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Extraction of Fatigue Damaging Events from Road Spectrum Loadings
Using the Wavelet-Based Fatigue Data Editing Algorithm

S. Abdullah1

Abstract: This paper describes a technique to
identify the important features in fatigue road
spectrum loading, for which these features cause
the majority of the total damage. Fatigue damag-
ing events, called bump segments, are extracted
from the spectrum loading using a wavelet-
based algorithm, called Wavelet Bump Extrac-
tion (WBE). This algorithm is also used to pro-
duce a shortened mission signal that retains most
of the fatigue damage whilst preserving the cy-
cle sequences. The bump identification process
has been evaluated by analysing two road spec-
trum loadings having a variable amplitude pat-
tern. These data sets were obtained from the strain
measurement on the lower suspension of different
vehicles travelling over different road surfaces. In
this study the total fatigue life caused by the com-
bination of all bump events was close to the orig-
inal data sets. For this case, the fatigue life of the
original spectrum loading and the WBE extracted
loadings are predicted using three strain-life fa-
tigue damage models, i.e. the Coffin-Manson
relationship, the Morrow and the Smith-Watson-
Topper (SWT) mean stress correction effects. In
addition, the correlation analysis showed that the
coefficient of variation (R2) between the fatigue
lives of the original and the total of bump seg-
ments was found to be 99.9% or 0.999. These
findings suggested that WBE is a suitable ap-
proach for mission synthesis applications by pro-
ducing a shortened mission signal for accelerated
fatigue test.
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1 Introduction

The presence of large amplitude cycles is com-
mon in time histories of ground vehicle vibra-
tion and fatigue. The effect had been noticed
at first for heavy wheeled and tracked vehicles,
and then for automobiles (Giacomin et al. 1999;
2000; 2001; Steinwolf et al. 2002; Abdullah et al.
2004), which all these road vehicles were driven
over different road surfaces. In fatigue study ir-
regular road surfaces contribute high amplitude
events in the time histories, contributing to the
damage effects on to the vehicle components or
structures. For example, a road spectrum load-
ing with high amplitude events with higher peaks
can be obtained in a situation where a vehicle is
driven on a pavé road surface (Steinwolf et al.
2002), and this loading produces higher fatigue
damage Abdullah, Giacomin, and Yates (2004),
Since this specific events cause the majority of fa-
tigue damage, there is a need to reduce develop-
ment time while simultaneously improving confi-
dence in the fatigue road spectrum load analysis.
It means that it is a significant interest to investi-
gate the issue of fatigue loading compression, or
specifically known as fatigue data editing. Using
this approach, high amplitude events are retained
and small amplitude events are removed. A short-
ened loading consists only high amplitude events
can be produced.

The fatigue data editing technique using a variable
amplitude (VA) fatigue loading (or also called
road spectrum loading) is used to produce a short-
ened signal for the laboratory accelerated fatigue
tests. The test is related to the application of
a component or the complete automobile to a
test loading which is much shorter than the tar-
get loading, but which has approximately equiv-
alent damage potential. Without editing the ser-
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vice load before performing the durability fa-
tigue tests, the testing time and costs become pro-
hibitive.

Several approaches for retaining high amplitudes
events have been introduced in different data do-
mains, i.e. time, peak and valley, frequency, cy-
cles, damage and histogram. Most of the com-
monly procedures explained in the research lit-
erature have been based in the time and the fre-
quency domains (Austen and Gregory 1995, El-
Ratal et al. 2002) In the time domain, the lo-
cal strain (Conle and Topper 1980), damage win-
dow joining function (El-Ratal et al. 2002) and
Smith-Watson-Topper (SWT) parameter range
(Stephens et al. 1997; Nizwan et al. 2007a;
2007b) approaches have been defined to identify
high amplitude cycles that produce higher fatigue
damage. In the frequency domain, a VA loading
is low pass filtered based on the fact that high fre-
quency cycles have small amplitudes which pro-
duce little damage (Morrow and Vold 1997). In
spite of this, the filtering method does not shorten
a fatigue loading series as the number of points
are similar to the original loading (Austen and
Gregory 1995). The time-frequency approach has
also been applied to the problem of fatigue data
editing through its use in spike removal and de-
noising (Oh 2001). Yet, none of these methods
showed the importance of extracting individual
fatigue damaging events from VA loadings.

