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A Generalized Technique for Fracture Analysis of 2-D Crack Problems
Employing Singular Finite Elements
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Abstract: The objective of this paper is to
present a generalized technique called as, numer-
ically integrated Modified Virtual Crack Closure
Integral (NI-MVCCI) technique for computation
of strain energy release rate (SERR) for 2-D crack
problems employing singular finite elements. NI-
MVCCI technique is generalized one and the ex-
pressions for computing SERR are independent
of the finite element employed. Stress inten-
sity factor (SIF) can be computed using the re-
lations between SERR and SIF depending on the
assumption of plane stress/strain conditions. NI-
MVCCI technique has been demonstrated for 8-
noded Serendipity (regular & quarter-point) and
9-noded Lagrangian (regular & quarter-point) and
12-noded (regular & singular) isoparametric finite
elements. Numerical studies on fracture analysis
of mode-I and mode-II 2-D crack problems have
been conducted employing these elements. SERR
and SIF have been computed for these problems
and found to be in good agreement with the re-
spective infinite/finite plate solutions available in
the literature. The appropriate Gauss numerical
integration order to be employed for each of these
elements, especially for the singular elements for
accurate computation of SERR and SIF has been
recommended based on the studies.
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1 Introduction

The fracture behaviour of structural components
under fatigue loading or during static overload
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can be estimated through linear elastic fracture
mechanics (LEFM) principles, and SIF is the
influencing design parameter. A detailed re-
view of literature on fatigue and fracture be-
haviour of structural components was presented
by Cotterell [2002] and Schijve [2003]. Using
the finite element method (FEM) for basic stress
analysis [Zienkiewicz and Taylor, (2000)], SIF
can be computed through post-processing of fi-
nite element analysis (FEA) results [Liebowitz
and Moyer, (1989)]. The techniques based on
displacement extrapolation, strain energy release
rate, virtual crack extension, modified virtual
crack closure integral, equivalent domain integral
and J-integral are generally preferred [Owen and
Fawkes, (1982)], for computing SIF through post-
processing of FEA results.

The major disadvantage in the extrapolation
methods is that the accuracy in evaluating SIF de-
pends on the accuracy of displacement and stress
distribution in the vicinity of crack tips. As such,
these methods are not suitable for use in conjunc-
tion with conventional finite elements and gen-
erally require stress analysis using singular ele-
ments only. The strain energy release rate and
the virtual crack extension techniques require two
runs of analysis for evaluating SERR. One of the
popular post-processing techniques is MVCCI de-
veloped by Rybicki and Kanninen [1977] based
on Irwin’s crack closure integral (CCI) technique
[Irwin, (1958)] with appropriate modifications for
computation of SERR and SIF. Considering the
merits and demerits of these techniques, it is ob-
served that for LEFM problems, MVCCI tech-
nique in combination with FEM is an efficient tool
for evaluating SERR from which SIF can be cal-
culated. The advantage of MVCCI technique is its
simplicity and also the ease with which individual
mode SERR/SIF can be estimated in mixed-mode
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problems.

Rybicki and Kanninen [1977] expressed Irwin’s
CCI technique in a form consistent with the finite
element (FE) formulation and evaluated SERR for
mode I and II (GI and GII) in terms of nodal forces
and displacements. Further, these computations
can be carried out from a single FEA, as against
from two analyses with crack lengths differing by
an infinitesimally small crack length as conceived
originally. Buchholz [1984] realized the ele-
ment dependence of MVCCI equations and pre-
sented appropriate equations for 8-noded quadri-
lateral elements, but did not establish a formal
procedure for deriving them. Badari Narayana
and Dattaguru [1996] and Badari Narayana et
al. [1990] presented the generalised MVCCI
equations for conventional and singular quadri-
lateral elements for 2-D problems with cracks.
Raju [1986] also derived MVCCI equations for
6-noded and 8-noded quarter-point singular ele-
ments. Young and Sun [1993] demonstrated the
application of MVCCI technique to plate bend-
ing problems. Buchholz et al. [2001] and Dhondt
et al. [2001] conducted fracture analysis to study
the 3-D and mode coupling effects by employing
MVCCI method.

For successful application of MVCCI technique,
it is essential [1991] to derive element dependent
MVCCI expressions for computation of SERR.
The derivation of MVCCI expressions involves
evaluation of constants used in the polynomial as-
sumed to represent displacement and stress varia-
tion and evaluation of many integrals having com-
plicated polynomial terms. This makes the deriva-
tion of MVCCI expressions a tedious exercise for
higher order and singular 2-D and 3-D finite ele-
ments. However, the above problem can be sim-
plified by employing numerically integrated ap-
proach that will also generalize the procedures.
Palani et al. [2004] proposed numerically in-
tegrated MVCCI (NI-MVCCI) technique for 2-
D crack problems. In this paper, this general-
ized technique has been proposed for 8-noded, 9-
noded and 12-noded singular finite elements for
computation of SERR and SIF for 2-D crack prob-
lems. One of the key features of the proposed
NI-MVCCI technique is that it is general and

