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Boundary Element Analysis of Cracked Thick Plates Repaired with
Adhesively Bonded Composite Patches

J. Useche, P. Sollero, E.L. Albuquerque1 and L. Palermo2

Abstract: The fracture analysis of cracked
thick plates repaired with adhesively bonded com-
posite patches using a boundary element formula-
tion is presented. The shear deformable cracked
isotropic plate was modeled using the dual bound-
ary method. In order to model the repair, a
three parameter boundary element formulation
was established. This formulation is based on
Kirchhoff’s theory for symmetric layer compos-
ite plates and considers the transversal deflection
and two in-plane rotations. Interaction forces and
moments between the cracked plate and the com-
posite repair were modeled as distributed load-
ing, and discretized using continuous and semi-
discontinuous domain cells. Coupling equations,
based on kinematic compatibility and equilibrium
considerations for the adhesive, were established.
In-plane shear-deformable adhesive model with-
out transversal stiffness was considered in order
to modeling the mechanical response of the adhe-
sive. Stress intensity factors in the isotropic Reiss-
ner’s plate were calculated using crack surface
displacements extrapolation. Test problems con-
sidering circular composite repair are presented.

Keyword: Fracture mechanics, fracture plates,
dual boundary element method, adhesive compos-
ite patches, anisotropic repair

1 Introduction

Aeronautic structures are usually constituted of
panels and metallic stiffeners. A cracked panel is
frequently repaired by bonding, riveting or screw-
ing a metallic patch on the cracked area. The life
in fatigue and the residual stresses in the repaired
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panel are dependent on the efficiency of the load
transfer of the cracked panel to the repair. Ad-
vanced bonded composite repairs have been used
in the aeronautical industry and they are accepted
as efficient solutions for the repair of damaged
structures. The main advantage, when compared
to screwed or riveted repairs is that they supply a
load transfer relatively uniform among the struc-
tural components that are bonded. The required
holes for these fasteners act as stresses concentra-
tors that reduces the useful life of the aeronautical
panel.

The Boundary Element Method (BEM) is an
atractive numerical alternative to treat fracture
problems, mainly to its ability to model contin-
uously high stress gradients without the need of
domain discretization. The use of this method
in structural analysis has strongly increased since
80s [see Aliabadi (2002)]. The analysis of
cracked isotropic plates structures repaired with
the application of adhesively bonded anisotropic
patches using BEM hasn’t been reported in the lit-
erature, to the authors knowledge.

Widago and Aliabadi (2001) presented a BEM
formulation for the analysis of metallic sheets
repaired by screwed composite materials. The
cracked sheet is modeled using the dual bound-
ary element technique. Screws are modeled as
linear springs whose forces are treated as point
forces. The repair is modeled using a boundary el-
ement formulation for anisotropic bi-dimensional
plates. Later, Wen, Aliabadi and Young (2002)
developed a boundary element formulation for the
analysis of flat metallic plates with cracks and
adhesive isotropic repairs. The effect of the ad-
hesive layer was modeled considering them as
distributed forces. A coupled integral formula-
tion for plate with shear deformation and plane
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stress was used to determine bending moments
and membrane forces in the adhesive repair.

Boundary element formulations have been ap-
plied to plate bending anisotropic problems con-
sidering Kirchhoff and shear deformable plate
theories. Shi and Bezine (1998) presented a
boundary element analysis of plate bending prob-
lems based on Kirchhoff’s plate bending assump-
tions. Boundary element method for orthotropic
Reisnner’s plates was presented by Wang, J. and
Huang, M. (1991). Shear deformable cracked
plates have been analyzed using boundary ele-
ment method by Dirgantara and Aliabadi (2001)
with the fundamental solution proposed by Van-
der Weeën (1982). Wen and Aliabadi (2006)
presented a displacement discontinuity formula-
tion for modeling cracks in orthotropic Reissner
plates. Fundamental solutions for displacement
discontinuity were derived for the first time using
a Fourier transform method in this reference.

This paper presents the fracture analysis of
cracked thick plates repaired with adhesively
bonded composite patches using a boundary ele-
ment formulation. The shear deformable cracked
isotropic plate was modeled using the dual bound-
ary method. In order to model the repair, a three
parameter boundary element formulation, based
on Kirchhoff’s theory for symmetric layer com-
posite plates was developed. Coupling equa-
tions, based on kinematic compatibility and equi-
librium considerations for the adhesive, were es-
tablished. Stress intensity factors were calculated
using crack surface displacements extrapolation.
Test problems considering circular composite re-
pair are presented.

