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Electroelastic Problem of Two Anti-Plane Collinear Cracks at the Interface
of Two Bonded Dissimilar Piezoelectric Layers

B. M. Singh, J. Rokne and R. S. Dhaliwal1

Abstract: Under the permeable electric bound-
ary condition the problem of two collinear anti-
plane shear cracks situated at the interface of two
bonded dissimilar piezoelectric layers is consid-
ered. It is assumed that applied longitudinal shear
stress and electric loading at the layer surfaces are
prescribed. By the use of Fourier transforms we
reduce the problem to solving a set of triple in-
tegral equations with a cosine kernel. The triple
integral equations are further reduced to a Fred-
holm integral equation of the second kind whose
iterative solution has been obtained. Analytical
expressions for the stress intensity factors are ob-
tained. Numerical results are presented in the
form of graphs and compared with the results of
stress intensity factors of two collinear cracks in a
homogeneous elastic layer.

1 Introduction

Research in the area of piezoelectricity has led to
the development of a variety of important elec-
tronic and electromechanical devices which are
being used in spacecraft launch vehicles and mil-
itary equipment. When piezoelectric ceramics are
subject to mechanical and electrical loads in ser-
vice, flaws or defects caused by manufacturing
may lead to premature failure of these materi-
als (or composites) due to static anti-plane and in
plane electric loading which have been studied by
several authors. In recent years, many researchers
have studied crack problems in piezoelectric ma-
terials. Shindo et. al. (14; 15; 16) have made a
systematic study on the electro-elastic field of a
piezoelectric strip with a central crack parallel to
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or perpendicular to the strip boundaries. Closed
form solutions for one or two cracks in the lay-
ers or strip have been obtained by Li and Duan
(8), Li (9; 10), Zhong and Li (19) and Li (11; 12).
Singh, Rokne and Dhaliwal (17) have solved the
problem of two cracks in a layer by obtaining a
closed form solution. The problem involving two
collinear or parallel anti-plane shear cracks in a
piezoelectric layer bonded to two half-spaces has
been treated by Zhou et. al (20) and Zhou and
Wang (21). Chen and Yu (1), Chen et. al. (2) and
Li, X. F. et. al. (7) have considered the problems
of a crack at the interface of two dissimilar piezo-
electric materials. It is also important to mention
some recent work by Haüsler, C. et. al. (6) and
Gao, C.L. et. al (4) on the interface cracks in two
bonded piezoelectric materials.

In this paper we consider the problem of two anti-
plane shear cracks situated at the interface of two
bonded infinite layers of different piezoelectric
materials subjected to longitudinal shear stresses
and electric loading on the layer surfaces. By the
use of Fourier transforms we reduce the problem
to solving a set of triple integral equations with
a cosine kernel which are further reduced to the
solution of a Fredholm integral equation of the
second kind. Iterative solution of the Fredholm
integral equation has been obtained in terms of
inverse powers of h2 by assuming h2 >> 1 and
h2 ≥ h1 where h2 and h1 are the thicknesses of
the two layers. The case h1 ≥ h2 is can be treated
in a similar manner. Analytical expressions up to
the order of h2

−6 has been obtained for the stress
intensity factors at the edges of the cracks. Nu-
merical results are presented in the form of graphs
and compared withe the results of stress intensity
factors of two collinear cracks in a homogeneous
elastic layer.
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Figure 1: The two collinear interface cracks between two bonded dissimilar piezoelectric layers.

2 Formulation of the problem and basic
equations

Consider two bonded dissimilar piezoelectric lay-
ers, of infinite extent in the xz-plane and finite
thickness h1 and h2 in the y direction. Two infi-
nite cracks of width 2a are located at the interface
y = 0 and the cross-section of the layer is shown
in Fig. 1.

