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Frequency Domain based Damage Index for Structural
Health Monitoring

G. Giridhara1 and S. Gopalakrishnan2

Abstract: In this paper, a new damage measure in the frequency domain (FDI),
which uses the definition of strain energy in the frequency domain, is proposed.
The proposed damage index is derived using the definition of frequency domain
strain energy. The base line responses and the strain energies are computed using
Wavelet Spectral Finite elements, while the strain energies for the damaged struc-
ture is computed using four high fidelity experimental responses. The sensitivity of
the damage measure in locating cracks of different sizes and orientation is demon-
strated on a square plate, the rectangular plate and on a compressor blade.

Keywords: Structural Health Monitoring, Wavelet Spectral Finite Element, Dam-
age Index, Frequency Domain Strain Energy.

1 Introduction

Structural integrity assessment is an approach to assess whether a structure is fit to
withstand the service conditions safely and reliably throughout its lifetime. This re-
quires continuous monitoring of the structures over a long period of time. Most of
the monitoring is currently performed off-line through non-destructive evaluation
techniques. These techniques are too time consuming and laborious and they do
not provide the complete information of certain critical parameters such as damage
initiation time, the state of the structure at the time of damage initiation etc. The
study involving the determination of the state of the structure using the measured
responses is called the Structural Health Monitoring (SHM). SHM has four levels
as discussed in [Doebling, Farrar, Prime and Daniel (1996)]. Level 1 confirms the
presence of cracks in the structure, Level 2 determines the location, size and orien-
tation of the cracks, Level 3 determines the severity of the cracks present and Level
4 deals with the delay or control of the growth of cracks. The Level 1 and Level 2
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in SHM are the most difficult problems that require high fidelity data which are not
noise polluted, simplified, yet robust mathematical model, and an accurate damage
detection methodology that blends well with the chosen mathematical model.

The main objective of this paper is to predict the location and extent of the damage
using the measurements obtained from experimental data. There are many different
damage detection techniques reported in the literature [Doebling, Farrar, Prime and
Daniel (1996); Sohn, Hemez, Shunk, Stinemates and Nadler (2003); Staszewski,
Boller and Tomlinson (2003)]. Most of the earlier studies on damage detection
were based on modal measurements, wherein the presence of damage was detected
by monitoring the changes in the natural frequencies. This method is not a feasi-
ble one if the damage size is very small due to low sensitivity and in addition, it
requires baseline measurements. It is quite well known that the strain gradient or
curvature measurements are more sensitive to small damage sizes [Pandey, Biswas
and Samman (1991); Luo and Hanagud (1997); Lestari (2001); Li, Cheng, Yam
and Wong (2002)].

A Damage Index based on curvature was first proposed [Ho and Ewins (1999)],
which was found highly susceptible to the noise in the measurement. Strain mode
technique for identification of damage locations in plate-like structures [Li, Cheng,
Yam and Wong (2002)]. Here, based on the Rayleigh Ritz approach, the strain
modal analysis of a damaged plate is performed and strain mode shapes are con-
sequently obtained. Another parameter, which can be used as a curvature measure
and can be used to construct a Damage Index, is the Strain Energy parameter. By
comparing the strain energies of the structure before and after damage, one can es-
timate the location of the damage. This approach was used for beam type structures
[Kim and Stubbs (2003)] and a similar technique was adopted for plate type struc-
tures [Cornwell, Doebling and Farrar (1999)]. Damage localization method using
Modal Strain Energy Change is discussed in [Shi, Law and Zhang (1998)]. Most
of these techniques were based on modal analysis methods and were performed in
the time domain. These modal-based methods are very attractive as they provide
information regarding the general state of health of the structure. However, they
tend to have limited sensitivity and generally they are not accurate enough to pro-
vide detailed information regarding damage type and extent, especially when the
damage sizes are small.

Sensitivity of the measurements can be significantly increased by using wave prop-
agation based diagnostics. Guided waves such as Lamb or Rayleigh waves in par-
ticular have the capability of traveling relatively long distances within the structure
under investigation and show sensitivity to a variety of damage types. Hence, the
strain energy based damage index obtained from wave propagation based measure-
ments can indeed give a robust measure on the state of the structure. A wave-based
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strain energy index was implemented and successfully applied [Sharma, Ruzzene
and Hanagud (2006); Giridhara, Gopalakrishnan, Ruzzene, Hanagud and Sharma
(2007)]. The important aspect of this approach is that, its baseline measurements
are synthesized directly by under sampling (or decimating) the experimental data.
In this paper, we use a similar measure (strain energy), however the analysis is
performed in the frequency domain. The base line measurement in this case is
obtained by wavelet spectral finite element model, while the damaged model is an-
alyzed using spectral analysis. The main difference is that, unlike the one reported
in [Sharma, Ruzzene and Hanagud (2006)], the inertial component of energy is
built into the formulation.

Monte Carlo Simulation method for the assessment of Multiple Site Damage (MSD)
and detection via Wavelet transforms [Horst (2005)]. [Sekhar ](2008) summarize
the different studies on double/multi-cracks and to note the influences, identifica-
tion methods in vibration structures such as beams, rotors, pipes, etc. And thus
this paper brings out the state of the research on multiple cracks effects and their
identification. The Residual Error Method is applied to a concrete beam in order
to identify and quantify damages in its structure based on the alteration produced
by damage in the dynamic properties of structures [ Brasiliano, Souza, Doz and
Brito (2008)]. Changes on the dynamic behavior, crack trajectories, peak loads and
energy variations were observed during the simulation.

