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Real Time Damage State Estimation and Condition Based
Residual Useful Life Estimation of a Metallic Specimen

under Biaxial Loading
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Abstract: The current state of the art in the area of real time structural health
monitoring techniques offers adaptive damage state prediction and residual useful
life assessment. The present paper discusses the use of an integrated prognosis
model, which combines an on-line state estimation model with an off-line predic-
tive model to adaptively estimate the residual useful life of an Al-6061 cruciform
specimen under biaxial loading. The overall fatigue process is assumed to be a
slow time scale process compared to the time scale at which, the sensor signals
were acquired for on-line state estimation. The on-line state estimation model was
based on correlation analysis, which is a type of non-parametric system identi-
fication approach. A new damage index is proposed, which is proportional to the
cumulative damage state of the structure at any particular fatigue cycle. The on-line
model regularly estimates the current damage state of the structure based on pas-
sive strain gauge signals. These damage states were used to update the slow scale
off-line predictive model as it becomes available. The off-line predictive model
is a probabilistic nonlinear regression model, which is based on a Bayesian statis-
tics based Gaussian process approach. The off-line module adaptively updates the
model parameters and recursively predicts the future states to provide real time
residual useful life estimate.
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Nomenclature

Fast scale variables
m Lag numbers
∆t (= 1/ f f ) Time interval
T Observation time
M No. of observation samples
u(m) Input measurement at lag m
y(m) Output measurement at lag m
ν(m) Noise contribution at lag m
γuy(m) Cross correlation coefficient at lag m
Slow scale variables
n Damage level number (or damage instances)
(Note: In general n is not same as number of fatigue cycles)
ñ Number of damage levels after

last on-line or fast scale data available
ñ∗ After last fast scale data available, the number

of damage level to damage state become critical
N Total no. of fatigue cycles
N0 Fatigue cycle at first on-line data available
∆N Fatigue cycles per each damage level increment
θ ϑ

n Noise hyperparameter at nth level
θ

p
n Process hyperparameter at nth level

θ w
n Input weighing hyperparameter at nth level

θ b
n Bias hyperparameter at nth level

xn Input vector at nth level
an Output damage index at nth level
Kn Kernel matrix at nth level
k(xi,x j) Kernel function at nth level

1 Introduction

On-line health monitoring and prognostics is emerging at the forefront of Condi-
tion based Maintenance (CBM) of critical structural systems giving rise to the term
Prognostic Health Management (PHM). Whether it is a newly acquired or an ag-
ing aircraft fleet, the structural life ceiling of the fleet is defined from three distinct
approaches: safe-life, fail-safe, and damage tolerant approaches. A detailed review
of these approaches is presented by Iyyer, Sarkar, Merrill, and Phan (2007). With
the safe-life approach, the retirement life of a component is defined by crack initia-



