-
ation in this theory and established the General-
ized Griffith’s Model.

In the 60’s, many researches were carried out as
an attempt to find a criteria of analysis that would
make it possible to represent the non-linear be-
havior of some materials. Since Kaplan (1961)
applied the Linear Elastic Fracture Mechanics
(LEFM) to investigate cracked beams, the fracture
in brittle materials, such as concrete, became an
important subject. Many features of brittle mate-
rials have been tested to validate the linear elastic
fracture mechanics as a tool for studying cracks,
such as the geometry of different structural ele-
ments, cracks length and compressive and tensile
strength. In the 80’s several shapes were proposed
to evaluate the crack propagation and fracture in
brittle materials which were submitted to com-
bined tension and shear forces. This type of load
is associated to strains in the tip of the crack and
it is named mixed-mode of rupture (Swartz and
Taha, 1991).

Many experiments were realized in order to ex-
plain the rupture of concrete structures. Among
others, the works of Bazant et al. (1987), Bazant
and Kazemi (1989), Raghu Prasad et al. (2000)
and Cervenka et al. (2002) can be cited. In the
90’s the fracture mechanic was extended to other

research fields such as determination of the mini-
mum reinforcement in concrete structures (Bosco
et al. 1990), the study about fracture of struc-
tural elements submitted to dynamic loads (Du
et al. 1992), crack propagation in simple and re-
inforced concrete structures (Saleh and Aliabadi,
1998), etc.

Because of the importance of damage identifica-
tion methods based on the alteration in the dy-
namic characteristics of the structures to explain
the behavior of damaged structures constructed
with brittle materials, such as concrete, this pa-
per shows a numerical study about asymmetric
damages in beams submitted to three-point bend
test. This example consists of two parts: in the
first one, a verification of structural integrity of
a simple supported beam is done. The beam is
discretized in finite elements and damages are in-
troduced in it by an inertia reduction of its ele-
ments. The Residual Error Method (Genovese,
2000, 2005) is applied in order to locate and
quantify these damages. In the second part the
damaged beam is submitted to a load scheme
and the crack propagation phenomenon is studied
based on the Linear Elastic Fracture Mechanics
approach using the Discrete Element Method.

2 Description of the Residual Error Method

The residual error method proposed by Genovese
(2000) is used to identify damages in structures.
The identification is done in two steps: the loca-
tion and quantification of the damage. The lo-
cation is done by observing the error present in
the modal equation, Equation (1), when the stiff-
ness and mass matrices of the intact structure and
the modes and natural frequencies of the damaged
structure are used:

E = KΦ′ − (MΦ′)Λ′ (1)

in which K and M denote, respectively, the stiff-
ness and the mass matrix of the intact structure,
Φ′ is the matrix of the identified damaged mode
shapes, Λ′ is the diagonal matrix of natural fre-
quencies of the damaged structure and E is the er-
ror matrix in which the values represent the error
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produced by damage in the modal equation.

E =
[
e1 e2 e3 . . . en

]
N×n

(2)

Φ′ =
[
φ ′

1 φ ′
2 φ ′

3 . . . φ ′
n

]
N×n
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⎡
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...
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...
. . .

...
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n

⎤
⎥⎥⎥⎥⎥⎥⎦

n×n

(4)

where N is the number of spatial test points, n is
the number of identified modes and φ ′

i is the ith
mode shape vector of the damaged structure.

Each column of matrix E is a vector that is related
to one mode shape, Equation (2). Each value of
this vector represents the error that occurs in some
positions of the structure. Thus, the highest error
value will indicate the damage position to a mode
shape.

The damage quantification consists in looking for
the minimum error in the modal equation by an it-
erative process. In this step it is introduced a fac-
tor p that will multiply only the stiffness matrix
of the damaged element, which has been located
during the previous step, before the global stiff-
ness matrix of the structure be assembled. This
step is showed schematically by Equation (7).