is independent of the type of finite element em-
ployed. The efficacy of NI-MVCCI technique has
been demonstrated for 8-noded Serendipity (reg-
ular & quarter-point), 9-noded Lagrangian (reg-
ular & quarter-point) and 12-noded (regular &
singular) cubic isoparametric quadrilateral finite
elements. For non-singular (regular) elements
at crack tip NI-MVCCI technique generates the
same results as MVCCI, but the advantage for
higher order regular and singular elements is that
complex expressions for MVCCI need not be de-
rived. Numerical studies on fracture analysis of
2-D crack (mode I and II) problems have been
conducted. Based on the studies, Gauss numer-
ical integration rule to be employed for each of
these elements for accurate computation of SERR
and SIF has been recommended.

2 MVCCI Technique for 4-noded, 8-noded
and 9-noded Quadrilateral Elements

Irwin [1958] proposed CCI technique for evalua-
tion of SERR. CCI was derived using a fundamen-
tal concept that when crack extension takes place,
the energy required to close this part of crack in a
solid is same as the energy released during crack
extension. The rate of change of this energy with
crack extension is SERR, which is generally de-
noted as G. Fig. 1 shows a crack tip in an in-
finite isotropic media subjected to remote tensile
loading causing mode I crack deformation. The
normal stress distribution ahead of the crack tip is
σyy. Let the crack of length, ‘a’ be extended by a
small virtual increment of ‘Δa’. The crack open-
ing displacement (COD) behind the new crack tip
is Uy (half of the total COD). The energy required
to close the extended crack ‘Δa’ can be estimated
as the work done by forces corresponding to the
stress distribution, σyy on COD, Uy. This can be
expressed as

W =
1
2

Δa∫

0

σyyUydx (1)

The above CCI can be used to compute SERR as

G = Lt
Δa→0

1
2Δa

Δa∫

0

σyyUydx (2)
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Taking polar coordinate system (r, θ ) with the
origin at the crack tip in a 2-D domain and us-
ing Eq. (2), SERR for mode I and II cracks (GI

and GII) can be expressed as

GI = Lt
Δa→0

1
2Δa

Δa∫

0

σyy(r = x,θ = 0)

Uy(r = Δa− x,θ = π)dr (3)

GII = Lt
Δa→0

1
2Δa

Δa∫

0

σxy(r = x,θ = 0)

Ux(r = Δa− x,θ = π)dr (4)

where σyy (r = x, θ=0) and σxy (r = x, θ = 0) are
distribution of stresses ahead of the crack tip. Ux

(r = Δa− x, θ = π) and Uy (r = Δa− x, θ = π)
are the relative sliding and opening displacements
between the crack faces and Δa is the virtual crack
increment.

The problem is basically to evaluate the SERR
which is represented as G = (∂U/∂a). If one
could conduct two stage FEA, SERR is obtained
from the difference in the strain energies stored
for the configurations corresponding to crack
sizes ‘a’ and ‘a + Δa’. However, if ‘Δa’ is kept
very small, one could use the stress distribution
ahead of the crack tip (OA – represented using the
local axis ξ as shown in Fig. 2 and COD behind
the crack tip (OB - represented using the local axis
ξ ’ as shown in Fig. 2 derived from a single FEA
at crack length ‘a’ to evaluate MVCCI using Eqs.
(3) and (4). Expressing these integrals in terms of
nodal forces and displacements from FEA is the
crux of MVCCI technique. Rybicki and Kanninen
[1977] proposed FEA based MVCCI expressions
for GI and GII for the constant strain triangles and
4-noded bilinear elements around the crack tip as
follows:

GI =
1

2Δa
[Fy, j(Uy,( j−1)−Uy,( j−1)′)] (5)

GII =
1

2Δa
[Fx, j(Ux,( j−1)−Ux,( j−1)′)] (6)
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Figure 1: Schematic of Virtual Crack Extension
(Mode I)
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Figure 2: Typical FE Mesh of Crack Tip Region:
4-noded Elements

where Fy, j and Fx, j are the nodal forces at j in y-
and x-directions computed for elements 1 and 2
as shown Fig. 2. The terms Uy,( j−1) and Uy,( j−1)′

are nodal displacements at ( j−1) and ( j−1)′ re-
spectively in y-direction. The terms Ux,( j−1) and
Ux,( j−1)′ are nodal displacements at ( j − 1) and
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( j− 1)′ respectively in x-direction. Each of the
integrals for GI and GII is physically equivalent
to the amount of work required to close the crack
by an amount ‘Δa’.