2 Isotropic plate formulation

The two dimensional boundary integral equation
for displacements at the boundary point x′ ∈Γ that
describes membrane effects can be written as Ali-
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Figure 1: Definition of boundary and distributed
body forces and moments at isotropic plate

abadi (2002):
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where α , β = 1, 2 and cP
i j(x′) is a function of the

geometry at the collocation points that can be de-
terminated by considering rigid body movements.
The boundary displacements and tractions for the
sheet are denoted by uα and tα(= nβ σαβ ), re-
spectively; displacement and traction fundamen-
tal solutions for the plane stress condition are
UP

αβ (x′,x) and T P
αβ (x′,x) respectively, fβ (x) de-

note two-dimensional body forces por unit area
over a region A of patch and hp is the thickness
of the plate. In this work no other in-plane body
forces will be considered. The upper index refers
to the isotropic plate.

In order to model cracked plates, the Dual Bound-
ary Element Method (DBEM) will be used. In this
method, the displacement integral formulation is
written for source points on one crack surface and
the traction integral equation on the other surface.
Then, using the stress and strain relationships for
plane stress, the traction integral equation for two-
dimensional problems in a smooth boundary can
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be derived as [see Dirgantara (2002)]:
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where nβ (x′) is the normal to the boundary
evaluated at collocation point. UP

αβγ(x′,x) and

T P
αβγ(x′,x) are the displacement and traction fun-

damental solutions for two-dimensional prob-
lems.

For plate bending boundary integral formulation,
wα are defined as rotations in the xα direction,
w3 is the deflection of the plate along x3, qP

α and
qP

3 are the distribution of moments and the out-
of-plane body force per unit area, respectively, in
the patch area A, and po is the pressure force ap-
plied in the domain of the plate Ω (see figure 1).
Then, the boundary integral formulation for the
plate bending problem can be written as:
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where k = 1 . . .3. W P
αβ(x′,x) and PP

αβ (x′,x) are
the fundamental solutions for Reissner’s plate
model [see Vander Weeën (1982)] and pα =
Mαβ nβ , p3 = Qβ nβ . Constant cP

ik is similar with
those at in-plane displacement problem.

In a similar way, fracture mechanics problems
involving plate bending can be modeled usign
DBEM. In this case, the traction equation can be
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Figure 2: Definition of boundary and distributed
body forces and moments at repair

written as:
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where W P
iβγ (x′,x) and PP

iβγ (x′,x) are the dis-
placement and traction fundamental solutions for
isotropic Reissner’s plate [see Dirgantara (2002)].

3 Composite patch formulation

Similary to the isotropic case, the in-plane dis-
placements of a point x′ in the anisotropic patch
are given by:
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where T R
αβ (x′,x) and T R

αβ (x′,x) are the trac-
tion and displacements fundamental solutions for
anisotropic plane elasticity ploblems and hR rep-
resents the repair thickness [see Albuquerque
(2006)]. Others variables have similar meaning
to the isotropic case (see figure 2). To model
the bending response of the repair, a boundary
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integral formulation for Kichhoff’s plate model
with three unknows at every point is used in this
work considering the original form of the Betti’s
theorem for the Kirchhoff plate, as presented by
Palermo (2003):

∫
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where w(x) and w,n(x) are the bending deflexion
and the normal rotation, respectively, vn(x) and
mn(x) are the shear force and the normal moment,
respectively, and ts(x) is the tangent moment.
W(x′,x), Vn(x′,x), Mn(x′,x), Ts(x′,x) are the fun-
damental solutions for Kirchhoff’s anisotropic
plates [see Shi and Bezine (1988)]. Using the
stress-strain relationships for anisotropic Kirch-
hoff plates, integrating by parts, taking as weight
function the Dirac’s delta function and consider-
ing: ts ≡ 0 we obtain the displacement integral
formulation for bending plate with three parame-
ters, two in-plane rotations (w,n, w,s) and the flex-
ural bending w:
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with α = 1,2. qα
R and qR

3 are distributed body
moments and out-of-plane body force by unit
area, respectively, generated by interaction with
the adhesive layer. The upper index R refers to
the composite repair.