Practically, a method for summarising the road
load fatigue data based on the identification of
fatigue damaging events and extract them from
the original road load data is important. This
has led to the development of a wavelet-based fa-
tigue data editing algorithm (Abdullah et al 2003;
2006) and it is the first fatigue data editing ap-
proach implemented for automotive applications
using the orthogonal wavelet transforms. Using
this algorithm, known as Wavelet Bump Extrac-
tion (WBE), the fatigue damage potential of the
shortened or mission signal is intended to be as
close as possible to that of the original signal, as
well as the vibrational signal energy and ampli-
tude ranges.

2 Theoretical Background

2.1 Fatigue Life Prediction Using Strain-Life
Approach

It is common that the service loads acquired on
components of machines, vehicles, and structures
are analysed for fatigue life using crack growth
approaches. This approach is suitable for high
capital valued structures. On the other hand, the
ability to inspect for cracks and monitor their
growth until a maximum allowable defect size is
reached, enables a component or structure use-
ful life to be extended beyond the original de-
sign life. However, it is not generally feasible
for applying the crack inspection process for the
inexpensive components that are made in large
numbers because of the costs restriction. Exam-
ples of components which fall in this category are
automobile engine, steering and suspension parts
(Conle and Landgraf 1983), showing that the pre-
diction of crack initiation is important for these
components in order to avoid fatigue failure. For
that reason, a fatigue life estimation based on the
related strain-based approach is usually used in
these cases (Dowling 2006).

Current industrial practice for fatigue life predic-
tion is to use the Palmgren-Miner linear dam-
age rule (Palmgren 1924; Miner 1945). For
strain-based approach, this rule is normally ap-
plied with strain-life fatigue damage models. The
first strain-life model introduced in the life pre-
diction method is the Coffin-Manson relationship
(Coffin 1954; Manson 1965). This relationship is
mathematically defined by

εa =
σ ′f
E

(2N f )
b + ε

′
f (2N f )

c (1)

where E is the material modulus of elasticity, εa

is the true strain amplitude, 2N f is the number of
reversals to failure, σ ′ f is the fatigue strength co-
efficient, ε ′ f is the fatigue ductility coefficient, b
is the fatigue strength exponent and c is the fatigue
ductility exponent.

In some realistic cases, the situation of fatigue
spectrum loading involves non-zero mean stresses
or strain. Thus, two mean stress effect mod-
els are applicable to be used, i.e. Morrow and
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SWT strain-life models. Mathematically, the
Morrow model is mathematically defined by Mor-
row (1968)

εa =
σ ′f
E

(
1− σm

σ ′f

)
(2N f )

b + ε
′
f (2N f )

c (2)

where σm is the mean stress. The SWT strain-life
model is mathematically defined by Smith et al.
(1970)

σmaxεa =

(
σ ′f

)2

E
(2N f )

2b +σ
′
f ε
′
f (2N f )

b+c (3)

where σmax is the maximum stress for the partic-
ular cycle.

Despite of the fact that these models are widely
used for fatigue life prediction, several limita-
tions were also found in the analysis using VA
or spectrum loadings which may lead to the erro-
neous prediction. Using the Palmgren-Miner rule
with these three models, the fatigue damage is ac-
curately calculated for constant amplitude (CA)
loadings. However, the life prediction based on
the CA-based fatigue damage models is still ac-
ceptable for the research and industrial applica-
tions (Fatemi and Yang 1998).

2.2 Fatigue Data Editing Techniques

Fatigue data editing is a technique to remove
small amplitude cycles that lead to minimal fa-
tigue damage. Large amplitude cycles of a spec-
trum loading are retained, so as to produce a
shortened loading for accelerated fatigue tests.
Many approaches of the fatigue data editing can
be performed in various domain of the signal anal-
ysis.