An overview of the computational intelligence methods developed for the structural
integrity assessment of aging aircraft structures is discussed [Pidaparti (2006)]. A
neural network (NN) model is developed for the analysis and prediction of the
mapping between degradation of chemical elements and electrochemical parame-
ters during the corrosion process [Pidaparti and Neblett (2007)]. Eigen value sen-
sitivity equations, derived from first-order perturbation technique for typical infra-
structural systems are used and Neural network based damage identification is also
demonstrated [Raghuprasad, Lakshmanan, Gopalakrishnan, Muthumani (2008)].

A bi-level damage detection algorithm that utilizes dynamic responses of the struc-
ture as input and neural network (NN) as a pattern classifier is presented [Lee and
Kim (2007)]. The signal anomaly index (SAI) is proposed to express the amount
of changes in the shape of frequency response functions (FRFs) or strain frequency
response function (SFRF). SAI is calculated by using the acceleration and dynamic
strain responses acquired from intact and damaged states of the structure. A dam-
age index in the form of a vector of Fourier coefficients which is robust and unique
for a given damage size and damage location is presented by [Reddy; and Ranjan
Ganguli (2007)]. The effect of noise in the mode shape data is considered and it
is found that Fourier coefficients provide a useful indication of damage even in the
presence of noise. Various damage levels are considered and it is found that higher
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modes are needed to detect small amount of damage.

In order to overcome various computational problems like large system size, mesh
sensitivity, numerical stability and accuracy in the hp-finite element model for wave
scattering, a spectral finite element method (SFEM) has been developed [Gopalakr-
ishnan, Chakraborty and Mahapatra (2007)]. SFEM is used to model wave prop-
agation in damaged structures and proved that spectral approach gives more infor-
mation and is sufficient for damage detection [Ostachowicz (2008)]. The composite
beam is modeled as Timoshenko beam using wavelet based spectral finite element
(WSFE) method [Shamsh Tabrez, Mira Mitra and Gopalakrishnan (2007)]. The
simulated wave responses are then used as surrogate experimental results to pre-
dict degradation using a measure called damage force indicator (DFI) and studied
the different environmental conditions in term of relative humidity and at a tem-
perature. Time-frequency analysis of various simulated and experimental signals
due to elastic wave scattering from damage are performed using wavelet transform
(WT) and Hilbert-Huang transform (HHT) and their performances are compared
in context of quantifying the damages using SFEM [Gangadharan, RoyMahapatra,
Gopalakrishnan, Murthy, Bhat (2009)].

The effectiveness of wavelet transforms has been shown for detection and monitor-
ing of cracks [Prabhakar, Sekhar and Mohanty (2001)]. An application overview
of wavelet in fault diagnosis is given in [Peng and Chu (2004)]. [Chang and
Chen (2005)] presented a technique for structure damage detection based on spa-
tial wavelet analysis and estimated both the positions and depths of multi-cracks.
Wavelet finite element has also been applied for crack detection [Xuefeng, Zhengjia,
Qiang and Yanyang (2005)]. [Chen, Zi, Li and He (2006)] used a dynamic mesh-
refinement method (DMRM) for identification of multiple cracks. This is based on
the relationship of the natural frequency change ratios with crack parameters in a
beam.

[Chasalevris and Papadopoulos (2006)] used unique method of a combination of
wavelet and eigenfrequency to solve the inverse problem. This procedure is based
on the construction of the contours diagrams of the monitored parameter as a func-
tion of two independent variables. Here a combination of wavelets analysis (to
find the locations of the cracks) and an analysis of output parameters such as the
eigenfrequency change (to find the rest of the identification parameters) is used.
Normalized wavelet packets quantifiers are proposed and studied as a new tool for
condition monitoring [Yanhui Feng and Fernando Schlindwein (2009)]. The new
quantifiers construct a complete quantitative time-frequency analysis: the Wavelet
packets relative energy measures the normalized energy of the wavelet packets
node; the Total wavelet packets entropy measures how the normalized energies
of the wavelet packets nodes are distributed in the frequency domain; the Wavelet
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packets node entropy describes the uncertainty of the normalized coefficients of the
wavelet packets node.

Damage detection through Damage Force Indicator is reported in [Nag, Roy Maha-
patra and Gopalakrishnan (2002); Sreekanth Kumar, Roy Mahapatra, and Gopalakr-
ishnan (2004); Schulz, Naser, Pai and Chung (1998)]. Here, the stiffness of the
healthy structure and the measured damage response is used to predict the location
of damage. This does not require base line solution and can give the location of
very small size cracks even in the presence of noise polluted responses. The major
disadvantage of this approach is that it requires many sensor measurements and in
its present form can give only the location of flaw and not its extent. This method
works very well with Spectral Finite Element as its system size is usually very
small. Damage detection based on Damage Force Indicator using reduced order
FE models is presented [Gupta, Giridhara and Gopalakrishnan (2008)].

The baseline energy in this work is obtained through Wavelet based Spectral Fi-
nite Element formulation. The advantages in using wavelet transform is that, the
wavelets have localized nature of basis functions which allow finite domain anal-
ysis. These are extensively used to study wave propagation in isotropic[Mitra
and Goplakrishnan (2005), (2006), (2006)], composites [Mitra and Goplakrishnan
(2006)], anisotropic [Mitra and Goplakrishnan (2008)] and nanocomposite struc-
tures [Mitra and Goplakrishnan (2006)]. These elements are free from wrap-around
problems and can analyze un-damped finite length structures. The accuracy of sim-
ulation is independent of the time window. Initial and/or boundary conditions can
be conveniently imposed. In addition, one can also obtain the wave parameters such
as the wave numbers and the group speeds can be extracted from the formulation.
Wavelet spectral elements also enables measurements of responses at the interme-
diate locations; which are required in the present analysis, through post processing
of the nodal solutions. In summary, Wavelet spectral finite element can be used as
an ideal tool to perform wave propagation based analysis.