A second boundary integral equation is obtained
by differentiating Equation (7) with respect to

point x′ in the tangent direction:
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Finally, a third integral equation can be obtained
differentiating Equation (7) in the normal direc-
tion:
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Equations (7) to (9) can be presented in matrix
form defining:
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∫
Γ

VndΓ; H12 = −
∫
Γ

MndΓ;

H21 =
∫
Γ

Vn,ndΓ; H22 = −
∫
Γ

Mn,ndΓ;

H31 =
∫
Γ

Vn,sdΓ; H32 = −
∫
Γ

Mn,sdΓ;

H13 = −
∫
Γ

TsdΓ; H23 = −
∫
Γ

Ts,ndΓ;

H33 = −
∫
Γ

Ts,sdΓ (10)



Boundary Element Analysis of Cracked Thick Plates 111

and,
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With similar expressions for domain integrals,
equations (7), (8) and (9) can be written in a ma-
trix form as:
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4 Coupling equations

Isotropic plate equations have fifteen unknowns
variables: five displacements, or tractions, at any
boundary points; five unknowns displacements
and five interaction body forces at any point in
the repair region. In addition, ten unknows ap-
pear at the repair: five displacements at boundary
and domain and five interacion body forces at do-
main. In this way we have twenty five unknows
in the problem. Expanding equation (1) throught
Equation (9) we obtain only fifteen equations. Ten
aditional equations must be provided. Aditional
equations can be written if displacement compat-
ibility between plate and repair and the equilib-
rium conditions at adhesive layer, are considered.
In this way a total of twenty five equations cand
be obtained (See figure 3 for the coupling compo-
nents).

The equilibrium of forces acting in the adhesive
layer can be written as [see Wen, Aliabadi and
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Young (2002)]:
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Where hA is the thickness of the adhesive. The
shear force τA

3α , acting at interior of the adhesive
layer can be written as:
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where μA is the shear modulus of the adhesive.
Finally, we can consider that deflexion and rota-
tion angles at coincident points at plate and repair
related as:

wP
3 = wR

3

qP
α = C

(
wR

α +wP
α
)

(15)

where, C = D(1−ν)λ 2/2 for the isotropic plate.
D is the bending stiffness of the plate, ν is the
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Figure 4: Crack tip discontinuous element defini-
tion used to evaluate the stress intensity factors.

Poisson ratio and λ =
√

10/hP. In this way, equa-
tions (13) through equations (15) represent ten
aditional equations obtained considering equilib-
rium and compatibility conditions in the adhesive
layer. These equations can be written in matrix
form as:

IqP + IqR −C−1fP = 0

IuR − IuP −C2qP − (C1)T wP +AfP = 0 (16)

where the constant 1/2(hR + hP) was included
into matrix (C1)T , C2 = (hR/2)(C1)T C−1 and
A = hA/μAI. In these equations, I represents the
identity matrix, qP and qR are vectors of bending
moments and transverse loads for plate and the re-
pair, respectively; uP and uR contains the in-plane
displacement components for plate and the repair;
fP is the vector of in-plane loads for the plate; wP

is the vector of transversal displacements for the
plate and C1 is a matrix of constants.

5 Boundary element formulation

5.1 Isotropic plate equations

Using the boundary element method, the dis-
cretized version of Equations (1) and (2) for the
in-plane elasticity for the isotropic cracked plate,
can be written in matrix form as:

MHPuP = MGPtP +MBPfP (17)

where the upper index M refers to membrane re-
sponse. H, G and B are the usual matrix founded
in BEM formulation. Using the cell method, the

matrix MBP is given by,

∫
A

UP
αβ fβ dA =

⎡
⎣Ncell

∑
i=1

∫
Ωcell

UP
αβ Nkβ dΩcell

⎤
⎦ fβ

= MBPfP (18)

where Ncell is the number of cells, Ωcell refers to
the cell’s domain and ND are the number of col-
location points at the repair area.

Similarly, bending equations for the isotropic
plate are given by,

BHPwP = BGPpP +BBPqP +q0 (19)

where upper index B refers to bending response.
In this equation, q0 represents pressure loads act-
ing on the surface of the plate. Equations (17) and
(18) are the BEM equations for the isotropic plate.

Figure 5: Normalized shear stress distribution in
the adhesive layer.

5.2 Patch repair equations

In a similar way, the discretized BEM equations
for the in-plane elasticity for the repair plate are
given by,

MHRuR = MBRfR (20)

Bending equations for the repair plate is given by
equation (12) treated using the BEM. These equa-
tions can be written in matrix form as:

PHRwR = PBRqR (21)
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Figure 6: Normalized shear stress in the adhesive
layer along x2-axis normalized with respect to ra-
dius of the repair.

Equations (17) through (21) constitutes the com-
plete system of equations for the cracked plate re-
pair problem.