In the time domain, time history data is the
most general format data, containing all the in-
formation of relevance to the random data anal-
ysis. The time domain fatigue data editing tech-
niques have been developed to remove time seg-
ments, such as the Time Correlated Fatigue Dam-
age (TCFD) method which can be found in the
nSoft® software package (nSoft® User Manual
2001). This TCFD method is used to remove non-
damaging sections of the time history on the basis

of time correlated fatigue damage segments. Us-
ing TCFD, the input time history is divided into
a number of time segments and the fatigue dam-
age potential is then calculated for each segment.
Segments having minimal damage are removed
and the segments with the majority of the fatigue
damage are retained. The retained segments are
then assembled to produce a shortened signal. In
TCFD, both the percentages of damage retention
and the required acceleration factors, or one of
them, could be set as editing targets. Practically,
this technique is recommended as it maintains the
phase and amplitude of the original time history
(El-Ratal et al. 2002).

In the frequency domain, fatigue loading time his-
tories are often low-pass filtered, as small ampli-
tudes located in the high frequency region of the
power spectral density (PSD) distribution (Mor-
row and Vold 1997). The low pass filter does not
reduce the length of the signal, but almost cer-
tainly reduces the fatigue damage. For practical
applications, the frequency domain editing tech-
nique is rarely used, even this method is not rec-
ommended to be used as an appropriate fatigue
data editing. It is because of the time series regen-
erated from a frequency spectrum does not pro-
duce the same fatigue life

The peak-valley (PV) editing technique reduces
the number of points of the original loading, and
it is used when the signal frequency content is not
important for the fatigue damage analysis. How-
ever, the time information of the original time his-
tory is lost when using this fatigue data editing
technique (Mercer et al. 2003).

The rainflow cycle counting method (Matsuishi
and Endo 1968) is used to identify fatigue cy-
cles in a variable amplitude loading. This count-
ing method is also useful as the basis for the cy-
cle domain fatigue data editing. A time history
is rainflow cycle counted in order to extract the
fatigue cycles and to produce a range-mean his-
togram. For the application, a range-mean his-
togram is produced from a spectrum fatigue load-
ing. Then, the identified small cycles having mini-
mal damage are removed and the damaging cycles
are retained in the edited loading.

The application of time-frequency in fatigue data
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editing is recently introduced in the fatigue re-
search. Using this transform, the data is pro-
cessed in order to provide the localised features
of the original signal. For wavelet-based fatigue
data editing, only two previous studies have been
found in literature, i.e. studies using a VA load-
ing measured on light railway train component
(Oh 2001) and automobile component (Abdullah
et al. 2004). In a research by Oh (2001), the
Daubechies wavelet transforms was used to re-
move the unwanted time history data points using
the denoising and spike removal techniques. A
loading measured on a light railway train compo-
nent travelling at 80 km/h was used for the anal-
ysis, giving the original signal was compressed at
71% of the time length. At this length, approx-
imately 80% of the original fatigue damage was
retained.

For the automotive application, the use of wavelet
transform was performed by Abdullah et al.
(2004) using the Mildly Nonstationary Mission
Synthesis (MNMS) algorithm. The MNMS algo-
rithm was previously developed for comfort and
vibration studies (Giacomin et al. 1999; 2000;
2001). Using MNMS, statistically accurate fa-
tigue mission loadings were produced when the
original signal was substantially shortened by up
to 10 times compression ratio. However, the
shortened VA loadings did not have similar fa-
tigue damage as the original loading. Realising
the limitation of MNMS in the fatigue data editing
and the bright future of the wavelet transform, it
has been highly considered for the development of
a new wavelet-based fatigue data editing by Ab-
dullah et al. (2003; 2006).

For all fatigue data editing techniques discussed
in this section, different VA fatigue loadings were
used for different techniques. There seem to be no
generally agreed rules that clarify which method
is the best, or what amplitude should be chosen
for load omission (Yan et al. 2001). Ideally, a fa-
tigue data editing technique must be able to sum-
marise VA fatigue loadings with the retention of
the majority of the fatigue damage.

3 The Wavelet Bump Extraction (WBE) Al-
gorithm

Many experimental signals exhibit time-varying,
or nonstationary characteristics, which provide a
challenge in signal analysis. Traditional approach
to determine the frequency distribution of the time
series was performed using the Fourier transform.
This kind of analysis is not suitable for nonsta-
tionary signal, as it cannot provide any informa-
tion of the spectrum changes with respect to time.
Knowing this restriction, the wavelet transform is
seemed to be a suitable method for the analysis of
nonstationary signals. The wavelet transform is a
function in the time-scale domain and it is a use-
ful tool for presenting local features of a signal.
This transform gives a separation of signal fea-
tures overlap in both time and frequency, giving
an accurate local description of the signal charac-
terisation (Newland 1993).