The energy in the damaged structure is obtained using the spectral solution involv-
ing four wave coefficients, which are obtained through four high fidelity measure-
ments. The measurement could be time history of displacement, velocity, accelera-
tion or strain. These measured responses are converted to frequency domain using
standard FFT algorithm. The entire structural domain is then split into smaller
grids where the responses at these intermediate points are obtained from the four
measured responses through post-processing of the spectral solution. One of the
assumption made in the analysis is that wave numbers do not change much in the
presence of damage. Hence, while computing the energies in the damaged struc-
ture, the wave number of healthy structure is used. In the analysis, the choice of
four experimental points is critical. In the section 4, examples are given to show the
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choice of four experimental points on the overall damage estimation. More details
on choice of experimental points are discussed in detail in section 4. We are able
to predict the presence of damage, its extent and to limited extent its severity using
only four sensor measurements. This method saves huge costs in terms of having
advanced equipments such as Laser Vibrometry, instrumentation etc., and yet pre-
dict very small damages in large structures; where in traditionally such equipments
are necessary.

The paper is organized as follows. First the concept of Wavelet transform is in-
troduced followed by the formulation of Wavelet spectral plate element. Wavelet
spectral element also enables measurement of responses at the intermediate loca-
tion; which are required in the present analysis, through post processing of the
nodal solution. Next, the formulation of frequency domain damage index is given.
Here, the computation of strain energies in damaged and healthy structure is out-
lined in detail. The formulated damage measure is then validated through a series
of experimental results. The results are performed on two different specimens of
different crack orientation and size to ascertain the efficiency of the proposed dam-
aged measure for not only locating the crack but also determining its extent. Next,
a compressor blade example is presented, which demonstrates the ability of FDI
in predicting very small size damages; wherein the damage location is not known.
The paper ends with a brief discussion.

2 Wavelet Based Spectral Finite Element (WSFE) Formulation for plates

Here, a complete procedure of reducing the governing partial differential equations
of plate to decoupled ODEs using Wavelet transforms in time and space are pre-
sented. At the end of the section, response equation in general wave form is derived
which is used in the proposed damage measure.

2.1 Daubechies Compactly Supported Wavelets

The details on orthogonal basis of Daubechies wavelets [Daubechis (1992)] is dis-
cussed. These wavelets will be used to formulate a spectral plate element required
to use base line responses for the structural health monitoring studies. Wavelets,
ψ j,k(t) forms compactly supported orthonormal basis for L2(R). The wavelets and
associated scaling functions ϕ j,k(t) are obtained by translation and dilation of sin-
gle functions ψ(t) and ϕ(t) respectively.

ψ j,k(t) = 2 j/2
ψ(2 jt− k), j,k ∈ Z (1)

ϕ j,k(t) = 2 j/2
ϕ(2 jt− k), j,k ∈ Z (2)

Let Pj( f (t)) be approximation of a function f (t) in L2(R) using ϕ j,k(t) as basis, at
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a certain level (resolution) j, then

Pj( f (t)) = ∑
k

c j,kϕ j,k(t), k ∈ Z (3)

where, c j,k are the approximation coefficients. Let Q j( f (t)) be the approximation
of the function using ψ j,k(t) as basis, at the same level j.

Q j( f (t)) = ∑
k

d j,kψ j,k(t), k ∈ Z (4)

where, d j,k are the detail coefficients. The approximation Pj+1( f (t)) to the next
finer level of resolution j +1 is given by

Pj+1( f (t)) = Pj( f (t))+Q j( f (t)) (5)

This forms the basis of multi resolution analysis associated with wavelet approxi-
mation, more details can be found in Reference [Daubechis (1992)].

2.2 Governing differential equation for plate

Figure 1: (a) Plate element (b) Nodal forces and displacements

The governing plate equation using Classical Plate Theory [Nayeh and Pai (2004)]
for an isotropic material is given by

D

(
∂ 4w
∂x4 +2

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4

)
= ρh

∂w2

∂ t2 (6)

where D = Eh
12(1−ν2) , E is the modulus of elasticity, ρ is the density, h is the plate

thickness and ν is the Poisson’s ratio. w(x,y, t) is the transverse displacement of
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plate in the z direction as shown in Fig. 1. The force boundary conditions associated
with the governing differential equations are

M = D

(
∂ 2w
∂x2 +ν

∂ 2w
∂y2

)
(7)

V =−D

(
∂ 3w
∂x3 +(2−ν)

∂ 3w
∂x∂y2

)
+ I2

∂ ẅ
∂x

(8)

where, M is the moment, V is the shear force and I2 is the inertial coefficient and is
given by

I2 =
∫

A
ρz2dA (9)

2.3 Reduction of Wave Equations to ODEs - Temporal Approximation

The first step of formulation of 2-D WSFE is the reduction of the governing PDEs
to another set of PDEs by Daubechies scaling function based transformation in
time. The variables are discretized at n points in the time window [0 t f ]. Let
τ = 0, 1, . . . ,n−1 be the sampling points, then

t = (4t)τ (10)

where,4t is the time interval between two sampling points. For example, w(x,y, t),
the out of plane transverse displacement of plate, can be approximated by scaling
function ϕ(τ) at an arbitrary scale as

w(x,y, t) = w(x,y,τ) = ∑
k

wk(x,y)ϕ(τ− k), k ∈ Z (11)

where, wk(x,y) (referred as wk hereafter) are the approximation coefficient at a
certain spatial dimension x and y. Using these approximations, Eqn. (6) can be
written as