Real-time Fatigue Life Prediction for Metallic Structure 35

tion time derived from a full-scale component, or element fatigue test. In practice,
however, the component is retired before the formation of a fatigue crack by using
high safety factors on calculated crack initiation time because of inherent variabil-
ity in both static and fatigue material properties as well as assumptions made in
analytical models used to calculate crack initiation time. The fail-safe approach
assumes an initial damage due to manufacturing flaws and its subsequent growth
during service to detectable crack sizes. Service life in fail-safe structures can thus
be defined as the time to a survivable detectable damage. The fail-safe approach
requires inspections as part of the maintenance program, and these inspections are
also specifically geared to find damages in identified critical components of the air-
craft. In the case of the damage-tolerant approach, it assumes initial defects, how-
ever small they may be in critical structural elements, which will eventually grow
in to large crack sizes. Service life is estimated through rigorous crack growth
analysis both deterministic and stochastic. A majority of the deterministic crack
growth analysis models are based on the approach followed by FASTRAN [New-
man (1992)] or AFGROW [Harter (2003)] type crack growth model. It should
be noted that these models are based on some empirical parameters, which have
to be tuned for a particular application. In the case of stochastic life estimation,
two different approaches are generally being used in industry and are continuously
being improved by the stochastic life modeling research community. In the first
technique, service life is based on the basic principles of Miner’s damage accumu-
lation criteria, and in the second technique the stochastic crack growth curves are
obtained first, followed by estimation of the corresponding stochastic service life.
Wu and Ni (2004) presented a stochastic crack growth model which can be used
for stochastic life estimation of structures. In the case of damage accumulation
type models, the recent work by Liu and Mahadevan (2007) on nonlinear fatigue
damage accumulation rule and a stochastic S-N curve representation technique for
predicting stochastic fatigue life under variable amplitude loading is noteworthy.
In the above mentioned deterministic or stochastic approaches the damage toler-
ance and fatigue life predictions are obtained based on assumed structural flaws or
on previous coupon test results regardless of whether the assumed structural flaw
actually occurs during service (i.e., prognosis is made before diagnosis). In addi-
tion in a real life scenario, changing loading conditions and other environmental
conditions such as change in humidity and temperature, leads to different crack
growth parameters, compared to those originally found from coupon testing. Con-
sequently, a large degree of conservatism is incorporated into structural designs due
to these uncertainties. The current research in the area of on-line damage state es-
timation [Gupta and Ray (2007)], offers methodologies for adaptive damage state
prediction and residual useful life assessment. The on-line state estimation model
can be either a supervised or unsupervised model. In a supervised approach, the
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model has to be trained for known damage cases based on previously conducted
tests. The supervised model is difficult to implement in real-life conditions. This
is because of the changing boundary conditions and noise levels (due to electrical
connections), which may not be similar to the previously obtained data used for
training the model. A detailed review on different SHM approaches is presented
by Farrar and et. al. (2003, 2007). For real time damage monitoring and prognosis,
there is also a need for an effective predictive model to forecasts the future state and
the remaining life of the structure. The real time damage state information from the
on-line state estimation model [Mohanty, Chattopadhyay, and Peralta (2008)] can
be regularly fed to the off-line predictive model [Mohanty, Das, Chattopadhyay,
and Peralta (2009)] to update the residual useful life estimation. The bearing fail-
ure predictive model presented by Billington, Zhang, Kurfess, Danyluk, and Liang
(1999) is among the few earliest reported works on real time adaptive predictive
models. However, their model is based on a linear covariance structure, which may
not always be suitable for learning nonlinear damage growth dynamics. The present
paper proposes a recursive Gaussian process predictive model, in which the model
parameters are adaptively updated to predict the future states and residual useful
life estimate. Unlike the covariance based structure, the Gaussian process [Gibbs
(1997); MacKay (1998); Rasmussen and Williams (2006)] uses the kernel func-
tion. The kernel function is a multi-dimensional function that transfers the linearly
inseparable information first to a high dimensional feature space, where the infor-
mation can be linearly separable. In addition, in the present paper non-parametric
system identification technique based correlation analysis [Ljung (1999)] approach
is used to estimate the current damage state. The current damage state is estimated
by correlating the real time sensor measurements obtained from two different strain
gauges placed at two different locations on the structure. Once the damage state (in
the form of a damage index) is estimated, it is fed to the Gaussian process off-line
predictive model to forecast the future damage state and residual useful life estimate
(RULE). The real time algorithm is validated on an Al-6061 cruciform specimen
undergoing biaxial fatigue loading.

2 Theoretical Approach

The integrated prognosis model is an adaptive model that works in conjunction with
real time sensor measurements. As shown in Fig. 1, the integrated prognosis ar-
chitecture has two distinct sub modules, the on-line state estimator and the off-line
state predictor. The on-line state estimator infers the current state of the structure
from real time sensor measurements. Once the current state information becomes
available, it is fed to the off-line predictive model to predict the future states and
the corresponding residual useful life is estimated. The estimated current state up-
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date the initial condition of the predictive model. It is noted that the overall fatigue
loading history is assumed to be a slow time scale process [Gupta and Ray (2007)]
compared to the time scale at which the sensor signals are acquired. From this
point onwards, the sensor signal acquiring process and corresponding current cycle
damage state (or damage index) estimation process is denoted a fast scale process,
whereas the overall slower fatigue process is denoted a slow scale process. It is
noted that the fast scale sensor measurements are performed at discrete slow scale
intervals. Also, at the individual slow scale instances, where the fast scale sensor
measurements are acquired, the damage state of the structure is assumed to remain
unchanged.

Figure 1: Schematic of an adaptive prognosis model.