Several wavelet families are available for the
use in engineering field. One of them is the
Daubechies wavelet which has the orthogonal ba-
sis functions (Daubechies 1992). This wavelet
family allows the decomposition of the input sig-
nal into separate frequency bands, and recon-
structs the decomposed signal to produce the orig-
inal signal. This procedure is known as analysis-
synthesis, for which it is a unique characteristic
of the orthogonal wavelet transforms. A range
of applications of the orthogonal wavelet trans-
form can be found in previous studies, i.e. the
application of nonstationary signals for the me-
chanical damage detection (Staszewski 1998), the
signal compression and de-noising process (Bar-
clay and Bonner 1997), the application of MNMS
using vibration data sets (Giacomin et al. 1999;
2000; 2001; Steinwolf et al. 2002). This trans-
form was also performed in a fatigue study, i.e.
the compression of nonstationary fatigue signals
measured from a light railway train component
(Oh 2001) and the automobile data sets by Ab-
dullah et al. (2004).

For this paper, the Wavelet Bump Extraction
(WBE) algorithm was developed for the purpose
to identify and extract fatigue damaging events (or
later called bump segments) from uniaxial fatigue
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spectrum loadings or the VA fatigue loadings.
It is a computational algorithm which was de-
veloped using the FORTRAN programming lan-
guage. Since the application of the wavelet trans-
form was found to be a new approach in the fa-
tigue data editing research, the use of a uniaxial
VA fatigue loading is essential, especially at the
earlier stage of this WBE research. This is a vi-
tal aspect for checking the effectiveness of WBE
in editing different patterns of VA loadings. In
the future, the WBE algorithm will be also rede-
veloped for solving related data editing problems
using multiaxial VA fatigue loadings.

The WBE algorithm uses the 12th order
Daubechies wavelets as the basis functions.
This function was chosen due to the efficiency
in providing a large number of vanishing sta-
tistical moments. In addition, the 12th order
representation was adopted due to its successful
use in the studies using the previous MNMS
algorithm. The wavelet levels produced in the
wavelet decomposition consist of the recon-
structed signals for a given value of a wavelet
scale and each level describes the time behaviour
of the signal within a specific frequency band.
High amplitude events are then identified in the
respective wavelet groups. A wavelet grouping
stage permits the user to cluster wavelet levels
into a single region of signal vibrational energy.
Each wavelet group is defined by the user to
cover frequency regions of specific interest, such
as high energy peaks caused by a subsystem
resonances. This subdividing of the original
signal permits an analysis to be performed for
each frequency region independently, avoiding
situations where small bumps in one region
are concealed by the greater energy of other
regions of the frequency spectrum. A bump,
which is define as an oscillatory transient with a
monotonic decay envelope either side of a peak
value (Figure 1), is identified in each wavelet
group by means of an automa tic trigger level
(Figure 2).

At program launch the user specifies the max-
imum acceptable percentage difference between
the root-mean-square (r.m.s.) and kurtosis of the
original and the mission signals. The r.m.s. value
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Figure 1: Schematic diagrams of a decay envelop-
ing process to determine a bump in a wavelet
group
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Figure 2: Schematic diagrams to determine possi-
ble trigger level values across a VA loading

is used to quantify the overall energy content of
the oscillatory signal, and the kurtosis is used as a
measure of non-gaussianity since it is highly sen-
sitive to outlying data among the instantaneous
values. Mathematically, r.m.s. and kurtosis are
defined by following equations

root-mean-square, r.m.s. =

{
1
N

N

∑
j=1

x2
j

}1/2

(4)

kurtosis, K =
1

N(r.m.s.)4

N

∑
j=1

(x j− x)4 (5)

where x j is the instantaneous value, N is the num-
ber of points and x is the mean of the time history.
At a later stage of WBE, the r.m.s. and kurtosis
values of the mission signal are compared to those
of the original signal. If the statistics exceed the
required difference, the trigger levels are reduced
by a user specified step until the statistical values
achieve the user-specified tolerance.