Here Cartesian coordinates x,y, z are the principal
axes of the material symmetry, while the z axis is
oriented in poling direction of two piezoelectric
layers. Therefore, in this case there is only non-
vanishing out-of-plane displacement w(x,y) and
in-plane electric potential φ (x,y) which satisfy
the following basic governing differential equa-
tions of anti-plane piezoelectricity:

c44( j)∇2w( j) +e15( j)∇2φ( j) = 0,

e15( j)∇2w( j) −ε11( j)∇2φ( j) = 0,

}
(1)

in the absence of body forces and free charges
where c44( j),ε11( j) and e15( j) are the shear mod-
ulus, the piezoelectric constant and the dielec-
tric constant, respectively. ∇2 represents the two-

dimensional Laplacian operator and subscripts
j = 1 and j = 2 specify the quantities in the upper
and lower layers, respectively. Respective compo-
nents of anti-plane shear stress and in-plane elec-
tric displacement in each piezoelectric layer are
given by the following equations:

σzx( j) = c44( j)γzx( j)−e15( j)Ex( j), (2)

σzy( j) = c44( j)γzy( j)−e15( j)Ey( j), (3)

Dx( j) = e15( j)γzx( j) +ε11( j)Ex( j), (4)

Dy( j) = e15( j)γzy( j) +ε11( j)Ey( j) (5)

where (σzx( j),σzy( j)) are the shear moduli and
(Dx( j),Dy( j)) are the components of the electrical
displacement vector. The where anti-plane strain
and electric field in each piezoelectric layer are
given as follows

γzx( j) =
∂w( j)

∂x
, γzy( j) =

∂w( j)

∂y
, (6)

Ex( j) = −∂φ( j)

∂x
, Ey( j) = −∂φ( j)

∂y
. (7)
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3 Boundary conditions

We assume that the longitudinal shear stress and
electric displacement are prescribed at the upper
and lower surfaces of the layers and hence the
boundary conditions are:

σzy(1)(x,h1) = σzy(2)(x,−h2) = τ0, −∞ < x < ∞,

(8)

Dy(1)(x,h1) = Dy(2)(x,−h2) = D0, −∞ < x < ∞
(9)

where τ0 and D0 are constants.

We assume that the electric potential and the nor-
mal electric displacement are continuous across
the crack surfaces at y = 0 and that the crack sur-
faces are free of longitudinal shear stress. Hence
we have

σzy(1)(x,0+) = σzy(2)(x,0−) = 0,

φ(1)(x,0+) = φ(2)(x,0−),
Dy(1)(x,0+) = Dy(2)(x,0−),

⎫⎬
⎭c < |x|< 1.

(10)

In addition, the electric and elastic fields should
fulfill the following continuity conditions along
the interface:

σzy(1)(x,0+) = σzy(2)(x,0−),
Dy(1)(x,0+) = Dy(2)(x,0−),

}
|x| > 1, 0 < |x| < c. (11)

w(1)(x,0+) = w(2)(x,0−),
φ(1)(x,0+) = φ(2)(x,0−),

}
|x| > 1, 0 < |x| < c. (12)

4 Solution of the problem

Due to the symmetry of the problem under con-
sideration, it is sufficient to analyze the right-half
portion x ≥ 0. Using the Fourier cosine trans-
forms, it is easy to obtain an appropriate solution
of equations (1) in the form

wj(x,y) =∫ ∞

0
[A j(ξ )cosh(yξ )+B j(ξ ) sinh(yξ )]cos(xξ )dξ

+ a jy, (13)

φ j(x,y) =∫ ∞

0
[Cj(ξ )cosh(yξ )+D j(ξ ) sinh(yξ )]cos(xξ )dξ

+ b jy, (14)

x ≥ 0, 0 ≤ y ≤ h1 for j = 1,

−h2 ≤ y ≤ 0 for j = 2,

where A j(ξ ), · · · ,D j(ξ ) ( j = 1,2) are unknown
functions to be determined. For the convenience
of satisfying the conditions (8) and (9) we assume
that

a j =

[
τ0ε11( j) +D0e15( j)

e2
15( j) +c44( j)ε11( j)