It is well-known that higher order elements can
be used at the crack tip to get more accurate re-
sults with lesser computational effort. Consider
the FE mesh near the crack tip as shown in Fig.
3, assembled with 8-noded quadrilateral elements
with inside nodes at the mid-point of each side.
SERR for mode I (GI) can be evaluated by mul-
tiplying the stress distribution along OAB (local
axis ξ ) with the corresponding displacement dis-
tribution along OCD (local axis ξ ’) and integrat-
ing this product over Δa. This can be expressed
[Badari Narayana, 1991] as

GI =
1

2Δ
[
Fy, j

(
Uy,( j−2)−Uy,( j−2)′

)
+Fy,( j+1)

(
Uy,( j−1)−Uy,( j−1)′

)]
(7)

where Fy, j′ Fy,( j+1), and Fy,( j+2) are the nodal
forces acting at nodes j, ( j + 1), and ( j + 2) re-
spectively.

Similarly, crack shearing displacement distribu-
tion is expressed in terms of nodal displacement
Ux,( j−1), Ux,( j−1)′, Ux,( j−2) and Ux,( j−2)′. GII can
be expressed by replacing Fy by Fx and Uy by Ux

in Eq. (7) as

GII =
1

2Δ
[
Fx, j

(
Ux,( j−2)−Ux,( j−2)′

)
+Fx, j+1

(
Ux,( j−1)−Ux,( j−1)′

)]
(8)

Eqs. (7) and (8) are also applicable for triangu-
lar elements obtained by collapsing the 8-noded
quadrilateral elements at the crack tip. The forces
at nodes j, ( j +1) and ( j +2) have to be obtained
[Badari Narayana, 1991] from the contributions
from all the triangular elements.

The quarter-point element (QPE) developed by
Barsoum [1976] is widely used for fracture analy-
sis of 2-D crack problems. QPE is a simple modi-
fication of the regular 8-noded element, which in-
corporates (1/

√
r) singularity at the crack tip. The

required singularity is produced at the crack tip
by moving midside nodes of an 8-noded element
adjacent to the crack tip to the quarter-point po-
sition. It is ensured that such an element at the
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Figure 3: Typical FE Mesh of Crack Tip Region:
8-noded Regular Elements

crack tip satisfies inter-element compatibility with
adjacent regular 8-noded elements. Referring to
the rectangle in natural coordinate system, OCD
corresponds to the crack face and OAB is the
line of virtual crack extension. SERR for mode I
crack (GI) for this case can be expressed [Badari
Narayana, 1991] as

GI =
1

2Δa

[(
C11Fy, j +C12Fy,( j+1) +C13Fy,( j+2)

)
(
Uy,( j−1)−Uy,( j−1)′

)
+

(
C21Fy, j +C22Fy,( j+1) +C23Fy,( j+2)

)
(
Uy,( j−2)−Uy,( j−2)′

)]
(9)

where

C11 =
33π

2
−52 C12 = 17− 21π

4

C13 =
21π

2
−32 C21 = 14− 33π

8

C22 =
21π
16

− 7
2

C23 = 8− 21π
8

In contrast to the regular 8-noded elements, the
above expression for GI for singular elements has
cross terms involving all the force terms. The ex-
pression for GII for 8-noded singular elements can
be obtained by replacing Fy with Fx and Uy with
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Ux, as

GII =
1

2Δa

[(
C11Fx, j +C12Fx,( j+1) +C13Fx,( j+2)

)
(
Ux,( j−1)−Ux,( j−1)′

)
+

(
C21Fx, j +C22Fx,( j+1) +C23Fx,( j+2)

)
(
Ux,( j−2)−Ux,( j−2)′

)]
(10)

The expressions given by Eqs. (9) and (10) are
also valid for triangular QPEs. For the case of tri-
angular elements obtained by collapsing one side
of the QPE at the crack tip, the evaluation of nodal
forces Fx, j, Fx,( j+1) and Fx,( j+2) has to be carried
out by using the contributions from all the trian-
gular elements.

3 Formulation of NI-MVCCI Technique

The derivation of element dependent MVCCI ex-
pressions for computing SERR for mode I and
II cracks (GI and GII) as given by Eqs. (5) and
(6) for 4-noded element, Eqs. (7) and (8) for
8-noded element and Eqs. (9) and (10) for 8-
noded QPE involves evaluation of constants used
in the polynomial assumed to represent displace-
ment and stress variation and evaluation of many
integrals having polynomial terms. As mentioned
earlier, the derivation of MVCCI expressions be-
comes a tedious exercise for higher order 2-D
(such as 12-noded singular) and 3-D (such as
HEXA20 and HEXA27) finite elements. One of
the main objectives of the current research work
is to propose NI-MVCCI technique involving nu-
merical techniques for computation of the con-
stants and to evaluate CCI for GI and GII as given
by Eqs. (3) and (4). NI-MVCCI is generalized
technique and is independent of the type of fi-
nite element employed. Consider a typical FE
mesh at the crack tip as shown in Fig. 4 The
procedure for evaluating MVCCI for mode I and
II cracks in 2-D problems using numerical tech-
niques is explained. For mode I crack, SERR (GI)
can be evaluated by multiplying the stress distri-
bution along OA (ahead of crack tip) with the cor-
responding COD distribution along OB (behind
crack tip) and integrating this product over Δa.