After all bumps are identified in the wavelet
groups, a method of searching the bump start and
finish points from the original time history has
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been introduced. If a bump event is found in any
of the wavelet groups, a block of data covering the
time frame of the bump feature is extracted from
the original data set. This data selection strategy,
which is shown in Figure 3, retains the amplitude
and phase relationships of the original signal. The
final process in the WBE processing is to produce
a mission signal, for which the extracted bump
segments are joined together to be a single load-
ing.

The complete WBE algorithm is shown in Fig-
ure 4, showing three main stages in this algorithm,
i.e. the wavelet decomposition process, the iden-
tification and extraction of the fatigue damaging
events, and the production of a shortened load-
ing, or also known a mission signal. The decision
stage of this flowchart or WBE processing is to
determine and optimise the trigger level (are the
trigger values optimal for bump identification?)
for bump identification and extraction. This is the
key point or the central focus of this WBE pro-
cessing, which is the main subject of this paper.
In this stage, the parameter of r.m.s. (Equation
(4)) and kurtosis (Equation (5)) are needed for the
bump extraction checking process. If all the ex-
tracted bumps fulfilled the requirement set in the
WBE processing, therefore, the optimum short-
ened loading can then be produced.

In summary of this section, the WBE algorithm
is able to identify and extract fatigue damaging
events from variable amplitude fatigue loadings,
so as to produce a shortened mission signal which
preserves the original load sequences. The WBE
algorithm is the first fatigue data editing tech-
nique that has been developed using the orthog-
onal wavelet transform. In this research, the 12th

order Daubechies wavelet was chosen due to its
successful application in previous studies involv-
ing automotive road data (Giacomin et al. 1999;
2000; 2001; Steinwolf et al. 2002; Abdullah et al.
2004).

In relation to the study of fatigue life assessment
of a metallic component, the WBE produces a
shortened loading which have an equivalent fa-
tigue damage t the original variable amplitude fa-
tigue loading. This shortened loading is suitable
for the simulation or experimental testing of any
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Figure 3: Data processes in WBE: (a) The original
signal, (b) The extracted bump segments, (c) The
mission signal.

structures or materials where cycle sequence ef-
fects may play a prominent role in the overall fa-
tigue life. WBE is thus an appropriate algorithm
for use when accelerated (time shortened) labora-
tory fatigue tests are desired. The objective of this
accelerated testing is to expose the component or
the complete automobile to a test loading which
is much shorter than the target loading, but which
has approximately the same damage potential.

4 Case Study: Using Road Spectrum Load-
ings for the WBE Application

The accuracy of the fatigue damaging event iden-
tification process was evaluated by the application
of two VA fatigue loadings that were measured
on vehicle suspension arms. These are strain data
which were measured by means of the microstrain
unit. Figure 5 shows the schematic geometry of a
lower suspension arm, indicating the strain gauge
location for the data measurement.

The first signal, named T1, is a strain signal which
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Figure 4: Flowchart of the WBE algorithm

was measured on a lower suspension arm of a van
travelling at 34 km/h over a pavé test track. T1
was sampled at 500 Hz for a total of 23,000 data
points, producing a record length of 46 seconds.
This signal exhibits a slight change in mean of
the whole signal with a little low frequency con-
tent. This data set was chosen because it con-
tained many small amplitude and high frequency
bumps in the signal background. The time his-
tory and the PSD distribution of this signal are
presented in Figure 6a.

The second signal, T2 (Figure 6b), contains
12,500 data points and was sampled at 204.8 Hz,
producing a record length of 61 seconds. This sig-
nal was measured on a front suspension compo-

Strain gauge location 

Figure 5: A schematic diagram of a lower suspen-
sion arm for signal measurements

nent of an automobile while travelling over prov-
ing ground manoeuvres, containing rough road
surface. This signal, which was taken from the
database of Society of Automotive Engineers Fa-
tigue Design Evaluation (SAEFDE) committee
and has previously been used in fatigue signal
reconstruction (Leser et al. 1998), exhibits a
low frequency background containing occasional
shocks. Table 1 shows the statistical signal prop-
erties for the T1 and T2 signals.

Table 1: Global statistical parameters of two vari-
able amplitude loadings used in this study.