Considering that the damage will affect the stiff-
ness in a much greater intensity than it will affect
the mass (Adams et al. 1978 and Hearn and Testa,
1991), the factor p will multiply only the stiffness
matrix. The iterative process consists in varying
the value of p between 0 and 1 in order to obtain
the minimum norm of the matrix E = f (p), Equa-
tion (5), in this interval.

E(p) = K′′(p)Φ′ − (MΦ′)Λ′ (5)

where:

K′′(p) = Kintact elements + pKdamaged elements (6)

or, schematically

K′′(p) =

⎡
⎢⎢⎣

kEI

kEI

0
kEI

⎤
⎥⎥⎦

+ p

⎡
⎢⎢⎣

0
0

kED

0

⎤
⎥⎥⎦ (7)

where kEI and kED represent, respectively, the
stiffness matrix of the intact and damaged ele-
ments.

This method can be part of a structural health
monitoring system where the dynamic properties
are continuously determined by modal testing us-
ing reliable system identification techniques. The
first step would be the verification of the struc-
tural integrity observing changes in the natural
frequencies. If these changes indicate the pres-
ence of any damage, the residual error method
could be used to locate and quantify it.

In this sense it is important to emphasize the ne-
cessity of performing modal testing before the
structures being put on service because, this way,
one can obtain the dynamic properties of these in-
tact structures.

3 Discrete Element Method

The Discrete Element Method (DEM) is based
on the representation of the continuous medium
by an arrangement of cubic cells, like space truss
with lumped nodal mass. Originally, this arrange-
ment was used in aerospace engineering in order
to perform structural analysis of truss systems that
would represent, in an equivalent form, the con-
tinuous properties (See Nayfeh and Hefzy (1978)
for details). Using an inverse approach, Hayashi
(1982) obtained, from an isotropic elastic solid,
the equivalent properties of each bar of the cell
arrangement. This representation plays an essen-
tial role in the use of DEM. Fig. 1 shows details
of cubic cell geometry and an example of a body
constructed by using cell arrangements.

The diagonal bars length is Lc
√

3/2 and the nor-
mal bar’s length is LC . The parameter LC is the
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Figure 1: a) Cubic module; b) Generation of a
prismatic body using cubic module.

critical length which depends on the S-wave ve-
locity and the maximum vibration frequency. In
accordance with Hayashi (1982), for an isotropic
and linear elastic material, with known Young’s
modulus (E) and Poisson’s coefficient (ν), the
equivalent stiffness of diagonal and normal bars is
represented by equations (8) and (9), respectively:

Ed =
2δ√

3
En (8)

En = αEL2
C (9)

where α and δ are parameters of cubic truss
model and are represented by equations (10-a and
10-b):

α =
9+8δ

18+24δ
(10a)

δ =
9ν

4−8ν
(10b)

The dynamic analysis is performed using an ex-
plicit integration in the time domain. At each
step of integration, the following nodal equilib-
rium equation (11) is solved:

müi +cu̇i = fi (11)

where m represents the nodal mass, c is the damp-
ing constant, fi are components of resultant forces
at the node I, including elastic, external and fric-
tional forces, and ui are the components of nodal
vector coordinates.

An explicit scheme of integration, based on cen-
tral differences, is particularly useful, since it rep-
resents the nonlinearity aspect of the problem.

Thus, the position of each particle at a specific
moment t +Δt is given by the following equation:

ui+1 = fi
(Δt)2

m
+2ui+1 −ui−1 (12)

where ui+1, ui and ui−1 denote the nodal positions
at moments t +Δt, t and t −Δt, respectively.

The stability of the numerical integration is as-
sured once the step size is bounded above by the
critical value given by 0.6LC/Co, that is:

Δtcrit ≤ 0.6LC/Co (13)

where Co represents the velocity of P-wave prop-
agation and LC is the bar’s critical length.