∑
k

(
∂ 4wk

∂x4 +2
∂ 4wk

∂x2∂y2 +
∂ 4wk

∂y4

)
ϕ(τ− k) =

ρh
D4t2 ∑

k

wkϕ
′′(τ− k) (12)

Taking inner product on both sides of Eqn. (12) with the translates of scaling func-
tions ϕ(τ− j), where j = 0, 1, . . . ,n−1 and using their orthogonal properties, we
get n simultaneous PDEs as,

∂ 4w j

∂x4 +2
∂ 4w j

∂x2∂y2 +
∂ 4w j

∂y4 =
ρh

D4t2

j+N−2

∑
k= j−N+2

Ω
2
j−kwk j = 0, 1, . . . ,n−1 (13)
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where, N is the order of the Daubechies wavelet and Ω2
j−k are the connection coef-

ficients defined as

Ω
2
j−k =

∫
ϕ
′′(τ− k)ϕ(τ− j)dτ (14)

Similarly, for first order derivative Ω1
j−k are defined as

Ω
1
j−k =

∫
ϕ
′(τ− k)ϕ(τ− j)dτ (15)

For compactly supported wavelets, Ω1
j−k, Ω2

j−k are nonzero only in the interval k =
j−N +2 to k = j +N−2. The details for evaluation of connection coefficients for
different orders of derivative is given in reference [Beylkin 1992)]. The Eqn. (13)
are converted to to a set of coupled PDEs given as{

∂ 4w j

∂x4

}
+2

{
∂ 4w j

∂x2∂y2

}
+
{

∂ 4w j

∂y4

}
=

ρh
D

[Γ1]2{w j} (16)

where Γ1 is the first order connection coefficient matrix obtained after using the
wavelet extrapolation technique [Williams and Amaratunga (1997)]. It should be
mentioned here that though the connection coefficients matrix, Γ2, for second order
derivative can be obtained independently, here it is written as [Γ1]2 as it helps to
impose the initial conditions [Mitra and Goplakrishnan (2005)]. These coupled
PDEs are decoupled using eigenvalue analysis

Γ
1 = ΦΠΦ

−1 (17)

where, Π is the diagonal eigenvalue matrix and Φ is the eigenvectors matrix of
Γ1. The eigenvalues be denoted as ıγ j, where ı =

√
−1, using these, the decoupled

ODEs corresponding to Eqn. 16 is given by

∂ 4ŵ j

∂x4 +2
∂ 4ŵ j

∂x2∂y2 +
∂ 4ŵ j

∂y4 =−ρh
D

γ
2
j ŵ j j = 0, 1, . . . ,n−1 (18)

where, ŵ j is the transformed displacement and is given by

ŵ j = Φ
−1w j (19)

2.4 Reduction of Wave Equations to ODEs - Spatial Approximation

The next step involved is to further reduce each of the transformed and decou-
pled PDEs given by Eqn. (18) for j = 0, 1, . . . ,n− 1 to a set of coupled ODEs
using Daubechies scaling function approximation in (Y ) direction. Similar to time
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approximation, the transformed variable ŵ j be discretized at m points in the spa-
tial window [0 LY ], where LY is the length in Y direction (see Fig. 1). Let ζ =
0, 1, . . . , m−1 be the sampling points, then

y =4Y ζ (20)

where, 4Y is the spatial interval between two sampling points. The function
ŵ j(x,y) can be approximated by scaling function ϕ(ζ ) at an arbitrary scale as

ŵ j(x,y) = ŵ j(x,ζ ) = ∑
k

ŵl j(x)ϕ(ζ − l), l ∈ Z (21)

where, ŵl j(x,y) (referred as ŵl j hereafter) are the approximation coefficient at a
certain spatial dimension x. Therefore, the Eqn. (18) can be written as

∑
l

d4ŵl j

dx4 ϕ(ζ − l)+
2
4Y 2 ∑

l

d2ŵl j

dx2 ϕ
′′(ζ − l)+

1
4Y 4 ∑

l

ŵl jϕ
′′′′(ζ − l)

= −ρh
D

γ
2
j ∑

l

ŵl jϕ(ζ − l) (22)

Taking inner product on both sides of Eqn. (22) with the translates of scaling func-
tions ϕ(ζ − i), where i = 0, 1, . . . ,m−1 and using their orthogonal properties, we
get m simultaneous ODEs as,

d4ŵi j

dx4 +
2
4Y 2

i+N−2

∑
l=i−N+2

d2ŵi j

dx2 Ω
2
i−l +

1
4Y 4

i+N−2

∑
l=i−N+2

ŵi jΩ
4
i−l

= −ρh
D

γ
2
j ŵi j i = 0, 1, . . . ,m−1 (23)

where, N is the order of Daubechies wavelet, Ω1
i−l and Ω2

i−l are the connection
coefficients for first and second order derivative defined in Eqns. (15) and (14)
respectively. The unknown coefficients lying outside the finite domain in terms
of the inner coefficients are obtained using periodic extension or restrain matrix
[Patton and Marks (1996)]. Considering the periodic extension, the ODEs given by
Eqn. (23) can be written as a matrix equation of the form

{
d4wi j

dx4

}
+2[Λ1]2

{
d2wi j

dx2

}
+[Λ1]4

{
ŵi j
}

=−ρh
D

γ
2
j

{
ŵi j
}

(24)
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where, [Λ1] is the first order connection coefficient matrix obtained after periodic
extension and it is of the form

[Λ1] =
1
4Y


Ω1

0 Ω1
−1 . . . Ω1

−N+2 . . . Ω1
N−2 . . .Ω1

1
Ω1

1 Ω1
0 . . . Ω1

−N+3 . . . 0 . . .Ω1
2

...
... . . .