2.1 On-line fast-scale damage state estimation

2.1.1 Fast-scale transfer function estimation

At any particular damage level, the output sensor measurement can be mapped with
the input sensor measurement over a time invariant transfer function. It is noted that
as the state of the structure changes, the input-output mapping becomes time variant
and the corresponding transfer function has to be estimated recursively. A typical
nth damage level block diagram that maps the input sensor measurements with the
output sensor measurements is shown in Fig. 2. The fast scale z-domain transfer
function P(z) between input u and output y at nth damage level can be represented
as:

y(t) = Pn(z)u(t)+ν(t)
= (b0 +b1z−1 +b2z−2 + . . .+bMz−M)u(t)+ν(t) (1)
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where z−m;m = 0,1, . . .M are the backspace operators of the pulse transfer function
P(z) and bm;m = 0,1, . . .M are the finite impulse response (FIR) coefficients. Eq. 1
can be rewritten in the discrete domain as

y(t) = b0u(t)+b1u(t−1)+b2u(t−2)+ . . .+bMu(t−M)+ν(t) (2)

Figure 2: Block diagram for fast scale transfer function. The transfer function is an
instantaneous representation of the time degrading structure at any typical damage
level. However as the damage grow the transfer function also changes leading to a
time variant approach of system identification.

2.1.2 Damage index

The slow scale damage index an, is the representative damage state inferred from
nth damage level fast-scale sensor measurements. The damage index can be derived
by evaluating the mth lagged output y(t + m) from Eq. 2 and pre multiplying the
input u(t), obtaining

u(t)y(t +m) = b0u(t)u(t +m)+b1u(t)u(t−1+m)
+ b2u(t)u(t−2+m)+ . . . (3)

+ bMu(t)u(t−M +m)+u(t)ν(t +m)

Applying expectation operator to both sides of Eq. 3 and assuming independence
between noise and the input signal, the mth lagged cross-correlation coefficients
can be expressed as

γuy(m) = b0γu(m)+ γu(m−1)+b2γu(m−2)+ . . .

+ bMγu(m−M); m = 0,1 . . . ,M (4)
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With known input (u) and output (y) time series, the mth lagged cross-correlation
coefficients γuy(m) and auto-correlation coefficients γu(m), the FIR coefficients
bm;m = 0,1, . . .M can be estimated. To estimate M +1 FIR coefficients we need to
solve M +1 algebraic equations given by Eq. 4. However, solving M +1 algebraic
equations involves inverting a (M+1)×(M+1) autocorrelation coefficient matrix,
which becomes computationally expensive in the context of real time applications.
To circumvent this problem the damage state equivalent damage index can be es-
timated. Based on the cross-correlation coefficients γuy(m) a new damage index is
formulated, which is expressed as follows:

an =

√√√√∑m=M
m=0 (γn

uy(m)− γ0
uy(m))2

∑m=M
m=0 (γ0

uy(m))2
; n = 1,2 . . . ,N/∆N (5)

where γn
uy(m) represents nth damage level cross-correlation coefficients, and γ0

uy(m)
represents reference condition cross-correlation coefficients.

2.2 Off-line slow-scale damage state prediction and residual useful life estima-
tion

2.2.1 Predicting in a Bayesian framework

The goal of a probabilistic Bayesian forecasting approach is to compute the poste-
rior distribution of a future damage state or damage index an+1, i.e., to determine
the probability distribution of the random damage index an+1 given a random test
input xn+1 and a set of n training data points described as D = {xi,ai}i=1,...,n. In
the Bayesian framework, the predictive distribution with mean and variance can
be found by conditioning the damage indices a1, a2,......,an,an+1 that are affected
by the corresponding random inputs x1, x2,......,xn,xn+1. A prior over the space of
possible functions to model the random damage index as f (ai|α; i = 1,2, . . . ,n+1),
can be defined where α are some hyperparameters that can account for random load
sequence effect in the form of curve fitting. Also, a prior over the noise f (ϑ |β ),
can be defined where ϑ is some appropriate noise vector that arises due to scatter
in material micro structure and β is another set of hyperparameters used to model
the uncertainty due to scatter. Now if the hyperparameters α and β are given, the
conditional probability [Rasmussen and Williams (2006)] can be expressed as

f (an+1|{xi=1,··· ,n,α,β}) =
∫

(an+1|{xi=1,··· ,n,a,ϑ}) f (a|α) f (ϑ |β )dadϑ (6)

where a and ϑ denotes the underlying function which respectively corresponds to
damage index and noise due to scatter. Since a1, a2,......,an, and an+1 are con-
ditioned random variables in the observed set of damage indices, the conditional
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distribution of an+1 can be written as follows

f
(

an+1|D = {xi,ai}i=1,...,n ,xn+1,α,β
)