Signal Name T1 T2
No. of data points 23,000 12,500
Signal length [s] 46.0 61.0

Mean [µε] 15.0 205.5
r.m.s. [µε] 16.7 235.5
Skewness -0.1 0.5
Kurtosis 3.4 2.6

5 Results and Discussions

5.1 Fatigue Data Editing Application

Using the WBE algorithm T1 was decomposed
into 15 wavelet levels and the levels were then as-
sembled into four wavelet groups. The wavelet
coefficients from the wavelet levels were used to
construct a time history of the respective wavelet
group, as illustrated in Figure 7. Referring to the
PSD plots in Figure 7, the resonance peaks of
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this signal were found at four different frequen-
cies, i.e. 1.4 Hz, 2.7 Hz, 11.7 Hz and 35.9 Hz,
suggesting the T1 signal can be divided into four
wavelet groups. The location of fatigue damaging
events or bumps present in each wavelet group is
shown in Figure 8, for which the individual bumps
in each wavelet group are identified within the
±10% r.m.s. and kurtosis difference between the
original and mission signals. The difference value
of±10% was used with a consideration of at least
10% of the original road data contained low am-
plitudes which gave minimal fatigue damage.

For T2, the original data set was decomposed into
14 wavelet levels and the levels were clustered
into two wavelet groups for which their time his-
tories are shown in Figure 9. Referring to the re-
spective PSD plot of T2, resonance peaks were
found at two frequencies, i.e. 0.1 Hz and 1.4 Hz,
giving two wavelet groups can be formed. The
individual bumps which were identified in each
wavelet group at the ±10% in the global statisti-
cal difference are shown in Figure 10.

For both data sets, the extracted bumps from all
wavelet groups were used for identifying the start
and finish points of the respective bump segments.
Figure 11a for T1 and Figure 12a for T2 show all
bump segments at their original time position in
the original signals time scale. Nine segments of
fatigue damaging events were extracted from T1
and two segments from T2. The mission signals
of T1 and T2 are shown in Figure 11b and Figure
12b. By comparing the bump segments for both
signals, it can be seen that the low frequency con-
tent of the spectrum loading has an important role
to determine the overall length of the bump seg-
ments and the mission signal.

Referring to Figure 11 and Figure 12, the bump
segments of T2 had longer time extent compared
to the bump segments of T1. From these find-
ings, it is not easy to heavily compress VA fatigue
loadings with a substantial low frequency content
(such as signal T2) because most of the mission
time length was caused by a single bump from the
low frequency wavelet group. Since the T1 sig-
nal was measured on a pavé test track surface, a
higher compression factor (more than 50% of the
time length) is obtainable to produce the mission

signal.

5.2 Validating the WBE Algorithm Using the
Fatigue Life Prediction

In order to have efficiency in the extraction of the
bump segments, the WBE algorithm need to be
validated in terms of bump segments fatigue life
prediction approach. The three strain-life mod-
els, Equation (1) to (3), are used for this kind of
analysis. However, some parameters related to
these models need to be determined using the ex-
perimental data set for a specific material. Data
from experiments performed by Abdullah et al.
(2006) were used for this purpose, for which BS
080A42 steels were the test samples. This mate-
rial was chosen because of its use in the fabrica-
tion of the suspension components of passenger
cars. For the purpose of the laboratory fatigue
tests, specimens were manufactured as an hour-
glass profile round bar for tension-compression
loading (ASTM E606-92-1998). The tensile test
data was used to determine monotonic mechani-
cal properties as listed in Table 2. On the other
hand, uniaxial constant amplitude (CA) loading
fatigue tests were used to determine cyclic me-
chanical properties of BS 080A42 steel, as also
tabulated in Table 2.

The material properties of the BS 080A42 steel
(listed in Table 2) were used to define the ex-
pression of strain-life fatigue damage models of
the BS 080A42 steel. Thus, the complete Coffin-
Manson relationship for this material, which is
based on the parameter in Table 2, is defined by

εa =
1505

210000
(2N f )

−0.144 +0.176(2N f )
−0.400 (6)

The Morrow and SWT model for the BS 080A42
steel are then defined as in Equation (7) and (8),
respectively:

εa =
1505

210000

(
1− σm

σ ′f

)
(2N f )

−0.144

+0.176(2N f )
−0.400 (7)

σmaxεa =
(1505)2

210000
(2N f )

2(−0.144)

+(1505)(0.176)(2N f )
−(0.144+0.400) (8)
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Figure 6: Plot of the signals used for this study: (a) Time history for T1, (b) PSD for T1, (c) Time history
for T2, (d) PSD for T2

Table 2: Monotonic and cyclic mechanical properties of the BS 080A42 steel (Abdullah et al.-2006).