For evaluation of SERR for mode I crack (GI)
the stress distribution on the crack extension line

OA is expressed in terms of the nodal forces Fy, j ,
Fy,( j+1), etc. acting at the nodes j, ( j + 1), etc.
respectively. COD distribution along OB is ex-
pressed in terms of the nodal values at j, ( j−1),
( j−1)′, etc. SERR for mode I crack (GI) is de-
rived by evaluating the energy required to close
the crack over a length Δa in terms of these nodal
forces and displacements. The shape functions for
elements 1 and 2 along OB can be obtained by
substituting η=-1, in the respective element shape
functions. Let these shape functions be Ni.

Let COD which is the difference between y dis-
placement between the top and bottom faces be
designated as Uy in the discussion in this section.
Similarly crack shearing displacement be desig-
nated as Ux. COD distribution along OB can be
expressed in terms of nodal displacements {(Uy)i}
as

Uy = [Ni]{(Uy)i} i = 1, . . .,n (11)

where n is the number of nodes on the edge
OA or OB of the element. Consistent with
the isoparametric formulation, coordinate of any
point X(x,y) is given by

X = [Ni]{(X)i} i = 1, . . .,n (12)

where {(X)i} are the nodal coordinates. Eq.
(12) thus provides the transformation between the
global and natural coordinate system. Consistent
with the element shape functions, COD variation
along OB can be expressed as function of ξ ’ as

Uy(ξ ′) = a0 +a1ξ ′ + . . .+a(n−1)ξ ′(n−1) (13)

where Uy(ξ ’) is a polynomial of order (n-1).
The constants a0, a1,. . . ,a(n−1) can be evaluated
by matching the displacement conditions at the
nodes j, ( j−1), . . .., ( j−n + 1) in element num-
ber 1. A set of simultaneous equations of order n
is formed, which can be solved for obtaining the
constants a0, a1,. . . .,a(n−1).

Again referring to Fig. 4 and considering element
number 2, stress (σy) distribution along OA can
be expressed as a function of ξ

σy(ξ ) = b0 +b1ξ + . . .b(n−1)ξ (n−1) (14)

where σy(ξ ) is a polynomial of order (n-1). The
constants b0, b1,. . . ,b(n−1) can be computed by
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matching the nodal forces with the derived con-
sistent load vector from FE analysis. The nodal
forces Fy, j , Fy,( j+1),. . . ,Fy,( j+n−1) shown in Fig. 4
are the forces exerted at nodes j, ( j+ 1), . . ., ( j +
n − 1) by the structure below OA on the struc-
ture above OA. In FEA, these forces are obtained
by adding the contributions of the forces at nodes
j, ( j +1), . . ., ( j +n−1) from the elements on the
edge above OA. These forces should be consis-
tent with the stress distribution given in Eq. (14),
which can be expressed as

Fi =
∫

Δa

[Ni]T σy(ξ )dx i = 1, . . .,n (15)

where Ni are the shape functions of the respective
element obtained by substituting η=-1. By using
the transformation between the global and natu-
ral coordinate system Eq. (12), the basis can be
shifted from ‘dx’ to ‘dξ ’. The integrals given in
Eq. (15) can be evaluated by numerical integra-
tion technique with suitable order. In the present
study, Gauss integration technique has been em-
ployed with different integration rules.
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Figure 4: Typical FE Mesh of Crack Tip Region:
NIMVCCI Technique

By substituting the expressions for COD and σy

stress variations given by Eqs. (13) and (14) re-
spectively in CCI Eq. (3), GI can be expressed
as

GI = Lt
Δa→0

1
2Δa

∫

Δa

σy(ξ )Uy(ξ ′)dx (16)

Similarly, crack shearing displacement Ux(ξ ’)
and σxy distributions can be developed and GII

can be expressed as

GII = Lt
Δa→0

1
2Δa

∫

Δa

σxy(ξ )Ux(ξ ′)dx (17)

The integrals given in Eqs. (16) and (17) can
be performed by numerical integration technique.
The numerical integration has to be carried out in
two stages: One for evaluating the constants in σy

(or σxy) distributions in terms of the nodal forces
Fy (or Fx) in Eq. (15) and the second to evalu-
ate the integral for GI (or GII) in Eq. (16) (or
Eq. (17)). In the present study, Gauss integration
technique has been employed for Eq. (16) with
the same integration rule that is used for evaluat-
ing Eq. (15).