=
f
(

an+1|{xi}i=1,...,n+1 ,α,β
)

f
(

an|{xi}i=1,...,n ,α,β
) (7)

2.2.2 Predicting with a Gaussian process

To evaluate Eq. 7 it is necessary to evaluate the integral given in Eq. 6. However,
in general, Eq. 6 is complicated to evaluate. The standard approach to evaluate the
integral in Eq. 6 is by a method called evidence maximization [MacKay (1992)]
or by numerically integrating by Monte Carlo simulation [Neal (2003)]. However,
assuming the underlying damage index function ai follows a Gaussian distribution,
the exact analytical form of Eq. 7 is as follows

f
(

an+1|{xi}i=1,··· ,n ,Kn+1

)
=

1

(2π)n+1/2det(Kn+1)1/2
exp

(
−1

2
(an+1−µ)T K−1

n+1(an+1−µ)
)

(8)

where µ is the function mean and Kn is a n×n kernel matrix. The individual ele-
ments k of the kernel matrix Kn can be found from a parameterized kernel function
that will be described in the next section. Assuming zero mean function distribution
Eq. 8 can be written as

f (an+1|D = {xi,ai} ,xn+1,ki j(xi,x j,Θ)i, j=1,2,..n)

=

√
det(Kn)

(2π)det(Kn+1)
exp(−(an+1− ân+1)2

2σ2
ân+1

) (9)

where ân+1 is the one-step ahead predicted mean at slow scale damage level n + 1
and is given by

ân+1 = kT K−1
n an; ki = k(xn+1,xi)i=1,2,...n (10)

σ2
ân+1

is the one-step ahead predicted variance at slow scale damage level n+1 and
is given by

σ
2
ân+1

= κ−kT K−1
n k; ki = k(xn+1,xi)i=1,2,...n; κ = k(xn+1,xn+1) (11)
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2.2.3 Parameterizing the kernel function

There are many possible choices of prior interpolating kernel functions. From a
modeling point of view, the objective is to specify a prior kernel function that con-
tains our assumptions about the structure of the process being modeled. Formally,
it is required to specify a function that will generate a positive definite kernel ma-
trix for any set of inputs. In this paper, a multi layer perceptron (MLP) [Williams
(1997)] based kernel function is used, which has the following form

k(xi,x j,Θ) = θ
p
n Sin−1 xT

i θ w
n x j +θ b

n√
(xT

i θ w
n xi +θ b

n +1)(xT
n θ w

n xn +θ b
n +1)

+θ
ϑ
n (12)

In Eq. 12 the superscript n represents the nth damage instances. It is noted that un-
like the fixed hyperparameters, the hyperparameters in Eq. 12 are found adaptively
as new data becomes available.

2.2.4 Hyperparameters determination

So far only properties of the prediction model for fixed values of the hyperparam-
eters have been considered. This section discusses how to obtain the hyperparam-
eters Θ for a fixed training data set D = {xi,ai}i=1,...,n. Ideally integration over
all possible hyperparameters should be done in order to obtain the best possible
predictions of the function value an+1 at damage level n+1. Therefore,

f (an+1|D,xn+1,K(·)) =
∫

f (an+1|D,xn+1,K(·),Θ) f (Θ|D,K(·))dΘ (13)

The above integral is as complex as the integral given in Eq. 6 and also difficult to
evaluate for a complex problem with several hyperparameters and a multiple input
space. Out of the two possible approaches e.g., the Maximum evidence [MacKay
(1992)] and the Monte Carlo [Neal (2003)] approach only the use of the maximum
evidence approach will be discussed to evaluate the integral. Using maximum evi-
dence approach, Eq. 13 can be written in its approximate form as

f (an+1|D,xn+1,K(·))∼= f (an+1|D,xn+1,K(·),ΘMAP) (14)