]
, (15)

b j =

[
τ0e15( j)−D0c44( j)

e2
15( j) +c44( j)ε11( j)

]
. (16)

From equations (3), (5) and (13)-(16) we find that

σzy( j) = τ0 +
∫ ∞

0
ξ [(c44( j)A j +e15( j)Cj) sinh(yξ )

+(c44( j)B j +e15( j)D j)cosh(yξ )]cos(xξ )dξ ,

(17)

Dy( j) = D0 +
∫ ∞

0
ξ [(e15( j)A j −ε11( j)Cj) sinh(yξ )

+(e15( j)B j −ε11( j)D j)cosh(yξ )]cos(xξ )dξ .

(18)

Now the boundary conditions (8) and (9) will be
satisfied if

B1 = −A1 tanh(h1ξ ), D1 = −C1 tanh(h1ξ ), (19)

B2 = A2 tanh(h2ξ ), D2 = C2 tanh(h2ξ ). (20)

With the help of conditions (10), (11) and (12)2 at
y = 0 we find that

B2 = a11B1 +a12D1, (21)

D2 = a21B1 +a22D1, (22)

C1 = C2, (23)
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where

a11 =
c44(1)ε11(2) +e15(1)e15(2)

e2
15(2) +c44(2)ε11(2)

, (24)

a12 =
e15(1)ε11(2)−ε11(1)e15(2)

e2
15(2) +c44(2)ε11(2)

, (25)

a21 =
c44(1)e15(2)−c44(2)e15(1)

e2
15(2) +c44(2)ε11(2)

, (26)

a22 =
e15(1)e15(2) +c44(2)ε11(1)

e2
15(2) +c44(2)ε11(2)

. (27)

From the above result we can easily find that

C1 = C2 = − a21A1J12(ξ )
1+a22J12(ξ )

, (28)

A2 = −
[

a11 − a12a21J12(ξ )
1+a22J12(ξ )

]
J12(ξ )A1, (29)

where

J12(ξ ) =
tanh(h1ξ )
tanh(h2ξ )

. (30)

From the equations (13) and (17) we find that

w2(x,0−)−w1(x,0+) =∫ ∞

0
[A2 −A1]cos(xξ )dξ , (31)

σzy(1)(x,0+) =

τ0 +
∫ ∞

0
ξ [c44(1)B1 +e15(1)D1]cos(xξ )dξ . (32)

With the help of equation (29) we find from equa-
tion (31) that

w2(x,0−)−w1(x,0+) =

−
∫ ∞

0

[
1+a11J12(ξ )− a12a21J2

12(ξ )
1+a22J12(ξ )

]
A1(ξ )

cos(xξ )dξ . (33)

Making use of equations (19) and (28), the equa-
tion (32) can be written in the form

σzy(1)(x,0+) =

τ0 −
∫ ∞

0

[
c44(1)−

e15(1)a21J12(ξ )
1+a22J12(ξ )

]
ξA1(ξ )

tanh(h1ξ )cos(xξ )dξ . (34)

Using equations (33) and (34), the boundary con-
ditions (10)1 and (12)1 lead to the following inte-
gral equations∫ ∞

0
M(ξ )cos(xξ )dξ = 0, 0 < x < c, x > 1, (35)

∫ ∞

0
ξM(ξ )[R0 +R(ξ ,h1,h2)]cos(xξ )dξ =

π
2

τ0,

c < x < 1, (36)

where

2
π

M(ξ ) =[
(1+a11J12(ξ ))(1+a22J12(ξ ))−a12a21J2

12(ξ )
1+a22J12(ξ )

]
A1(ξ ), (37)

R(ξ ,h1,h2) = tanh(h1ξ )[
c44(1)(1+a22J12(ξ ))−a21e15(1)J12(ξ )

(1+a11J12(ξ ))(1+a22J12(ξ ))−a12a21J2
12(ξ )

]
−R0, (38)

R0 =
[

c44(1)(1+a22)−a21e15(1)