It can be observed from Eqs. (11) to (17), the
proposed NI-MVCCI is a generalized technique
and is independent of the type of element, ex-
cept for assuming the expressions for displace-
ment and stress variation (Eqs (13) and (14)).
The order of polynomials for displacement and
stress variation can be assumed to be consistent
with the element shape functions along the edge
η=-1. In the present study, NI-MVCCI tech-
nique is used to analyse crack problems with 8-
noded (regular and quarter-point), 9-noded (reg-
ular and quarter-point) and 12-noded quadrilat-
eral elements around the crack tip. MVCCI ex-
pressions for computing SERR for mode I and II
cracks (GI and GII) using exact integration for 4-
noded and 8-noded (regular & quarter-point) el-
ements have been presented in Eqs (5)-(10). It
may be noted that MVCCI expressions for 9-
noded element will be same as that of 8-noded
element. MVCCI expressions for 12-noded ele-
ments using exact integration have not been used
to study crack problems in the literature. NI-
MVCCI technique explained above can be eas-
ily implemented in any finite element code which
has 8-noded (regular & quarter-point), 9-noded
(regular & quarter-point) and 12-noded (regular
& singular) quadrilateral isoparametric elements.
However, some basic discussion on the polyno-
mials to be selected will be required for imple-
mentation of NI-MVCCI technique for these ele-
ments. These basic expressions for each of these
elements corresponding to Eqs. (11)-(17) are now
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presented:

8-noded and 9-noded (regular) quadrilateral
elements

Shape functions (Ni) in Eqs. (11) and (15) along
the edge OB as shown in Fig. 4 (for the edge OA
replace ξ ′ by ξ ) can be obtained by substituting
η=-1 in 8-noded or 9-noded element shape func-
tions.

Ni = 1/2(1+ξ ′ξ ′
i )ξ ′ξ ′

i for nodes with ξ ′ = ±1

(18a)

= 1/2(1−ξ ′2) for node with ξ ′ = 0 (18b)

Using the shape functions given in Eqs. (18a) and
(18b), the transformation between global and nat-
ural coordinate system as given in Eq. (12) can be
expressed as

x = −(Δa/2)(1+ξ ′) (18c)

By substituting n=3 in Eq. (13), COD variation
along OB can be assumed as

Uy(ξ ′) = a0 +a1ξ ′ +a2ξ ′2 (18d)

By substituting n=3 in Eq. (14), the stress varia-
tion along OA can be assumed as

σyy(ξ ) = b0 +b1ξ +b2ξ 2 (18e)

Displacement and force conditions for evaluating
the constants a0, a1, a2 and b0, b1, b2 can be ex-
pressed as

Uy = 0 at ξ ′ = −1;

Uy = (Uy,( j−1)−Uy,( j−1)′) at ξ ′ = 0;

Uy = (Uy,( j−2)−Uy,( j−2)′) at ξ ′ = 1;

(18f)

Fy = Fy, j at ξ = −1;

Fy = Fy,( j+1) at ξ = 0;

Fy = Fy,( j+2) at ξ = 1;

(18g)

Referring to Fig. 4, the relation between ξ ′ in
element 1 and ξ in element 2 can be expressed
as ξ ′ = −ξ .

8-noded [Barsoum, 1976] and 9-noded [Banks-
Sills and Einav, 1987] QPE

Shape functions (Ni) in Eqs. (11) and (15) along
the edge OB as shown in Fig. 4 (for the edge OA
replace ξ ′ by ξ ) can be obtained by substituting
η=-1 in 8-noded QPE shape functions.

Ni = 1/2(1+ξ ′ξ ′
i )ξ ′ξ ′

i for node with ξ ′ = ±1
(19a)

= 1/2(1−ξ ′2) for node with ξ ′ = 0 (19b)

Using the shape functions given in Eqs. (19a) and
(19b), the transformation between global and nat-
ural coordinate system as given in Eq. (12) can be
expressed as

x = (Δa/4)(1+ξ ′)2 (19c)

By substituting n=3 in Eq. (13) and accounting
for the quarter-point position of the midside node,
COD variation along OB can be assumed as

Uy
(
ξ ′) = a0 +a1

(
1+ξ ′)+a2

(
1+ξ ′)2

(19d)

In order to account for the singular stress con-
ditions represented by QPE, the stress variation
along OA can be assumed as

σyy (ξ ) = b0/(1+ξ )+b1 +b2 (1+ξ ) (19e)

Displacement and force conditions for evaluating
the constants a0, a1, a2 and b0, b1, b2 can be ex-
pressed as

Uy = 0 at ξ ′ = −1;

Uy = (Uy,( j−1)−Uy,( j−1)′) at ξ ′ = 0;

Uy = (Uy,( j−2)−Uy,( j−2)′) at ξ ′ = 1;

(19f)

Fy = Fy, j at ξ = −1;

Fy = Fy,( j+1) at ξ = 0;

Fy = Fy,( j+2) at ξ = 1;

(19g)

Referring to Fig. 4 and accounting for the quarter-
point position of the midiside node, the relation
between ξ ′ in element 1 and ξ in element 2 can
be expressed as

(1+ξ )2 +
(
1+ξ ′)2 = 4 (19h)

12-noded (regular) quadrilateral element
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Shape functions (Ni) in Eqs. (11) and (15) along
the edge OB as shown in Fig. 4 (for the edge OA
replace ξ ′ by ξ ) can be obtained by substituting
η=-1 in 12-noded element shape functions.