... . . .
... . . .

...
Ω1
−1 Ω1

−2 . . . 0 . . . Ω1
N−3 . . .Ω1

0

 (25)

It should be mentioned here that though the connection coefficient matrices of
higher order derivatives can be obtained independently, here it is written for sec-
ond order derivative as [Λ2] = [Λ1]2 and fourth order derivative as [Λ4] = [Λ1]4 as
it helps to impose initial conditions. The coupled ODEs given in Eqn. (24) are
decoupled using eigenvalue analysis similar to that done in time approximation as

Λ
1 = ΨϒΨ

−1 (26)

where, ϒ is the diagonal eigenvalue matrix and Ψ is the eigenvectors matrix of
Λ1. It should be mentioned here that matrix Λ1 has a circulant form and its eigen
parameters are known analytically [Davis (1963)]. The eigenvalues are denoted as
ıβi, using these, the decoupled ODE’s corresponds to Eqn. (24) is given by

d4w̃i j

dx4 −2β
2
i

d2w̃i j

dx2 +β
4
i w̃i j =−ρh

D
γ

2
j w̃i j i = 0, 1, . . . ,m−1 (27)

where, w̃i j is the transformed displacement and is given by

w̃i j = Ψ
−1ŵi j (28)

Similarly, the transformed form of the force boundary conditions given in Eqns. (7)
and (8) are given by

D

(
d2w̃i j

dx2 −β
2
i νw̃i j

)
= M̃i j (29)

−D

(
d3w̃i j

dx3 +β
2
i (2−ν)

dw̃i j

dx

)
− I2γ

2
j
dw̃i j

dx
= Ṽi j, i = 0,1, . . . ,m−1 (30)

The final transformed ODEs given by Eqn. (27), the boundary conditions Eqns. (29)
and (30) are used in 2-D WSFE [Mitra and Goplakrishnan (2006)], following a
procedure very similar to 2-D FSFE formulation [Chakraborty and Gopalakrishnan
(2004), (2005)] and is explained in the next subsection.
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2.5 Spectral Finite Element Formulation

Here, spectral finite element formulation for plate element with associated degree of
freedom is discussed. Procedure is outlined for obtaining the solution of Eqn. (27)
along with wave numbers in x and y direction.

The degrees of freedom associated with the element formulation is shown in Fig.
1(b). The element has two degrees of freedom per node, which are w̃i j and ∂ w̃i j/∂x.
From the previous sections, for unrestrained lateral edges we get a set of decoupled
ODEs Eqn. (27) for isotopic plate using CPT, in a transformed wavelet domain.
These equations are required to be solved for w̃i j and the actual solutions w(x,y, t)
are obtained using inverse wavelet transform twice for spatial (Y ) dimension and
time (t). For finite length data, the wavelet transform and its inverse can be obtained
using a transformation matrix [Williams and Amaratunga (1994)].

It can be seen that the transformed decoupled ODEs have a form similar to that
in FSFE [Doyle (1999)] and thus, WSFE can be formulated following the same
method as for FSFE formulation. In this section, the subscripts j and i are dropped
hereafter for simplified notations and all the following equations are valid for j =
0, 1, . . . , n−1 and i = 0, 1, . . . , m−1 for each j. Let, the solution of the Eqn. (27)
be of the form,

w̃ =
4

∑
r=1

are
−ikrx (31)

where, kr are wave numbers and ar are the wave amplitudes. The exact interpolat-
ing functions for an element of length LX is obtained by substituting Eqn. (31) in
Eqn. (27), which can be derived in matrix form

{w̃(x)}T = [R][Θ]{a} (32)

where, [Θ] is a diagonal matrix with the diagonal terms [e−k1x, e−k1(LX−x), e−k2x, e−k2(LX−x)]
and [R] = [R11 R12 R13 R14] is a 1× 4 amplitude ratio matrix for each set of k1

and k2, where k1 and k2 are wave numbers of the transverse and rotational modes.
These k1 and k2 are obtained by substituting Eqn. (31) in Eqn. (27) and solving
the characteristic equation. The characteristic equation is obtained by equating the
determinant of the 1× 1 companion matrix to zero and is as follows. Substituting
the assumed solution (Eqn. 31) in the set of ODEs (Eqn. 27), a PEP is posed as to
find (v,k), such that

ψ(k)v = (k4A4 + k2A2 +A0)v = 0 , v 6= 0 (33)
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where k is an eigenvalue and v is the corresponding eigenvector.

A4 = 1

A2 = 2β
2
i

A0 = β
4
i +

ρhγ2
j

D

The PEP is solved, the spectrum relation is quartic polynomial of m = k,

p(m) = m4 +C2m2 +C4 (34)

which generates a companion matrix of order 1.

The corresponding [R] is obtained using singular value decomposition of the ma-
trix. This method of determining wave numbers and corresponding amplitude ra-
tios was developed to formulate FSFE for graded beam with Poisson’s contraction
[Chakraborty and Gopalakrishnan (2004)], k1 and k2 corresponds to the two modes
i.e transverse and rotational. As explained in reference [Mitra and Goplakrishnan
(2006)], these are the wave numbers but only up to a certain fraction of Nyquist
frequency.