Once the solid is represented by bars arrangement
it is possible to easily treat complex problems.
In this way, large displacements can be consid-
ered, in an efficient manner, since the nodal coor-
dinates are changed at every time step. Hayashi
(1982) verified the convergence of solutions ob-
tained with discrete element method (DEM) in
linear elasticity, as well as in elastic instability
problems. Afterwards, Rocha (1989) extended
the Hayashi’s model (1982) to the analysis of
fracture problems. Initially, the extension of the
model to the study of linear elastic fracture me-
chanics problems was based on the idea that, as
fracture takes place, the dissipated energy is pro-
portional to the newly generated surfaces. Thus,
the so-called Hilleborg model (see Fig. 2) is
adopted as an effective uniaxial stress-strain curve
for each individual element (Riera and Rocha,
1991). Observing this figure, it can be noticed
that once the limit strain εr is reached, a given
amount of energy is liberated. This energy equals
the product of the fractured area A f and the spe-
cific fracture energy G f . It is important to notice
that the fractured area (A f ) depends on the corre-
lation length LC of the process and that the frac-
ture energy is a intrinsic property of the material.

The Discrete Element Method was also used to
suitably represent the propagation of a seismic
fault (Doz and Riera, 2000, Gudiel, 2000 and
Gudiel et al, 2003), the size effect in concrete
structures (Rios and Riera, 2002) and the be-
haviour of reinforced concrete structures submit-
ted to short duration loading (Iturrioz, 1995 and
Rios and Riera, 2002).
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Figure 2: a) Constitutive diagram adopted; b)
Loading and unloading scheme (Rocha, 1989).

The symbols in the diagram above mean: F is the
axial force in the bar, it is function of deformation
ε and Pcr is the value of this force associated with
εp; EA is the axial stiffness of the bar, it may be
En or Ed if the bar is normal or diagonal respec-
tively; εp is the critical rupture deformation, it is
the deformation in which the crack becomes in-
stable and starts to propagate. The properties εp,
E, F and G f depend on the material, A f and LC

depend on the model and kr and EA depend on the
material as well as the model.

The area under the diagram is proportional to the
influence surface for the element under consider-
ation. For the longitudinal bars:
∫ εr

0
F(ε)dε =

G f A f

L
(14)

The performance of the Discrete Element Method
applied to fracture problems was initially evalu-
ated by reproducing some examples found in the
literature. Among these, the concrete beam stud-
ied by Petersson (1981) can be cited. The results
obtained by the Discrete Element Method were
satisfactory and similar to those obtained by Pe-
tersson (1981) using Finite Element Method and
by Saleh and Aliabadi (1998) using the Boundary
Element Method (Souza, 2001). In the same way,
the concrete beam studied by Bosco et al (1990)
through an experimental and numerical analysis
using the Finite Element and Boundary Element
methods was also evaluated using the Discrete El-
ement Method. The latter allowed to suitable sim-
ulate the after crack behavior in a more properly
way than those methods aforementioned. It is im-
portant to highlight that just the Discrete Element
Method allowed to simulate and analyze the dy-
namic aspects of rupture process.

4 Numerical analysis

4.1 Damage location and quantification by
Residual Error Method

Simple Supported Beam

The Residual Error Method was applied to locate
damage in one 2.4m long concrete beam with a
rectangular cross-section of 0.14×0.24m. This
beam was modeled with 24 equal elements of
0.10m in length. Every node has three degrees of
freedom, a transverse displacement, an axial dis-
placement and a rotation. The properties of the
beam are: cross-sectional area A = 0.0336 m2;
moment of inertia I = 1.6128×10−4 m4; Young’s
modulus E = 3.5×1010 N/m2; density ρ = 2500
kg/m3. The stiffness and mass matrices of the el-
ements used to obtain the natural frequencies and
mode shapes are defined by equations (15a and
15b).