The approximation in Eq. 14 is based on the assumption that the posterior distribu-
tion over Θ, i.e f (Θ|D,K(·)), has a sharp peak around ΘMAP. This approximation
is generally reasonable [Gibbs (1997)] and predictions are often found very close
to those obtained using the true predictive distribution. Now to find the peak loca-
tion of f (Θ|D,K(·)) the posterior distribution needs to be optimized , which can
be written as

f (Θ|D,K(·)) =
f(an|{xi}i=1,2,...n,K(·),Θ) f (Θ)

f(an|{xi}i=1,2,...n,K(·)) (15)
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In Eq. 15, the denominator is independent of Θ and can be ignored in the optimiza-
tion process. On the other hand, the other two terms, the likelihood f (an|{xi}i,K(·),Θ),
and the prior f (Θ), need to be considered in the optimization of f (Θ|D,K(·)).
With the assumption that all damage indices ai follow a Gaussian distribution and
using Eq. 8, the logarithm of the objective function can be written as

L≡ Log( f (Θ|D,K(·)))

=−1
2

Log(detKn)−
1
2

aT
n K−1

n an−
n
2

Log(2π)+Log f (Θ)
(16)

The log-likelihood function L in Eq. 16 is generally multi-modal and can be op-
timized using any multi-variate optimization algorithm. In the present work, the
conjugate gradient method is used to optimize the log-likelihood function and to
obtain the optimized hyperparameters. Note that it is common practice [Gibbs
(1997)] to ignore the log prior term in Eq. 16 due to the absence of knowledge
on Θ. The resulting solution may not always a realistic solution, however it can
be assumed that Log f (Θ) is implicitly modeled through the optimization of the
log-likelihood L.

2.2.5 Input-output data set for single step ahead prediction

For single step ahead prediction, the Gaussian process prediction model given by
Eq. 8, predicts the single step ahead damage index. For prediction of the n + 1th

damage index, the training data set D and test input vector xn+1 can be stated as,

D =
[

xi | ai
]

i=d,...,n
=



Training data matrix︷ ︸︸ ︷
a0 a1 . . . ad−1

a1 a2 . . . ad
...

... . . .
...

an−d an−d+1 . . . an−1

Target vector︷ ︸︸ ︷
ad

ad+1
...

an


(17)

xn+1 =


Test input data vector︷ ︸︸ ︷

an−d+1 an−d+2 . . . an

 (18)

where in Eq. 17 and 18 the subscript n symbolizes the nth damage instance or
damage level, up to which the last on-line data was available, and d symbolizes
dimension of the input space.
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2.2.6 Input-output data set for multi step ahead prediction

For multi step ahead prediction, the GP model given by Eq.8 recursively predicts
the future state after the last on-line data available. However, unlike the single
step ahead prediction model, the multi step ahead training data set D and test input
vector xn+ñ are adaptively updated with off-line predicted damage indices rather
than on-line estimated damage indices. For prediction of the n+ ñth damage index
the training data set D and test input vector xn+ñ can be written as

D =
[

xi | ai
]

i=d,...,n−1+ñ

=



Training data matrix︷ ︸︸ ︷
a0 a1 . . . ad−1

a1 a2 . . . ad
...

... . . .
...

an−d an−d+1 . . . an−1

an−d+1 an−d+2 . . . an

an−d+2 an−d+3 . . . ap
n+1

...
... . . .

...
ap

n−d−1+ñ ap
n−d+ñ . . . ap

n−2+ñ

Target vector︷ ︸︸ ︷
ad

ad+1
...

an

ap
n+1

ap
n+2
...

ap
n−1+ñ



(19)

xn+ñ =


Test input data vector︷ ︸︸ ︷

ap
n−d+ñ ap

n−d+ñ+1 . . . ap
n−1+ñ

 (20)

where in Eq. 19 and 20 the subscript n symbolizes the damage instance up to which
the last on-line data is available, and the subscript ñ symbolizes the damage instance
number after the last on-line data available, and the superscript p symbolizes pre-
dicted damage index from the off-line module, as opposed to being estimated from
the on-line model.