Ni = 1/16(1+ξ ′ξ ′
i )(−1+9ξ

′2
) (20a)

for nodes with ξ ′ = ±1

Ni = 9/16(1+9ξ ′ξ ′
i )(1−ξ

′2
) (20b)

for nodes with ξ ′ = ±1/3

Using the shape functions given in Eqs. (20a) and
(20b), the transformation between global and nat-
ural coordinate system as given in Eq. (12) can be
expressed as

x = −(Δa/2)(1+ξ ′) (20c)

By substituting n=4 in Eq. (13), COD the dis-
placement variation along OB can be assumed as

Uy(ξ ′) = a0 +a1ξ ′ +a2ξ ′2 +a3ξ ′3 (20d)

By substituting n=4 in Eq. (14), the stress varia-
tion along OA can be assumed as

σy(ξ ) = b0 +b1ξ +b2ξ 2 +b3ξ 3 (20e)

Displacement and force conditions for evaluating
the constants a0, a1, a2, a3 and b0, b1, b2, b3 can
be expressed as

Uy = 0 at ξ ′ = −1;

Uy = (Uy,( j−1)−Uy,( j−1)′) at ξ ′ = −1/3;
(20f)

Uy = (Uy,( j−2)−Uy,( j−2)′) at ξ ′ = 1/3;

Uy = (Uy,( j−3)−Uy,( j−3)′) at ξ ′ = 1;
(20g)

Fy = Fy, j at ξ = −1;

Fy = Fy,( j+1) at ξ = −1/3;

Fy = Fy,( j+2) at ξ = 1/3;

Fy = Fy,( j+3) at ξ = 1;

(20h)

Referring to Fig. 4, the relation between ξ ′ in
element 1 and ξ in element 2 can be expressed
as ξ ′ = −ξ .

12-noded (singular) quadrilateral element [Pu
etal., 1978]

Shape functions (Ni) in Eqs. (11) and (15) along
the edge OB as shown in Fig. 4 (for the edge OA

replace ξ ′ by ξ ) can be obtained by substituting
η=-1 in 12-noded element shape functions.

Ni = 1/16(1+ξ ′ξ ′
i )(−1+9ξ

′2
) (21a)

for nodes with ξ ′ = ±1

Ni = 9/16(1+9ξ ′ξ ′
i )(1−ξ

′2
) (21b)

for nodes with ξ ′ = ±1/3

Using the shape functions given in Eqs. (21a) and
(21b), the transformation between global and nat-
ural coordinate system as given in Eq. (12) can be
expressed as

x = (Δa/4)(1+ξ ′)2 (21c)

By substituting n = 4 in Eq. (13) and accounting
for the position of the node adjacent to the crack
tip for singularity, COD variation along OB can
be assumed as

Uy
(
ξ ′) = a0 +a1

(
1+ξ ′)+a2

(
1+ξ ′)2

+ a3(1 + ξ ′)3 (21d)

In order to account for the singular stress condi-
tions for 12-noded element, the stress variation
along OA can be assumed as

σyy (ξ )= b0/(1+ξ )+b1+b2 (1+ξ )+b3(1+ξ )2

(21e)

Displacement and force conditions for evaluating
the constants a0, a1, a2, a3 and b0, b1, b2, b3 can
be expressed as

Uy = 0 at ξ ′ = −1;

Uy = (Uy,( j−1)−Uy,( j−1)′) at ξ ′ = −1/3;
(21f)

Uy = (Uy,( j−2)−Uy,( j−2)′) at ξ ′ = 1/3;

Uy = (Uy,( j−3)−Uy,( j−3)′) at ξ ′ = 1;
(21g)

Fy = Fy, j at ξ = −1;

Fy = Fy,( j+1) at ξ = −1/3;

Fy = Fy,( j+2) at ξ = 1/3;

Fy = Fy,( j+3) at ξ = 1;

(21h)

Referring to Fig. 4 and accounting for the position
of the midiside nodes at 1/9 and 4/9 positions, the
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relation between ξ ′ in element 1 and ξ in element
2 can be expressed as

(1+ξ )2 +
(
1+ξ ′)2 = 4 (21i)

In the above detailed formulation of the general-
ized NI-MVCCI technique proposed in the cur-
rent research work has been presented for com-
putation of SERR and SIF for 2-D crack prob-
lems. As it can be observed, one of the key fea-
tures of the proposed NI-MVCCI technique is that
it is general and is independent of the type of fi-
nite element employed. The basic procedure will
be the same for 3-D problems, if the displace-
ment and stress distributions (Eqs. (13) and (14))
are assumed appropriately and the line integrals
(Eqs. (16) to (17)) are replaced with area inte-
grals. The application of NI-MVCCI technique
has been demonstrated for 8-noded Serendipity
(regular & quarter-point), 9-noded Lagrangian
(regular & quarter-point) and 12-noded (regular
& singular) cubic isoparametric quadrilateral fi-
nite elements in the following section.