Three damage cases were analyzed and the dam-
aged elements are showed in Figure 3. The dam-
ages were introduced by a reduction in the inertia
and the area of the elements and these values are
summarized in Tab. 1. The natural frequencies of
the intact and the damaged beam are showed in
Tab. 2 and the first five mode shapes are showed
in Fig. 4. In this case only numerical data were
used in order to show the method application. In a
real case the frequencies and mode shapes should
be identified from experimental data obtained by
dynamic tests.

k =

⎡
⎢⎢⎢⎢⎢⎢⎣

EA
L 0 0 −EA

L 0 0
0 12EI

L3
6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 −6EI

L2
2EI

L−EA
L 0 0 EA

L 0 0
0 −12EI

L3
−6EI

L2 0 12EI
L3

−6EI
L2

0 6EI
L2

2EI
L 0 −6EI
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4EI

L

⎤
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(15a)

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3 0 0 1

6 0 0
0 13

35
11

210L 0 9
70

−13
420L

0 11
210L

1
105L2 0 13

420L
−1

140L2
1
6 0 0 1

3 0 0
0 9

70
13

420L 0 13
35

−11
210L

0 −13
420L

−1
140L2 0 −11

210L
1

105L2

⎤
⎥⎥⎥⎥⎥⎥⎦

(15b)

The obtained results in the three damaged cases
studied are showed in Fig. 5. In order to improve
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2.40 m

Element 6

Nodes 6 and 7 Nodes 9 and 10

Element 9

Figure 3: Simple supported beam with damage in
elements 6 and 9.

Table 1: Reduction values of the inertia and area
of the elements.

Cases Elements Inertia Area
Considered Reduction Reduction

Intact — 0% 0%
1 9 10% 3.45%
2 9 40% 15.66%
3 6 50% 20.63%

Table 2: Natural frequencies of the intact and
damaged beams.

Freq. Intact Case 1 Case 2 Case 3
(Hz)
1a 68.4992 68.3251 67.3814 67.5529
2a 273.9975 273.4590 270.6865 266.1158
3a 616.5024 616.4062 615.9045 605.0347
4a 1096.0431 1092.9518 1077.9795 1093.6401
5a 1712.6942 1710.3924 1699.7493 1702.5623

Figure 4: First five mode shapes of the intact
beam.

the results, i.e., making the location of the damage
more evident, a methodology of multiplying the
error functions, obtained for the five modes, was
used. Observing the Fig. 5, it may be verified that
the results allow to identify the exact damaged el-
ements using the first five mode shapes. This is
evident because the largest peaks appear at nodes
9 and 10 for the first and second cases, 6 and 7
for the third case. These nodes define the dam-
aged elements. The errors related with the axial
and vertical degrees of freedom are not presented
in the graphics because the multiplication of these
values for the five modes was almost zero.

The values of inertia reduction initially consid-
ered and the values obtained by Residual Error
Method are summarized in Tab. 3. The damage
quantification was done using Equation (5) and,
as it is showed below, the values of the factor p
that produced the minimum norm of the matrix
E = f (p) indicate an inertia reduction equal to the
one initially considered. Actually, the inertia re-
duction is given by (1-p).

Figure 5: Damage location by Residual Error
Method – Cases 1, 2 and 3 respectively.

Table 3: Inertia and area reduction introduced in
the damaged elements, factor p and stiffness re-
duction obtained by the Residual Error Method.

Element Inertia Area Factor Stiffness
Reduction Reduction p Reduction
Introduced Introduced (1− p)

6 50% 20.63% 0.50 50%
9 10% 3.45% 0.90 10%
9 40% 15.66% 0.60 40%

4.2 Crack Propagation Analysis

In this stage the crack propagation phenomenon
will be studied by a numerical analysis. The anal-
ysis will be done by observing the behavior of
the beam, considering the aforementioned dam-
age cases.

Numerical Simulation using the Discrete Element
Method
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Fig. 6-a and 6-b shows the geometric character-
istics of the beam without damage and the load
scheme. The physical properties of the material
used to simulate the testing are summarized in
Tab. 4. The value of specific energy of fracture
G f was calculated according to CEB-90. A coef-
ficient of variation (CVA) for the fracture energy
and the Young’s modulus was adopted to simu-
late the non-homogeneous behavior of the mate-
rial. This value is also showed in Tab. 4.