6 Stress intensity factors evaluation

For plate problems, considering bending and
plane stress, the stress intensity factors can be rep-
resented by superposition of five stress intensity
factors (SIF’s), two due to membrane loads and
three due to bending and shear loads. In terms of
displacements on the crack surfaces they can be
written as [see Dirgantara (2002)]:

{K}=
1√
r

C{Δw} (22)

where {K} is a vector containing the five stress
intensity factors, C is a matrix containing the elas-
ticity material properties and plate thickness and
r is the distance from crack tip to the specific
{K} evaluation point. Using the displacement ex-
trapolation technique and discontinuous quadratic
boundary elements for modeling crack surfaces,
SIF can be evaluated as (see figure 4):

{K}tip =
rAA′

rAA′ − rBB′

[
{K}BB′ − rBB′

rAA′
{K}AA′

]

(23)

Figure 7: Boundary element model for cracked
isotropic plate with composite circular patch.

7 Numerical results

7.1 Plate with bonded anisotropic circular
patch

In order to test the formulation presented here,
a square isotropic plate with adhesively bonded
anisotropic circular patch will be analyzed and
shear stress distribution in the repair zone will
be compared with the analytical solution given
by Rose and Wang (2002) for two-dimensional
isotropic repair. The width of the plate is 180
mm, thickness 1.5 mm and it is subject to an
in-plane traction load σ0 = 1000 MPa applied at
x2 = ±90mm. The isotropic plate elastic proper-
ties are chosen as E = 70 GPa, ν = 0.3. A circular
anisotropic patch of radius R = 30 mm is bonded
to the plate over the region R2 = x2

1 +x2
2. The me-

chanical properties considered for the patch are:
E1 = 25 GPa, E2 = 208 GPa, G12 = 72.4 GPa and
ν = 0.02. Twelve boundary element were used to
discretize the plate border and 24 quadratic dis-
continuous boundary elements in the boundary re-
pair.

Figure 5 shows the normalized shear stress dis-
tribution in the adhesive layer. A similar distri-
bution with that founded for the isotropic repair
is observed. Figure 6 shows the normalized shear
stress in the adhesive along x2-axis compared with
analytic solution given by Rose and Wang (2002)
for two-dimensional isotropic repair.
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Figure 8: Shear stress distribution in the adhesive
layer

7.2 Rectangular cracked plate with bonded
composite patch

The plate is 248 mm × 118 mm, thickness
hP =2.0 mm and it is subject to in-plane load
σ0 =79.4 MPa. The material constants are cho-
sen as E = 72.39 GPa, ν =0.33. A circular
anisotropic patch of radius R = 25 mm and thick-
ness hR = 3.2 mm is bonded to the plate (see Fig-
ure ??). The mechanical properties are of patch
are: E1 = 11.38 GPa, E2 = 37.35 GPa, G12 = 5.97
GPa and ν = 0.38. The adhesive layer has thick-
ness ha = 0.1 mm and shear modulus μa = 0.44
GPa. The same problem was analyzed by Sekine,
Yan and Yasuho (2005) where the cracked plate
is modeled using a 3D BEM model and the repair
using a finite element plate model.

Table 1: Stress intensity factors for cracked plate
with bonded composite patch

z(mm) KImax BEM KImax-Sekine et. al.
MPa.m1/2 MPa.m1/2

0.40 13.82 12.60
0.80 11.56 11.09
1.20 9.89 9.52
1.60 8.15 7.84

A total of 28 quadratic discontinuous boundary el-
ements were used to discretize the boundary of
the isotropic cracked plate. Meshes from 4 to 16

quadratic discontinuous boundary elements were
used to discretize the crack faces. Patch domain
was discretized using 128 cells and 24 quadratic
discontinuos boundary elements has been used,
[see figure 7]. Simply supported conditions were
applyed to all sides. The resultant shear stress dis-
tribution in the adhesive layer is showed in figure
8.

Table 1 compares values for the maximum stress
intensity factor: KImax = KIm + 6/h2

PKb
I calculed

along plate thickness with those KI reported by
Sekine, Yan and Yasuho (2005). In this equation,
KIm represents the stress intensity factor in mode
I for membrane response and Kb

I represents the
stress intensity factor in mode I for bending re-
sponse.

8 Conclusions

The analysis of cracked isotropic thick plates
repaired with symmetrical laminate composite
plates using the boundary element method, was
presented. The equations for the repair is based on
boundary integral formulation considering three
parameters, based on the theory of Kirchhoff’s
plates as a generalization of the integral formula-
tion of thin plates. The linear isotropic model pro-
posed for the adhesive, considers shear forces and
bending moments acting on it. This way, equa-
tions for kinematic coupling for displacements
and rotations, as well as, a system of equations
that describe the equilibrium of forces and mo-
ments that act on the adhesive, were stablished.
Domain integrals containing forces and moments
in the repair’s area were threated with using the
cell method. The examples shows that the new
formulation can be used with reasonable accu-
racy to study the mechanical behaviour of cracked
plates repaired with adhesively bonded composite
repairs under in-plane load actions.
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