4 Numerical Studies

In order to verify and validate NI-MVCCI tech-
nique presented above, fracture analysis of 2-D
cracked plates (mode I and II) has been con-
ducted by employing 8-noded (regular & QPE),
9-noded (regular & QPE) and 12-noded (regu-
lar & singular) finite elements. Static analysis of
the plates has been conducted by using FEM. A
number of numerical studies employing different
mesh configurations have been conducted. The
graded FE idealization of the plate as shown in
Fig. 6 has been chosen for conducting the fur-
ther studies based on the convergence check and
comparison of the stress pattern at the crack tip.
Fracture analysis has been conducted by employ-
ing NI-MVCCI technique for computing SERR
and SIF. Gauss numerical integration technique
with different integration rules has been employed
for evaluating the integrals associated with NI-
MVCCI technique. In all the example problems,
plane strain conditions have been assumed at the
crack tip to compute SIF by using SERR values
obtained using NI-MVCCI technique.

Example-1: Rectangular Plate with Center
Crack under Uniaxial Tension

A rectangular plate with center crack subjected to
uniaxial tensile loading (mode I) as shown in Fig.
5(a) has been analysed to compute SERR and SIF
at the crack tip. One quarter of the plate with sym-
metric boundary conditions has been idealized
(refer Fig. 6 for mesh employing 9-noded ele-
ment) using 8-noded, 9-noded and 12-noded finite
elements. Table 1 presents SERR and SIF val-
ues obtained in the present study using 8-noded
(regular & QPE), 9-noded (regular & QPE) and
12-noded elements employing different integra-
tion rules along with the results obtained by us-
ing MVCCI technique with exact integration and
the reference solutions available in the literature
[Rooke and Cartwright, 1976]. The variation of
SIF with respect to Δa/a and W/a is shown in
Fig. 7

Example-2: Rectangular Plate with Edge
Crack under Uniaxial Tension

A rectangular plate with an edge crack subjected
to uniaxial tensile loading (mode I) as shown in
Fig. 5(b) has been analysed to compute SERR
and SIF at the crack tip. FE idealization as shown
in Fig. 6 has been used in the studies, consider-
ing half symmetry, with appropriate changes for
the boundary conditions. Table 2 presents SERR
and SIF values obtained in the present study us-
ing 8-noded (regular & QPE), 9-noded (regular &
QPE) and 12-noded (regular & singular) elements
employing different integration rules along with
the results obtained by using MVCCI technique
and the reference solutions available in the litera-
ture [Rooke and Cartwright, 1976]. The variation
of SIF values with respect to Δa/a and W/a is
shown in Fig. 8.

Example-3: Rectangular Plate with Center
Crack under Shear Load

A rectangular plate with a center crack subjected
to shear load (mode II) has been analysed to com-
pute SERR and SIF at the crack tip. The plate
geometry and attributes are the same as that of
Example-1. FE idealization as shown in Fig. 6
has been used in the studies, considering quarter
symmetry, with appropriate changes for the load-
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ing and boundary conditions. Table 3 presents
SERR and SIF values obtained in the present
study using 8-noded (regular & QPE), 9-noded
(regular & QPE) and 12-noded (regular & sin-
gular) elements employing different integration
rules along with the results obtained by using
MVCCI technique and the analytical solutions for
an infinite plate. The variation of SIF values with
respect to Δa/a and W/a is shown in Fig. 9.

2W 

(

2H 
2a

E=10000MPa 
ν = 0.0 
t = 10 mm 
H = 250 mm 
W = 100 mm 
a = 20 mm 

2W 

a
2H 

Figure 5: Rectangular Plate with (a) Center Crack
(b) Edge Crack

Figure 6: FE Idealization (9-noded element) of
the Rectangular Plate (Quarter Symmetry)

(a) Variation w.r.t. Δa/a 

Δa/a 

W/a = 5.0 

KI

W/a 

Δa/a = 0.05

KI

Figure 7: Variation of SIF for Rectangular Plate
with Center Crack (Mode I)

4.1 Discussion of Results

It is observed from the studies (refer Figs. 8
to 10 and Tables 1 to 3) that SIF computed in
the present study by employing NI-MVCCI tech-
nique along with 8-noded (regular & QPE), 9-
noded (regular & QPE) and 12-noded (regular &
singular) elements are generally in close agree-
ment with the reference solutions for all the prob-
lems considered. In all the cases, except for sin-
gular elements (8-noded QPE, 9-noded QPE and
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Δa/a 

W/a = 20.0 

KII

KII

W/a

Δa/a = 0.05 

(a) Variation w.r.t. Δa/a     (b) Variation w.r.t. W/a 

Figure 9: Variation of SIF for Rectangular Plate with Center Crack (Mode II)

12-noded singular), NI-MVCCI technique serves
the purpose of performing MVCCI integral ex-
actly with appropriate rules of Gauss integration.
For the regular elements as expected, NI-MVCCI
technique using 3-point integration for 8-noded
and 9-noded elements and 4-point integration for
12-noded element produced the same results as
those obtained by using MVCCI technique. For
the singular elements, 9-point integration along
with 8-noded QPE, 9-noded QPE and 12-noded
singular elements at the crack tip produced results
within 1% of the reference solution. Lower order
of integration is acceptable if one is willing to ac-
cept higher deviation with respect to the reference
solution.