Monotonic Mechanical Properties
Ultimate tensile strength, Su [MPa] 624
Modulus of elasticity, E [GPa] 210
Static yield stress 0.2%, Sy [MPa] 342
Reduction in area, (%) 51.9
Elongation (%) 28.4
Cyclic Mechanical Properties
Strain hardening exponent, n′ 0.36
Material constant, H ′[MPa] 2818
Fatigue strength coefficient, σ ′ f [MPa] 1505
Fatigue strength exponent, b -0.144
Fatigue ductility coefficient, ε ′ f 0.176
Fatigue ductility exponent, c -0.400

The fatigue lives of the T1 and T2 signals together
with their bump segments are calculated using
three strain-life models, i.e. Equation (6) to (8),
and the results are listed in Table 3. The fatigue
damage values can also be obtained from the val-
ues in Table 3 by inverting the value of the fatigue
life. The fatigue damage value of all bump seg-
ments (for a particular signal) were then summed

in order to obtain the total fatigue damage for all
bump segments, notated as BT1 for T1 and BT2
for T2, respectively. Figure 13 shows the level of
fatigue life in the logarithm scale for all the load-
ings used in this analysis. In this figure, B1 to
B9 denoted as the number of extracted bump seg-
ments (refer to Figure 11a and 12a).

Using a statistical scatter of fatigue life based on
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(a)

(b) 

(c)

(d) 

Figure 7: The wavelet group time histories and the PSD plots for T1: (a) Wavelet Group 1, (b) Wavelet
Group 2, (c) Wavelet Group 3, (d) Wavelet Group 4.
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(a) (b) 

Figure 8: Identification of the individual bumps in the wavelet groups of T1: (a) Normalised time history
for all wavelet groups, (b) Location of bumps in the wavelet groups.

Gaussian distribution, a skewed distribution usu-
ally occurs. Although the life distribution curve
does not conform to Gaussian distribution, in
many cases the logarithm of the fatigue life distri-
bution or logarithm-normal distribution is a good
estimation (Dowling 2006). Based on this argu-
ment, it is good to see the value of the fatigue life
in the logarithm format. It is due to have accuracy
in fatigue life comparison between the original
signal and the total of bump segments. The results
of this analysis were presented in Table 4. In this
table, it is showed that the differences of 5.83 to
8.29% were found between the fatigue lives of the

T1 original signal and the respective total bump
segments or BT1. In addition, smaller difference
values were found for similar comparison using
the T2 signal, i.e. 1.82 to 2.42%. Small differ-
ences of fatigue lives between the original signal
and total bump segments showed a close corre-
spondence was obtained, suggesting the suitabil-
ity of WBE to be used for extracting the fatigue
damaging events from VA fatigue time histories.

Figure 14 presents the fatigue life correlation be-
tween the total of bump segments and the orig-
inal signals, and the plot is meant for both sig-
nals. For this case, the fatigue lives was calcu-
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Figure 9: The wavelet group time histories and the PSD plots for T2: (a) Wavelet Group 1, (b) Wavelet
Group 2.

lated based on three identified strain-life models,
i.e. Coffin-Manson, Morrow and SWT. In the fig-
ure each data point represents a loading condition
from Table 4, represented as the logarithm scale
of the fatigue life. In this figure, the relationship is
distributed near the 1:1 correlation line and within
± a factor of 2, suggesting the closeness of the to-
tal of bump segments fatigue life to the original
signal. In the field of fatigue life prediction, es-
timates within ± a factor of 2 with respect to the
true fatigue life are commonly encountered and
often considered acceptable. For both T1 and T2,
the coefficient of variation (R2) between the fa-
tigue lives of the original and the total of bump
segments was found to be 99.9% or 0.999 (see

Figure 14). The results suggested that a very close
correspondence was found between the original
signal and all the WBE extracted fatigue damag-
ing events.