Here, {a} = {A, B, C, D} are the unknown wave coefficients to be determined
from transformed nodal displacements {ũe}, where {ũe}= {w̃1 ∂ w̃1/∂x w̃2 ∂ w̃2/∂x}
and w̃1≡ w̃(0), ∂ w̃1/∂x≡ ∂ w̃(0)/∂x and w̃2≡ w̃(LX), ∂ w̃2/∂x≡ ∂ w̃/∂x(LX), (see
Fig. 1(b) for the details of degree of freedom that the element can support). Thus,
we can relate the nodal displacements and unknown coefficients as

{ũe}= [B]{a} (35)

From the forced boundary conditions, Eqns. (29) and (30), nodal forces and un-
known coefficients can be related as

{F̃e}= [C]{a} (36)

where, {F̃e} = {Ṽ1 M̃1 Ṽ2 M̃2} and Ṽ1 ≡ −Ṽ (0), M̃1 ≡ −M̃(0) and Ṽ2 ≡ Ṽ (LX),
M̃2 ≡ M̃(LX) (see Fig. 1(b)). From Eqns. 35 and 36 we can obtain a relation be-
tween transformed nodal forces and displacements similar to conventional FE

{F̃e}= [C][B]
−1{ũe}= [K̃e]{ũe} (37)

where [K̃e] is the exact elemental dynamic stiffness matrix. After the constants
{a} are known from the above equations, they can substituted back in Eqn. (32) to
obtain the transformed displacements w̃, ∂ w̃/∂x at any given x.
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As said before, k1 and k2 are wave numbers in x direction are obtained by solving
the Eqn. (27). The wave numbers in y direction are given as β from Eqn. (26).
Therefore, the transformed displacement w̃(x,y) can be written as,

w̃(x,y) = [Ae−ik1x +Be−ik1(L−x) +Ce−ik2x +De−ik2(L−x)]eiβy (38)

Here {A, B, C, D} are the wave coefficients to be determined either by the bound-
ary conditions or the four wave based measurements. The later method is used for
developing the new damage measure, which is discussed in the next section.

3 Formulation of New damage measure based on frequency domain Energy

In this section, a brief description on grid generation is discussed followed by en-
ergy calculations and damage index are derived. Next, the experimental set up
and the proposed damage index using four measurements is presented. The en-
tire analysis is performed in frequency domain. The damage measure is defined in
the frequency domain as the ratio of energy parameter in healthy structure to the
damaged structure.

3.1 Grid generation

Figure 2: (a) Damage specimen used in experiment; (b) Grid generation of the
same specimen used in simulation.

The mesh generation of the structure used in the formulation of a new damage
measure is given below. Fig. 2(a) represents the actual (damaged) specimen with
a 900 crack used in conducting the experiments and Fig. 2(b) indicates the grid
generated on this specimen to be used in the numerical simulation. The given
geometry is divided into number of uniform spaced cells with cell size as 2-6mm
in x and y directions. Each cell is treated as an element and the grid as node. The
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experimental response (signal) is captured at any four points of the plate as shown in
Fig. 2(a). These obtained signals are mapped on to the four corresponding location
grid points (nodes) of the discretized structure as in Fig. 2(b) and are used in the
rest of the simulation. Similar steps are adopted for the healthy and other damaged
structures too.

3.2 Computation of undamaged Strain energy

In the entire simulation of this paper, it is assumed that the wave numbers do not
change with the presence of small size cracks i.e. the wave numbers are the same
for healthy and damaged structure, which are computed as per Eqn. (27) for a
healthy structure. The formulated wavelet spectral plate element as in Section. 2 is
used to compute the responses at all the grid points (nodes). The response is inter-
polated at all intermediate grid locations using the new formulation and is described
in the last subsection.

The response at any locations (x,y) on undamaged structure can be written in gen-
eral wave form as

w̃∗(x,y) = [Ae−ik1x +Be−ik1(L−x) +Ce−ik2x +De−ik2(L−x)]eiβy (39)

Here, the four wave coefficients A,B,C,D are obtained from measurements at any
four points on undamaged structure. The experimental setup is discussed in the
next sub section and choice of these four points are outlined in the next section.
Using these responses, the corresponding strain and stress calculated and are given
by,

ε
∗

xx =∂ w̃∗/∂x

=[−ik1Ae−ik1x + ik1Be−ik1(L−x)− ik2Ce−ik2x + ik2De−ik2(L−x)]eiβy (40)

σ
∗

xx =Eε
∗

xx

=E[−ik1Ae−ik1x + ik1Be−ik1(L−x)− ik2Ce−ik2x + ik2De−ik2(L−x)]eiβy (41)

The energy parameter in frequency domain is evaluated by integrating the strain en-
ergy over the cell domain using these stresses and strains. This process is repeated
for all the cells. For the healthy structure, the energy parameter at the ith element is
given by Ûi

∗

Ûi
∗ =

1
2

∫
V
(σ∗xxε

∗
xx +σ

∗
yyε
∗

yy + τ
∗

xyγ
∗

xy)dV ∗ (42)

where dV ∗ = dxdyh. Here dx and dy are the grid sizes in x and y direction respec-
tively, h is the thickness of the plate.
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3.3 Computation of damaged Strain energy

Here, it is considered the the size of the damaged plate is same as that of the undam-
aged plate but with cracks at the center of the plate. The response at any locations
(x,y) on the damaged plate can be written in general wave form as

w̃(x,y) = [A1e−ik1x +B1e−ik1(L−x) +C1e−ik2x +D1e−ik2(L−x)]eiβy (43)

Here, the four wave coefficients A1,B1,C1,D1 are obtained from measurements at
any four points on damaged structure. The choice of these four points are outlined
in the next section. The corresponding strain and stress are calculated using the
responses obtained from the damaged plate and are given by,

εxx =∂ w̃/∂x

=[−ik1A1e−ik1x + ik1B1e−ik1(L−x)− ik2C1e−ik2x + ik2D1e−ik2(L−x)]eiβy (44)

σxx =Eεxx

=E[−ik1A1e−ik1x + ik1B1e−ik1(L−x)− ik2C1e−ik2x + ik2D1e−ik2(L−x)]eiβy (45)

The energy parameter in frequency domain is evaluated by integrating the strain en-
ergy over the cell domain using these stresses and strains. This process is repeated
for all the cells. For the damaged structure, the energy parameter at the ith element
is given by Ûi

Ûi =
1
2

∫
V
(σxxεxx +σyyεyy + τxyγxy)dV (46)

where dV = dxdyh. Here dx and dy are the grid sizes in x and y direction respec-
tively, h is the thickness of the plate.