2.2.7 Residual useful life estimation (RULE)

The residual useful life estimation can be defined as the difference between the
number of fatigue cycles at which the predicted damage index becomes critical, i.e
reaches its critical value (a∗), and the number of fatigue cycles at which the last
on-line data is available. The RULE can be defined as:

RULE = (n+ ñ∗)∆N +N0− (n)∆N−N0 = ñ∗∆N (21)
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where ∆N is the number of fatigue cycle increments per each increment of damage
instance and ñ∗ corresponds to the number of damage instances for the damage
index to become critical after the last available on-line data.

3 Numerical Results

3.1 Fatigue experiment and data collection

To numerically validate the integrated prognosis algorithm, a fatigue test was per-
formed on an Al-6061 cruciform specimen under biaxial loading. The loaded cru-
ciform specimen in an MTS biaxial fatigue test frame can be seen in Fig.3. The
specimen was subjected to a constant amplitude fatigue loading with maximum
amplitude (σmax) 4 kips and load ratio R = 0.1, and the biaxial machine actuator
was operated with a frequency of 10 Hz. It should be noted that, the maximum
stress amplitude was equal to two thirds the yield stress σY . Based on nonlinear
finite element analysis of cruciform specimen, the yield stress was approximated
as σY = 6kips. Also note that both the x-axis actuator and y-axis actuator of the
biaxial frame were subjected to in-phase fatigue loading. For on-line state estima-
tion, passive strain gauge sensors were used. Two strain gauges were mounted on
the web area (Fig. 4a), one strain gauges mounted on the horizontal flange (Fig.
4b), and the other one on the vertical flange (Fig. 4b) of the cruciform specimen.
In addition, a hole in the center of the specimen was made to create crack initia-
tion in the web area of cruciform specimen. To accelerate damage growth an EDM
notch of 1 mm length was made at left bottom quadrant boundary of the central
hole (45o to the vertical axis). A 48 channel NI PXI system was used to collect the
strain gauge signals and the measurements from the biaxial machine load cells. In
addition, a high resolution SONY camera was used to visually monitor the crack
growth. The data acquisition system and the computer capturing the visual image
were synchronized with the biaxial machine controller to collect the time synchro-
nized data/ image at a specified interval of ∆N = 1500cycles. The data and image
collection started at approximately 11 k cycles. The image and sensor data were
collected at 47 different time instance. For the first 44 instances, the signals and
images were collected while the biaxial machine was running and during the last
three instances the data was collected when the machine was not running. This
leads to a total of 44 different damage cases with the last damage state occurring
at 75.5 kcycles. The proposed MATLAB based prognosis algorithm was also syn-
chronized with the data acquisition system to estimate the current damage state,
and to predict the future damage state and remaining useful life in real time.
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Figure 3: Al-6061 cruciform specimen loaded in a MTS biaxial fatigue test frame.

3.2 Correlation analysis based damage index estimation

To evaluate the damage index as mentioned earlier, strain gauge measurements
were mapped as input and output. For example, the signal (εF

x ) from the strain
gauge mounted on the horizontal flange (or X-arm) of the cruciform specimen was
considered as the input signal u, whereas the signal (εW

x ) from the web mounted
stain gauge was considered as output y. It should be noted that both the horizontal
axis strain (εW

x ) and the vertical axis strain (εW
y ) were measured by two different

strain gauges placed perpendicular to each other. Comparison of input strain (εF
x )

and output strain (εW
x ) at different damage level are shown in Fig. 5. The fig-

ure shows the comparison for four different damage cases, damage case 7 (at 20
kcycle), damage case 20 (at 39.5 kcycle), damage case 42 (at 72.5 kcycle) and
damage case 44 (at 75.5 kcycle). From the figure it can be seen that there is no
clear trend between input and output strain at different damage levels. Rather than
directly using the time series data for different damage case comparisons, using
Eq. 4, the cross-correlation coefficient between input and output was found for dif-
ferent damage cases. The comparison of cross-correlation coefficients for damage
level 1 (reference case at 11 k cycles) with cross-correlation coefficient at different
damage levels are shown in Fig. 6. Figure 6a, 6b, 6c, and 6d, respectively show the
comparison of cross-correlation coefficients of damage case 1 with damage case 7,
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Figure 4: Undamaged and damaged condition of cruciform specimen: Fig. a shows
the undamaged cruciform specimen. This rear view of the specimen also shows the
location of two strain gauges mounted in the web area. Fig. b shows the final
damage condition (at 75.5 kcycles) of the cruciform specimen. This front view
of the specimen also shows the location of two strain gauges: one mounted on
horizontal arm and the other mounted on the vertical arm of the specimen.