NI-MVCCI technique shows SIF estimations con-
verge to the reference solution for 8-noded (reg-
ular & QPE), 9-noded (regular & QPE) and 12-
noded (regular & singular) elements as Δa/a→0.
It is interesting to note that 9-noded element per-
forms well and converges faster than 8-noded and
12-noded elements to the reference solution as
Δa/a →0. It can be observed from Figs. 8 to 10
that SIF obtained by employing 8-noded (regular
& QPE) and 9-noded (regular & QPE) elements
are in close agreement with the reference solu-
tion even for the highest Δa/a ratio of 0.25 and

is found not to vary significantly with Δa/a ratio.
SIF obtained by employing 8-noded and 9-noded
(regular & QPE) elements converge to the ana-
lytical solution for an infinite plate as W/a is of
the order of 20. The 9-noded Lagrangian element
was not used much in the past, but the present
study shows that it performs better than 8-noded
and 12-noded Serendipity elements. This can be
attributed to better stress recovery with 9-noded
element.

For all the problems, elements with aspect ratio
of 1.0 have been used at the crack tip. However, it
was observed that this has resulted in deviation of
SIF value obtained employing 12-noded (regular
& singular) element from the reference solutions.
After few trials, it was found that for this element,
using an aspect ratio of 2.0 for the crack tip el-
ements with the longer side perpendicular to the
crack for mode I and along the crack for mode
II problems, SIF values converge to the reference
solution. This can be attributed to the errors in
computing nodal stresses with 12-noded element
that compensate each other.



A Generalized Technique for Fracture Analysis 91

(a) Variation w.r.t. Δa/a

(b) Variation w.r.t. W/a 

Δa/a 

W/a = 5.0

KI

Δa/a = 0.05

KI

W/a 

Figure 8: Variation of SIF for Rectangular Plate
with Edge Crack (Mode I)

5 Summary and Conclusions

NI-MVCCI technique as a part of post-processing
approach of FEA for computing SERR and SIF
using for 2-D crack problems has been proposed.
NI-MVCCI is a generalized technique and will
remove the dependence of MVCCI equation on
the type of finite elements employed in the ba-
sic stress analysis. The efficacy of NI-MVCCI
technique has been demonstrated for 8-noded
Serendipity (regular & QPE), 9-noded Lagrangian
(regular & QPE) and 12-noded cubic (regular &
singular) isoparametric finite elements. Based on
the numerical studies conducted on cracked plates

the following conclusions are drawn:

• NI-MVCCI is carefully formulated, since it
involves two-way integration. The first in-
tegration is on stress distribution to express
the constants in terms of nodal forces. The
second integration estimates SERR.

• SIF computed in the present study by em-
ploying 8-noded (regular & QPE), 9-noded
(regular & QPE) and 12-noded (regular &
singular) elements generally compare well
with the corresponding Reference solutions.

• For the regular elements as expected, NI-
MVCCI technique using 3-point integration
for 8-noded, 9-noded elements, 4-point inte-
gration for 12-noded element produced the
same results as those obtained by using
MVCCI technique.

• For 8-noded QPE, 9-noded QPE and 12-
noded singular elements, NI-MVCCI tech-
nique using 9-point Gauss integration is rec-
ommended for evaluation of SERR and SIF
as the evaluations are found to be within 1%
accuracy for quarter-point elements.

• As Δa/a →0, results with 8-noded (regular
& QPE) and 9-noded (regular & QPE) ele-
ments converge well to the reference solu-
tion.

• In general, SIF obtained employing 8-noded
(regular & QPE) and 9-noded (regular &
QPE) elements converge to the analytical so-
lution for an infinite plate as W/a is of the
order of 20.

• For 12-noded (regular & singular) element,
using an aspect ratio of 2.0 for the crack tip
elements with the longer side perpendicular
to the crack for mode I and along the crack
for mode II problems results in converging
SIF values. This can be attributed to the
errors in computing nodal stresses with 12-
noded element that compensate each other.

• In general, 9-noded element performs well
and converges faster than 8-noded and 12-
noded elements to the reference solution as



92 Copyright c© 2008 Tech Science Press SDHM, vol.4, no.2, pp.77-93, 2008

Δa/a →0. The 9-noded Lagrangian ele-
ment was not used much in the past, but the
present study shows that it performs better
than 8-noded and 12-noded Serendipity ele-
ments. This can be attributed to better stress
recovery with 9-noded element.

• NI-MVCCI technique is found to be simple,
powerful and effective technique for fracture
analysis of 2-D crack problems. This tech-
nique can be easily implemented with any
existing FEA software as a post-processing
module.
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