From the results and related analysis of this sec-
tion, it is noticed that most of the fatigue dam-
aging events were identified and extracted using
the WBE algorithm. These damaging features
contribute the majority of fatigue damage in VA
loadings, thus it is important to extract and retain
them for further analysis in fatigue data editing
purposes. Finally, it is suggested that WBE is a
suitable algorithm for the fatigue data editing in
automotive durability research by means of accel-
erated fatigue tests.
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(a)      (b) 

Figure 10: Identification of the individual bumps in the wavelet groups of T2: (a) Normalised time history
for all wavelet groups, (b) Location of bumps in the wavelet groups.

(a)

(b) 

Figure 11: Results for T1: (a) The extracted bump
segments (in original scale) at their original location
of the original signal, (b) The mission signal.

(a)

(b) 

Figure 12: Results for T2: (a) The extracted bump
segments (in original scale) at their original location
of the original signal, (b) The mission signal.

6 Conclusion

Wavelet Bump Extraction (WBE) is an algorithm
which is able to identify the important fatigue
damaging events or bumps, and to extract them
from the original time history, whilst preserving
their sequences of load cycles. Using the WBE

procedure the total damage produced by the com-
bination of the extracted fatigue damaging events
was close to that of the original data set.

In the WBE application, the individual bumps
in each wavelet group are identified within the
±10% r.m.s. and kurtosis difference between the
original and mission signals. For the study pre-
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(a) The T1 signal                                                                     (b) The T2 signal 

Figure 13: Predicted fatigue lives distribution of the VA loadings using three strain-life models. BT* (BT1
for T1; BT2 for T2) and B1-B9 denoted as total of bump segments and number of bump segments, respec-
tively.

Table 3: Calculated fatigue lives of the original and the WBE extracted loadings.

VA loadings
Fatigue Life, N f [Number of blocks to failure]
Coffin-Manson Morrow SWT

T1
B1 6214 5964 10462
B2 107000 97000 114000
B3 15199 14008 17720
B4 101000 96400 163000
B5 14287 13708 24566
B6 3569 3428 6070
B7 6512 6216 10409
B8 9890 9370 14783
B9 37811 35667 55200

BT1 1140 1087 1805
T1 665 642 1194

T2
B1 2789 2629 3831
B2 2145 2005 2721

BT2 1212 1138 1591
T2 1025 965 1395

sented in this paper, nine bump segments were
extracted from the T1 signal and two bump seg-
ments for T2. In the bump identification and ex-
traction process, it can be seen that the low fre-
quency content of the road load data has an im-
portant role in determining the overall length of
the bump segments. Thus, it is not easy to heavily
compress VA fatigue loadings with a substantial

low frequency content (such as T2) because of the
low frequency factor.

The differences in fatigue life between the orig-
inal signal and the total bump segments results
were found to be at 5.83-8.29% for T1 and 1.82-
2.42% for T2. Small difference values showed
that the closeness between the two. Based on
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Table 4: Using logarithm-normal distribution approach to represent the analysis of fatigue life values

VA loadings
Coffin-Manson Morrow SWT

Fatigue life
in normal
distribution
[blocks to
failure]

Fatigue
life in
loga-
rithm
distri-
bution

Fatigue life
in normal
distribution
[blocks to
failure]

Fatigue
life in
loga-
rithm
distri-
bution

Fatigue life
in normal
distribution
[blocks to
failure]

Fatigue
life in
loga-
rithm
distri-
bution

BT1 1140 3.06 1087 3.04 1805 3.26
T1 665 2.82 642 2.81 1194 3.08

*Diff-T1 [%]
in log-scale 8.29 8.15 5.83

BT2 1212 3.08 1138 3.06 1591 3.20
T2 1025 3.01 965 2.98 1395 3.14

#Diff-T2 [%]
in log-scale 2.42 2.40 1.82

* Diff-T1 [%] = | {(fatigue life of T1 - fatigue life of BT1)/( fatigue life of T1)} × 100 |
# Diff-T2 [%] = | {(fatigue life of T2 - fatigue life of BT2)/( fatigue life of T2)} × 100 |
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Figure 14: Correlation between the fatigue life of the total bump segments and the original signal of both
T1 and T2.

these results, WBE appears to be a suitable
wavelet-based approach for identifying fatigue
damaging events and to produce a mission signal.
Since the original fatigue damage is retained in
the mission signal, therefore it is suitable for ac-
celerated fatigue testing.
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