damage case 20, damage case-42 and damage case-44. It is to be noted that the
results shown in Fig.6, the x-axis flange strain (εF

x ) and x-axis web strain εW
x ) are

respectively taken as input u and output y. Also, from Fig.6 it can be seen that
the cross-correlation plot shows a better trend of damage growth, compared to the
direct time series measurements shown in Fig. 5. However, to compare the quan-
titative damage states between different damage levels, the scalar damage index
proposed in Eq. 5, was evaluated for the different damage states. Figure 7 shows
the damage indices evaluated for two different output measurements, εW

x and εW
y ,

against input measurements εF
x from horizontal (x-axis) flange starain gauge. The

figure shows a clear trend of damage growth with εW
x as output strain compared to

εW
y as output strain. This is because the input signal εF

x is poorly correlated with
the y-axis web strain (εW

y ) measurements. Figure 7 also shows that with respect
to εW

y as the output strain, except for final failure regime, there was no clear trend
in damage growth. The higher damage indices during the final failure regime are
possibly due to presence of shear strain components. Also from Fig. 7 a good cor-
relation between normalized visual measurements and estimated damage indices
(found with respect to εW

x as output) is also observed. It must be noted that, the
visual measurement is available up to damage level 29 (up to 53 kcycle). After the
29th damage level, it was found that the camera went out of focus. In addition to
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the strain signal as input, damage indices were also obtained using biaxial frame
load cell measurements (x-axis load cell). The corresponding damage indices are
shown in Fig. 8, and a similar trend in damage index growth, as in the previous case
(with x-axis flange strain measurement as input), can be observed. However, it is
noted that in a real life scenario, it is hardly possible to directly measure the loads
applied to the structure. On the other hand, it is realistic to mount strain gauges or
small sensors at required locations without affecting the structural integrity of the
host structure. Therefore the results presented in the subsequent sections are based
only on the strain gauge based data.

Figure 5: Input output strain comparisons at different damage levels.

3.3 Single step ahead state forecasting

Figure 9 shows the comparison between single step ahead forecasted state and ac-
tual damage state (or damage index) with on-line data available up to the previous
damage level. As seen in the figure, the prognosis algorithm starts predicting from
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Figure 6: Cross-correlation coefficient comparison at different damage levels with
the reference level at 11 kcycles

damage level 7. It is to be noted that the dimension d of the Gaussian process input
was chosen as 6. Therefore the prognosis algorithm requires at least six damage
states to obtain the 1×6 test input vector (see Eq. 18). Also, with unavailability of
any training data set D (Eq. 17), to predict the 7th damage state, the initial hyperpa-
rameters (Eq. 16) are chosen as: θ

p
n = θ w

n = 1 and θ ϑ
n = 0.1. Because of this, there

is a large mismatch between the 7th level predicted damage index and the actual
damage index. However, for predicting states of damage level eight and beyond,
the training input data matrix (Eq. 17) and target vectors (Eq. 18) are recursively
updated. For each recursive updating, a new set of hyperparameters were obtained
using the conjugate gradient optimization method. Once the hyperparameters are
estimated, the one-step ahead damage index was predicted for the immediate ahead
damage level. Figure 9 shows a clear correlation between one-step ahead predicted
damage index and the actual damage index. It must be noted that the actual dam-
age indices are the on-line damage states (or damage index); those were directly
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Figure 7: Variation of damage index with fatigue cycle. Flange (x-axis) strain
measurements were used as input and web (x and y-axis) strain measurements as
output
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estimated from the sensor signals. The threshold value of 0.7 is 70% of the final
damage index value of 1. From Eq. 5 the damage index reaches its final value of 1
when there is no cross-correlation between the input u and y. This is because the
specimen undergone complete failure. It should be noted that choosing the criti-
cal damage index value of 0.7 was based on the results from previously performed
similar experiments.
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Figure 9: One-step ahead damage state prediction using off-line predictive model