(1+a11)(1+a22)−a12a21

]
. (39)

We note that when

ξ → ∞, J12(ξ ) → 1. (40)

We assume that

M(ξ ) =
1

ξR0

∫ 1

c
h(t2) sin(ξ t)dt, (41)

and then following Srivastava and Lowengrub
(18) it is found that the solution of the triple in-
tegral equations equations (35) and (36) leads to
the following Fredholm integral equation of the
second kind for the determination of h(x2):

h(x2)+
∫ 1

c
h(t2)K(x2, t)dt = F(x2), c < x < 1,

(42)

satisfying the condition

∫ 1

c
h(x2)dx = 0, (43)
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where

K(x2, t) =

− 4
π2

(
x2 −c2

1−x2

) 1
2 ∫ 1

c

(
1−y2

y2 −c2

) 1
2 yK1(y, t)dy

y2 −x2 ,

(44)

K1(y, t) =
1

R0

∫ ∞

0
R(ξ ,h1,h2)cos(ξy) sin(ξ t)dξ , (45)

F(x2) =

− 2τ0

π

(
x2 −c2

1−x2

) 1
2 ∫ 1

c

(
1−y2

y2 −c2

) 1
2 ydy

y2 −x2

C1√
(x2 −c2)(1−x2)

, c < x < 1, (46)

C1 being an arbitrary constant determined by the
condition (43). The analytic solution of equation
(42) is not easily possible for h2 << 1. If we as-
sume h2 >> 1 and h2 ≥ h1 or h1 ≥ h2 then K1

may be expanded in the inverse powers of h2 in
the form:

K1(y, t) =
[

I0t

h2
2

+
I1t

h4
2
(t2 +3y2)+O(h−6

2 )
]
, (47)

where

Ii =
(−1)i

R0|1+2i

∫ ∞

0
u2i+1

[
tanh(εu)

c44(1)(1+a22L1(εu))−a21e15(1)L1(εu)
[(1+a11L1(εu))(1+a22L1(εu))−a12a21L2

1(εu)]

−R0

]
du, (48)

ε =
h1

h2
, L1(εu) =

tanh(εu)
tanh(u)

, i = 0,1. (49)

And we find that

K(x2, t) =
2
π

(
x2 −c2

1−x2

) 1
2

[
I0t

h2
2

+
I1t

h4
2

(
t2 +3x2 − 3

2
k2

)
+O(h−6

2 )
]
, (50)

where

k2 = 1−c2. (51)

Integrating both sides of equation (42) with re-
spect to c and using equation (43) we find that

C1 =
2

πF

∫ 1

c
w(x2)dx+

2
πF

∫ 1

c
h(t2)

[
I0t

h2
2

(E −C2F)

+
I1t

h4
2

{(
t2− 3

2
k2

)
(E −c2F)−c2(E +F)

+ 2E

}]
dt + O(h−6

2 ), (52)

where

E = E(
π
2
,k), F = F(

π
2
,k), k = (1−c2)

1
2 , (53)

w(x2) = τ0

(
x2 −c2

1−x2

) 1
2 ∫ 1

c

(
1−y2

y2 −c2

) 1
2 ydy

y2 −x2 .

(54)

E and F are elliptic integrals of the second and
first kind respectively as defined in the book of
Gradshteyn and Ryzhik ((5), pp. 904-905). Now
h(x2) must satisfy the integral equation

h(x2)+
∫ 1

c
h(t2)M(x2, t)dt = S(x2), c < x < 1,

(55)

where

M(x2, t) =
2t

π
√

(x2 −c2)(1−x2)

[
I0

h2
2

(
x2 − E

F

)

+
I1

h4
2

{(
t2 +

3
2

k2
)(

x2 − E
F

)

+3x2(x2 −1)+
E
F

+c2 − 2c2E
F

}]
+O(h−6

2 ),

(56)

S(x2) =
(x2 −E/F)τ0√
(x2 −c2)(1−x2)