3.4 Frequency domain Damage Index

The energies calculated as above are used to find the damage index. The frequency
domain damage index (FDI) is defined as the ratio of the energies of the undamaged
to the damaged structures and is given by

d̂i(ωn) =
Û∗i
Ûi

(47)

Damage index at ith element over all frequencies up to Nyquist frequency i.e. N
2 is

Di = ∑
ωn

|d̂i|, i ∈ [1,m], n = 1...
N
2

(48)
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Note that, the inertial component is built into the formulation due to the usage of
Spectral FEM. The baseline energy is again obtained by spectral FEM analysis of
healthy specimen. This does not add to computational cost due to small size of
spectral stiffness which is 4×4. Here, a new approach is demonstrated to get Dam-
age Index through only four measurements. In the next section, it is demonstrated
on a square Aluminum plate of different crack orientation and on compressor blade
made of titanium in which the crack is very small.

3.5 Experimental setup

Figure 3: Block diagram of Experimental setup.

The block diagram of the experimental setup and the photograph of the experimen-
tation is shown in Fig. 3 and Fig. 4 respectively. The PZT sensors are mounted on
the Aluminum specimen at the locations(1,2,.....8) shown in Fig. 5. One of the sen-
sors will act as an actuator(at location 8) which is connected to the signal generator
and remaining sensors will act as signal receivers. Signals are recorded using MIS-
TRAS software. Experiments are conducted on healthy specimen and the damaged
specimens with a center crack at 0,45,90 degrees and the signals are recorded and
this data is used in numerical simulations.

3.6 Damage Index through only four measurements

In this case a square plate of size ×0.13m× 0.13m× 0.004m (healthy specimen)
shown in Fig. 5(a) is considered. At points 1,3,5 and 7 accelerometers are placed
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Figure 4: Photograph of the setup.

Figure 5: Aluminum specimens with different crack orientation

and subjected to a random tone burst signal at point 8. Similar experiments are
performed on same size plates with the same crack size (20mm) but with differ-
ent orientation as shown in Figs. 5(b), (c), (d) and (e), respectively. The signals
are recorded from healthy and damage specimens at these four locations. These
signals are used in the numerical simulation as below. The general wave form in
frequency domain at any point is given by Eqn. (38). The signals recorded at any
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four locations (x,y) can be written in general wave form as

w̃1(x1,y1) =[Ae−ik1x1 +Be−ik1(L−x1) +Ce−ik2x1 +De−ik2(L−x1)]eiβy1

w̃2(x2,y2) =[Ae−ik1x2 +Be−ik1(L−x2) +Ce−ik2x2 +De−ik2(L−x2)]eiβy2

w̃3(x3,y3) =[Ae−ik1x3 +Be−ik1(L−x3) +Ce−ik2x3 +De−ik2(L−x3)]eiβy3

w̃4(x4,y4) =[Ae−ik1x4 +Be−ik1(L−x4) +Ce−ik2x4 +De−ik2(L−x4)]eiβy4

where, the wave numbers k1, k2 in x and β in y direction and are computed as
Eqns. (27) and (26) and will depend only on frequency. As mentioned earlier, these
wave numbers are assumed to be the same for damaged and healthy specimens
when the damage sizes are very small.

The above equations can be written in more compact form {W} = [M]{C}. Here
{W} and {C} are 4× 1 vectors, [M] is a matrix of size 4× 4. Therefore, the
above matrix form can be written as {C} = [M]−1{W}, using this the unknown
vector i.e. wave coefficients, {C} = {A B C D}T is evaluated, as all other param-
eters are known. Once, the wave coefficients at each frequency (ω) are known,
the wave form at any location (x,y) is obtained by Eqn.( 39) on healthy specimen
and Eqn.( 43) on damaged specimen. The corresponding strain, stress, energy pa-
rameter in healthy and damaged structure are evaluated using the Eqns. (40-42) and
Eqns. (44-46) respectively . The derived frequency domain damage index (Eqn. 48)
is used to get the damage measure of different structures and the numerical results
are reported in the next section.

4 Numerical Results

Here, three different examples are considered to demonstrate the efficiency of the
proposed damage index to predict the location and extent of the damage. In the
first example, aluminum specimens with different crack orientation (shown in Fig.
5) are considered. All the specimens have the same size of 0.13m×0.13m×0.004m
and the length of the crack is 0.20m. These specimens are used to find the effect
of signal location on damage index and to generate FDI plots using just four mea-
surements. Next, a plate of different dimension with a small crack oriented at 900

is considered to find FDI. Finally, a turbine blade with a very small crack is used to
demonstrate this technique to predict the damage location.

4.1 Selection procedure for the four sensor locations

The details of the different specimens and sensor location are shown in Fig. 5.
First, the plate with 90◦ crack and a healthy plate are considered to study the best
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Figure 6: Snapshot of normalized FDI plot with 1-2-4-6 sensor locations on 90◦

crack specimen.