3.4 Multi step ahead prediction

Unlike the single step ahead prediction, the multi step ahead prediction recursively
predicts the damage state multi step ahead of the damage level at which last online
data was available. Figure 10 shows the multi step ahead state prediction. Similar
to single step ahead prediction process, the prognosis algorithm was started after
the 6th damage level (i.e. at 18.5 kcycles). From the 7th damage level (from 20kcy-
cles), damage indices were predicted and then fed back to the prognosis model to
update the Gaussian process training data matrix (Eq. 19) and the test input vec-
tor (Eq. 20). The feedback process and the corresponding future state predictions
were continued recursively as long as the predicted damage index did not reach its
critical value of 0.7. It is to be noted that unlike the single step ahead prediction,
the training data matrix and the corresponding test input vector were updated with
off-line model predicted states, rather than being updated with on-line model es-
timated states, which could not be available in real time. It can be seen from the
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Figure 10: Multi-step ahead damage state prediction using off-line predictive
model.

Fig. 10 that, with on-line data available up to damage level 23 (at 44 kcycles),
the multi step ahead predicted states fails to reach the critical value of 0.7. This
is because the predictive model was unable to learn the damage growth dynam-
ics. It is also to be noted that if the predictive model does not learn the damage
growth dynamics it keeps on running with only predicting unvarying damage in-
dices. The predicted unvarying damage indices time series can also be seen from
the Fig. 10. Without satisfying the threshold criteria, the prediction of unvarying
damage indices could have continued indefinitely. However to reduce the com-
putational expenses, the prognosis algorithm was stopped at certain times. The
criteria for stopping the algorithm was if the rate of damage index growth was not
greater than 1× 10−7/cycles for six consecutive damage levels, the off-line pre-
dictive model had to be terminated. This was because of physical reason, if the
damage growth was slow enough, the predicted damage index, would never reach
the critical value even if the algorithm had to run indefinitely. From Figure 10 it is
also seen that, the first multi step ahead prediction curve, that reaches the critical
value starts from damage level 24 (from 45.5 kcycles). Beyond this damage level,
the multiple step ahead prediction increasingly converges with the actual damage
index. From the above mentioned observations, it can be assumed that the pre-
diction horizon (or the true positive regime) was between damage level 24 (45.5
kcycles) and damage level 42 (72.5 kcycles), during which, the predicted damage
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states reached its critical value.

3.5 Residual useful life estimation (RULE) and mean square error evaluation

Using Eq. 21, the residual useful life at any given damage level (up to which the
last online data was available) was estimated. Figure 11 shows the comparison of
predicted RULE and actual RULE. From the figure it can be seen that, there is a
good correlation between predicted and actual RULE in the true positive regime
i.e., between 45.5 kcycles and 72.5 kcycles. Also as more and more online data
becomes available, better correlation between predicted RULE and actual RULE
is observed. Figure 12 shows the mean square error between predicted RULE and
estimated RULE. It can be seen that during the true positive regime, the mean
square error is substantially lesser value compared to the mean square error during
the false positive regime.
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Figure 11: Comparision of predicted RULE and actual RULE.

4 Conclusion

An on-line-off-line prognosis model is proposed for adaptive future damage state
prediction and residual useful life estimation. The proposed prognosis model com-
bines an on-line state estimation model with an off-line predictive model to adap-
tively estimate the residual useful life of an Al-6061 cruciform specimen under
biaxial loading. The on-line model was based on a correlation analysis approach,
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Figure 12: Mean square error between predicted RULE and actual RULE.

which estimates the current damage states. The numerical results showed good cor-
relation between on-line estimated state and the normalized visual measurements.
Once the current damage state was available from the on-line model, the informa-
tion was fed to an off-line predictive model to obtain the future states and remaining
useful life estimation (RULE). The off-line predictive model is a high-dimensional
kernel function based recursive Gaussian process model. The future states are re-
cursively predicted by feeding back the previous predicted states to the off-line
model. Also, the model parameters (Gaussian process hyperparameters) were up-
dated with repetitive conjugate gradient based optimization. Good correlation was
also observed between actual damage states and predicted future damage states well
before the final failure occured. Furthermore, a good correlation between predicted
RULE and actual RULE is also observed during which, the predicted damage index
reached its critical value.
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