. (57)

Solution of equation (55) may be written in the
form

h(x2) = g0(x2)+
g1(x2)

h2
2

+
g2(x2)

h2
4

+O(h−6
2 ),

c < x < 1, (58)
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where

{g0(x2),g1(x2)} =

(x2 −E/F)τ0

[(x2 −c2)(1−x2)]
1
2

{
1,−1

2
I0C0

}
(59)

g2(x2) =
C0

4[(x2−c2)(1−x2)]
1
2

[I2
0C0(x2 −E/F)

−2I1(3x4 +C1x2 +C2)], (60)

with

C0 = 1+c2 − 2E
F

, (61)

C1 =
k4

4C0
− (1+c2), (62)

C2 = c2 +
E
F

[
C1 − k4

2C0

]
. (63)

Using equations (34), (37) and (41) we find that

σzy(1)(x,0) =

− 2
π

∫ 1

c

th(t2)dt
t2−x2 − 2

π

∫ 1

c
h(t2)K1(x, t)dt +τ0,

0 ≤ x < c, x > 1. (64)

From equations (47) and (58) - (60) we find that

∫ 1

c
h(t2)K1(x, t)dt =

τ0π
8

[
2I0C0

h2
2

− I2
0C2

0

h4
2

+
2I0C0

h4
2

(
3x2 +C1 +

3
2(1+c2)

)]
+O(h−6

2 ).

(65)

For 0 < x < c, we have

−
∫ 1

c

th(t2)dt
t2 −x2

= τ0
π
2

[(
E/F −x2

X1
−1

)(
1− I0C0

2h2
2

+
I2
0C2

0

4h4
2

)

+
I1C0

2h4
2

{
3x4 +C1x2 +C2

X1
+3

(
1+c2

2
+x2

)

+C1

}]
+ O(h−6

2 ), (66)

and for x > 1

∫ 1

c

th(t2)dt
x2 − t2

= τ0
π
2

[(
x2 −E/F

X2
−1

)(
1− I0C0

2h2
2

+
I2
0C2

0

4h4
2

)

− I1C0

2h4
2

{
3x4 +C1x2 +C2

X2
−3

(
1+c2

2
+x2

)

−C1

}]
+ O(h−6

2 ), (67)

where

X1 =
√

(c2 −x2)(1−x2), (68)

X2 =
√

(x2 −c2)(x2−1). (69)

We find that the stress intensity factors which are
defined by

Kτ
c = lim

x→c−
[2(c−x)]

1
2 [σyz(x,0)0<x<c], (70)

Kτ
1 = lim

x→1+
[2(x−1)]

1
2 [σyz(x,0)x>1] (71)

are given by

Kτ
c =

τ0√
(1−c2)c

[
(E/F −c2)

(
1− I0C0

2h2
2

+
I2
0C2

0

4h4
2

)

+
I1C0

2h4
2
{3c4 +C1c2 +C2}+O(h−6

2 )
]
, (72)

Kτ
1 =

τ0√
(1−c2)

[
(1−E/F)

(
1− I0C0

2h2
2

+
I2
0C2

0

4h4
2

)

− I1C0

2h4
2
(3+C1 +C2)+O(h−6

2 )
]
. (73)

The equations (72) and (73) give the stress inten-
sity factors at the edges of the crack.

The expressions (71) and (83) represent the ex-
pressions for stress intensity factors only for
h2 >> 1 and not for general values of h2.

If we assume that h2 → ∞ then the integrals I0 and
I1 are divergent and results for the stress intensity
factors from equations (72) and (73) are not eas-
ily possible. If we assume that h1 = h2 then the
integrals I0 and I1 are convergent.
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If h1 = h2,h2 → ∞ in equations (72) and (72) we
get the results for two collinear cracks in an in-
finite homogeneous medium under shear load as
shown in reference (13). If we assume the the
thickness of the layers tend to infinite in refer-
ences (11) and (12) we get the result for stress
intensity factor for one crack lying at the interface
of two infinite materials, which are independent
of the materials. In the same way in this case the
two collinear cracks lying at the interface of two
infinite piezoelectric materials, their stress inten-
sity factors are not dependent on the piezoelectric
materials

In the same way intensity factors for the electric
displacement at the crack tips can be obtained.