Figure 7: Snapshot of normalized FDI plot with 1-2-5-6 sensor locations on 90◦

crack specimen.
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Figure 8: Snapshot of normalized FDI plot with 1-2-6-7 sensor locations on 90◦

crack specimen.

Figure 9: Snapshot of normalized FDI plot with 2-3-5-6 sensor locations on 90◦

crack specimen.
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Figure 10: Snapshot of normalized FDI plot with 1-3-5-7 sensor locations on 90◦

crack specimen.

possible locations for sensor placements. The responses are measured at the sensor
locations in five different combinations, namely 1-2-4-6, 1-2-5-6, 1-2-6-7, 2-3-5-6
and 1-3-5-7 respectively and the response information in the exterior of the plate
is regenerated for different sensor combination using spectral finite elements. The
responses are reconstructed over a square grid spaced at an interval of 4mm in both
direction. The FDI plots are then generated up to the Nyquist frequency i.e N

2 . A
few snapshots of the FDI, zoomed near the cracks are shown in Fig. 6. Note that in
all the following figures, dark black line represents the approximate crack position.
From Figs. 6, 7, 8, 9, it indicates that many peaks appear near and surrounding the
crack. These scattering may be due to improper collection of data from the sensors.
But, from Fig. 10 it is noted that the peaks are concentrated near the crack.

From these observations, it is concluded that, out of all the possible signal record-
ing location arrangements, 1-3-5-7 gives the best indication of crack presence and
its location i.e. the peaks represents high energy ratio due to singular stress field
and it occurs near the crack, which indicates the presence of the damage. Hence,
for effective damage detection, the four sensor points should be located symmet-
ric with respect to crack location. Hence, 1-3-5-7 is the optimum sensor locations
which gives the maximum sensitivity and will be used as sensor locations for fur-
ther examples.
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Figure 11: Snapshot of normalized FDI plot for 0◦ crack orientation.

Figure 12: Snapshot of normalized FDI plot for 45◦ crack orientation.
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Figure 13: Snapshot of normalized FDI plot for 90◦ crack orientation.

4.2 FDI for different crack orientations

Here, square aluminum plates with 20mm crack oriented at 0◦, 45◦ and 90◦ are
considered with the sensor location 1-3-5-7. Also, a healthy plate with the same
dimension is used. The FDI plots are generated up to the Nyquist frequency i.e
N
2 . Few snapshots of the FDI, near the cracks are shown in Figs. 11, 12, 13. As
discussed previously for the 900 case, here also; in all the cases (0◦, 45◦ and 90◦

cracks) peaks are observed at the two crack tip locations, indicating clearly the
presence and extent of cracks. The peak patterns are systematically getting shifted
due to the change in orientation of the crack.

4.3 FDI for different crack sizes

In the previous subsection 20mm crack with 900 crack results are presented. To
demonstrate the uniqueness of the proposed method, the damage index for different
crack sizes are presented. Here, a small through width crack of size 10mm intro-
duced exactly at the middle of the plate with 900 orientation and data is captured
for computing damage index using the proposed FDI.

A broad band signal of 50µsec duration is induced in the specimen using a PZT
actuator placed at the location 8 of the specimen as shown in Fig. 5. The Fig. 14.
shows the FDI plot over the region. From the figure, it is clearly seen that the
value of damage index peaks at the two crack tips indicating, not only the location,
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but also the extent. The peak pattern looks very similar to that of Fig. 13. which
represents the crack zone. This also proves the consistency of the proposed method.
FDI enables region-by-region analysis, which results in enormous saving of time
in the real-time health monitoring sense.

Figure 14: Snapshot of normalized FDI plot for 90◦ crack orientation.

4.4 FDI for Compressor blade

Next, damage detection using FDI is extended to more practical structures, namely
the compressor blade (made from titanium alloy) used in Gas Turbine construction.
The important aspect of this example is that the damage is very small.

As before, forcing is introduced through a small PZT disc actuator placed at the
mid point of the tip of the blade. Here, a broad band square signal of pulse width
5µsec is fed into PZT actuator. The signals are sensed at four locations with the
area cover up of 30mm×60mm at the center of blade.

Fig. 15. shows the plot of FDI produced using measured data. The plot clearly
shows two large peaks occurring very close to each other indicating the presence of
damage. The area marked with a square represents the crack zone. This example
clearly demonstrates the ability of FDI in predicting very small size damages.

The main novelty in the paper is that the proposed method can predict very small
damages using just four measurements. That is, using these four measurements, the
responses at the number of locations in structure can be interpolated. In essence,
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Figure 15: Snapshot of normalized FDI for compressor blade.

the present method can effectively replace the costly equipments such as Scanning
Laser Vibrometer normally used in structural health monitoring studies; which can
give seamless non contact measurement over a large area. In addition to above, the
following are the additional advantages of the method. 1) The method can handle
both low and high frequency input signal, which are normally required for deter-
mining small damage. 2) The model sizes are very small and hence the damage
location, its size and its orientation can be obtained rapidly with in few seconds,
unlike conventional methods based on Finite Element modeling.

5 Conclusions

This paper presents a novel damage detection scheme based on strain energy de-
fined in the frequency domain. The method extensively uses wavelet spectral finite
element for not only obtaining the base line information, but also to reconstruct
the responses at many intermediate locations using any four measured responses.
The approach was used to predict damages in different specimens having different
damage sizes and orientation. It was shown that the approach was able to capture
very small damages. When the method is used with only four sensor measurement,
the location of sensor with respect to damage plays a very important part on the
accuracy of the measurement.
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