(a)

(b) 

Figure 6: Geometric characteristics of the intact
beam.

Table 4: Parameters adopted to generate the nu-
merical model.

Properties Values
Specific fracture energy, G f 135 Nm−1

Poisson’s coefficient (ν) 0.20
Fail factor, R f 1.5776 m−1/2

Damping rate (ξ ) 5%
Coefficient of variation, CVA 0.10
Bars length, LC 0.05 m
Young’s modulus, E 3.5×1010 N/m2

Tab. 5 shows the models of the beam with the
three damaged cases. The position of the ini-
tial crack from the left support of the beam was
0.80m, 0.80m and 0.50m for cases 1, 2 and 3, re-
spectively. The inertia reduction considered for
each case was 10%, 40% and 50%, respectively.
The initial crack is 0.10m in length. The models
of the beam were divided in 48× 5× 3 modules
in the x, y and z direction, respectively (Souza,
2001).

Table 5: Models of the beam with damage at dif-
ferent positions and inertia reductions.

Modelling Schemes Case 

1

2

3

Considering the cases studied (Tab. 5), Fig. 7
shows the evolution of the load versus the dis-
placement that occurs in the center of the beam.
The load was applied in a quasi-static way with-
out the control of the displacements, so it can be
verified that the strains grow indefinitely when
the rupture of the beam occurs. Comparing with
the first case, it can be noticed a reduction in the
reached ultimate load (nearly 20%) for the second
case. This reduction is probably due to the size of
the initial damage that is greater than that consid-
ered in the first case. In the third case, although it
shows inertia reduction five times greater than the
one considered in the first case, the value of the
reached ultimate load was practically the same.
This effect is probably due to the fact that the ini-
tial crack is located nearer the support and this
region is submitted to predominant shear forces.
Another fact that may have influenced these final
results is the stress distribution in the beam.

The energy balance in the model during the nu-
merical test was carefully monitored and the evo-
lution of different forms of energy of relevance
in the different rupture process is showed in Fig.
8. Once the control of the displacements was not
being considered in this analysis, the external en-
ergy tends to grow indefinitely after the rupture.
The potential elastic energy presents its maximum
value of 6.55Nm at 0.132s, case 1, indicating the
rupture of the beam since it is not able to absorb
energy anymore. The fracture process begins at
0.11s appearing regions with micro cracks. The
fracture energy grows smoothly until a plateau is
reached at 0.137s.

The second case, compared to the first one,
showed a reduction of 40% in the final values of
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(a)

(b) 

(c)

Figure 7: Load-Displacements in the center of the
beam for the cases considered in the analysis.

the elastic and fracture energies due to the reduc-
tion of the ultimate load. This can be noticed com-
paring the values presented in Fig. 8. These ener-
gies also suffered changes for the third case. They
show an increase of nearly 15% in relation to the
first one.

Once the rupture process is a dynamic process, ac-
celerations were induced into the solid. The use
of the Discrete Element Method allowed the ac-
celeration monitoring at any point of the mesh.
Accelerations were obtained in the control points
(Fig. 9) for the first and second cases. For con-
venience, only the results obtained from the point
W_00 will be showed (case 1). Coordinates of the
control points are summarized in Tab. 6.

Observing Fig. 10, which shows the results ob-
tained for the first case, it can be seen that the
accelerations that appears before the crack prop-
agation starts are almost zero. The accelerations
increase as the damaged regions increase and they
reach peaks of nearly 10m/s2 in x direction. For
the other cases the same behavior was observed.

Table 6: Coordinates of points W_00, W_10,
W_01 and W_11-considered cases.