Using equations (19) and (28) we can write equa-
tion (18) in the following form:

Dy(1)(x,0+) = D0

−
∫ ∞

0

[
a21ε11(1)J12(ξ )+e15(1)(1+a22J12(ξ ))

1+a22J12(ξ )

]
×ξ tanh(h1ξ )cos(xξ )A1(ξ )dξ . (74)

Now substituting for A1 from equation (37), the
above equation may be written as

Dy(1)(x,0+) = D0

− 2
π

∫ ∞

0
ξ [R1 +R2(ξ ,h1,h2)]cos(xξ )M(ξ )dξ ,

(75)

where

R1 =
a21ε11(1) +e15(1)(1+a22)
(1+a11)(1+a22)−a12a21

, (76)

R2(ξ ,h1,h2) =
a21ε11(1)J12(ξ )+e15(1)[1+a22J12(ξ )]

[1+a11J12(ξ )][1+a22J12(ξ )]−a12a21J2
12(ξ )

× tanh(h1ξ )−R1. (77)

Substituting for M from equation (41) we may
rewrite equation (75) in the form

Dy(1)(x,0+) = D0 − 2R1

πR0

∫ 1

c

th(t2)dt
t2 −x2

− 2
πR0

∫ 1

c
h(t2)K2(x, t)dt, (78)

where

K2(x, t) =
∫ ∞

0
R2(ξ ,h1,h2)cos(xξ ) sin(tξ )dξ .

(79)

The electric intensity factors at the edge of the
crack are defined by

KD
c = lim

x→c−
[2(c−x)]

1
2 [Dy(1)(x,0+)0<x<c], (80)

KD
1 = lim

x→1+
[2(x−1)]

1
2 [Dy(1)(x,0+)x>1]. (81)

Now from equations (78), (80) and (81) we find
that

(
KD

c ,KD
1

)
=

R1

R0
(Kτ

c ,Kτ
1 ) (82)

where Kτ
c and Kτ

1 are given by equations (72) and
(73) respectively.

5 Numerical results and discussion

For numerical results we assume the upper layer
of material PZT-4 and lower layer of material
PZT-5H. The material properties of PZT-4 are:

c44(1) = 2.56×1010N/m2, (83)

e15(1) = 12.7C/m2, (84)

ε11(1) = 64.6×10(−10)C/Vm (85)

and the material properties of PZT-5H are:

c44(2) = 2.3×1010N/m2, (86)

e15(2) = 17.0C/m2, (87)

ε11(2) = 150.4×10(−10)C/Vm (88)

By using the above values of the material con-
stants the numerical values of the stress inten-
sity factors Kτ

c and Kτ
1 have been calculated from

equations (72) and (73) respectively.

For the numerical values we assume that h1 =
h2 = h(constant). The numerical values of Kτ

c
τ0
√

c

and Kτ
1

τ0
have been displayed in Figs. 2-5 against

the layer thickness h which are shown by thick
lines. In Figs. 2-5 dotted lines shows the curves of
the stress intensity factors for two collinear cracks
in the homogeneous elastic layer under torsion
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when the plane surfaces of the layers are clamped.
The numerical results for two collinear cracks in
a homogeneous layer are obtained from the ex-
pressions of stress intensity factors of the paper
Dhaliwal, Singh and Chehil (3) and are plotted by
dotted lines in Figs. 2-5. If we compare the curves
for stress intensity factors of cracks in piezoelec-
tric layers with stress intensity factors of cracks
in a homogeneous elastic layer, then the results
of stress intensity factors for two cracks in piezo-
electric layers are reasonable and we find that the
trends of the stress intensity factors change more
for h < 4.
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