Cases 1 and 2 Case 3
Points X (m) Y(m) X (m) Y(m)
W_00 1.20 0.00 1.20 0.00
W_10 0.60 0.00 0.30 0.00
W_01 1.10 0.00 0.80 0.00
W_11 0.85 0.10 0.55 0.10

Fig. 11 shows the crack propagation for the case
1. It can be observed that the concentration of
tension forces, located at the middle of the beam,
produces the first sign of damage. The resistance
capacity of the beam was reached at the point
where the initial crack was located. After that,
the crack propagation initiates – with a tendency
to increase – following an angle of nearly 45˚ in
relation to the largest length of the beam (shear
mode). It occurs until the instant 0.132s and then
it goes up vertically (tension mode) indicating a
mixed crack propagation. The mean propagation
velocity was nearly 157 m/s in this case. The be-
havior of the damaged beam characterized by the
second case was similar to the first one with a
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(a)

(b) 

(c)
Figure 8: Energetic balance for the cases consid-
ered in the analysis.

W_10

W_00

W_01

W_11

Y

X

Figure 9: Control points of acceleration – Cases 1
and 2.

(a)

(b) 
Figure 10: Accelerations in the x and y directions
– control point W_00 – Case 1.
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propagation velocity of nearly 62 m/s. In the third
case, the observed behavior was different from the
other two cases: there was a force concentration
also around the initial crack and the more dam-
aged region was located in the middle of the beam
where the rupture occurs, as it can be seen in Fig.
12.

Crack Propagation – Case 1 Time 
 (s) 

0.103 

0.112 

0.124 

0.132 

0.133 

Figure 11: Crack propagation in the beam with a
damage of 10% in the element 9 – First case.

Crack Propagation – Case 3 
Time 
 (s) 

0.102 

0.119 

0.135 

0.1355

0.136 

0.137 

Figure 12: Crack propagation in the beam with a
damage of 50% in the element 6 – Third case.

5 Conclusions

The Residual Error Method was very efficient in
the damage identification of the considered struc-
tures allowing to locate and quantify the damages
successfully. It is appropriate to point out that

this paper presents a numerical analysis of com-
puted structures but the residual error method can
be applied to real structures since it is possible to
obtain their modal parameters. The method in-
tends to identify the damage location and its mag-
nitude accurately, making necessary the measure-
ments of the intact modal parameters. The perfect
eigenmodes could be obtained performing modal
testing in the new structure before it be put on ser-
vice. If there is a continuous monitoring of the
structure, changes in the modal parameters can be
detected indicating presence of damage. In this
way the method may also be used to measure the
evolution of the damages. On the other hand, if it
is impossible to obtain the intact natural frequen-
cies and vibration modes, the method will com-
pare the present measurements with a theoretical
computed model of the intact structure. In that
case, the analysis must be more careful because
errors due to an incorrect model may be intro-
duced in the problem.

About the crack propagation analysis, the ob-
tained results indicated that the Linear Elastic
Fracture Mechanics and the Discrete Element
Method can be applied to this type of study. The
shape and trajectory of the crack is meaningfully
influenced by the initial crack position and by the
load. It can be also concluded that the trajectory
of the crack is associated to intense stress regions
which are similar to tensile or strength testing of
Lobo Carneiro (Brazilian test). When there is not
geometry symmetry and the initial crack is lo-
cated in regions that are submitted to preponder-
ant shear forces, the relation between the modes I
(tensile mode) and II (shear mode) of rupture pro-
duces mixed-mode crack propagation.

Three phases of the process can be observed. In
the first one the beam was able to absorb almost
all the energy imposed by the external load. In
the second phase the beam capacity of absorbing
energy was exceed and the fracture energy was
produced. At this moment regions of microcracks
appeared. The last one was the phase in which the
crack propagation itself occurs.

Another aspect that was noticed is that the ac-
celerations increase with the growth of the dam-
aged regions and, in a parallel direction, they are
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greater than the cracks. Besides that, it could be
observed that the accelerations before the propa-
gation start are almost zero. It is also important
to comment that the load was applied in such a
way that the number of produced inertia forces
was very small.

The results here obtained confirmed that the in-
stable crack propagation constitutes an essentially
dynamic phenomenon.
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