
Copyright © 2010 Tech Science Press SDHM, vol.6, no.2, pp.77-87, 2010

Weight Functions for Structural Integrity Assessment:
Method and Applications

Xue-Ren Wu1

A review of the state-of-the-art is presented on the weight function method for
fracture-mechanics-based structural integrity assessment with regard to crack-like
defects. The weight function method provides a powerful tool for the determination
of key parameters, such as stress intensity factors and crack opening displacements
for cracked structural components. For two dimensional (2D) crack problems,
weight functions were obtained in closed-form for both centre- and edge-crack con-
figurations. For three dimensional (3D) cases, a combination of the closed-form 2D
weight functions and the slice synthesis technique makes it possible for rapid deter-
mination of stress intensity factor at any point along the crack front. The versatility,
efficiency and accuracy of the weight function method, especially for treating crack
problems with complex loadings, were demonstrated with various examples.

1 Introduction

One of the most frequent causes of failure is the presence of crack-like defects,
because they can lead to catastrophic structural failure well within the original de-
sign envelope without early warning. Fracture mechanics is a most valuable tool
for examining the safety of cracked structures, for developing effective remedial
measures and determining their remaining useful life. The key prerequisite for the
application of linear elastic fracture mechanics (LEFM) is the knowledge of accu-
rate fracture parameters, e.g. stress intensity factor (SIF) and crack opening dis-
placement (COD) for cracked bodies subjected to the loading in consideration. Be-
cause of the singularity at the crack-tip and, the crack length as one additional vari-
able, analysis of crack problems are much more difficult and time-consuming than
uncracked cases. Various analysis methods for crack problems within the LEFM
frame have been developed over the past decades. However, many of the meth-
ods are inefficient in handling complex load cases. The weight function method
provides very powerful, reliable, easy-to-use and cost-effective means to overcome
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such difficulties. The present paper gives a state-of-the-art review of this versatile
approach.

2 Weight Functions for 2D-Crack Problem Analyses

For 2D crack problems, it has been shown that SIF can be obtained by a quadrature
of the product of the weight function and the crack line stress [Bueckner (1970),
Wu and Carlsson (1983, 1991), Wu (1992), Fett and Munz (1997)]. The SIF is, in
non-dimensional form:

K = f σ
√

πaW , f =
∫ a

0

σ(x)
σ

m(a,x)√
πa

dx, a = A/W, x = X/W (1)

where m(a, x) is the weight function, σ (x) is the crack line stress,a and x are nor-
malized crack length and coordinate along the crack, respectively, W is the charac-
teristic length of the crack body.

The essence of the weight function approach is the separation of the variables upon
which SIF depends. Once determined, the weight function can be used unlimitedly
for any load case, with good accuracy. Compared to the numerical methods such
as FEM, the weight function method can drastically reduce computational effort,
usually by several orders. The central issue of the method is the accurate deter-
mination of m(a, x). One effective way is to employ the relationship between the
weight function and the crack face displacement:

m(a,x) =
E ′
√

W
Kr

∂ur(a,x)
∂a

(2)

where E ′ = E (plane stress), E ′ = E/(1− v2) (plane strain), Kr and Ur are SIF
and dimensionless crack face displacement (ur = Ur/W ) for a reference load case
σ r(x), respectively.

To determine ur, consider the general crack face loading - the polynomial type:

σr(x) =
M

∑
m=0

Smxm (3)

For centre crack(s), the crack face displacement ur is assumed to take the form of

ur(a,x) =
σa
E ′

√
1− (x/a)2

J

∑
j=1

Fj(a)[1− (x/a)2] j−1 (4)

For edge crack(s), ur is assumed as

ur(a,x) =
σ√

2
a
H
·

J

∑
j=1

Fj(a) · (1− x
a
) j− 1

2 (5)
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where the Fj(a)-functions are determined by a number of conditions. The above
crack opening displacement expressions lead to the following weight functions (see
[Wu and Carlsson (1991)] for details),

For centre cracks,

m(a,x) =
1√
πa

J+1

∑
i=1

βi(a) · [1− (
x
a
)2]i−

3
2 ;

βi(a) =
[
a ·F ′i−1 (a)− (2i−4) ·Fi−1(a)+(2i−1) ·Fi(a)

]
/ fr(a)

(6)

For edge cracks,

m(a,x) =
1√
2πa

J+1

∑
i=1

βi(a) · (1− x
a
)i− 3

2

βi(a) =
{

a ·F ′i−1 (a)+
1
2

[(2i−1) ·Fi (a)− (2i−5) ·Fi−1(a)]
}

/ fr(a)

(7)

Inserting the weight function m(a, x) into Eq. (1), the non-dimensional SIFs for
arbitrarily loaded centre- or edge-crack(s) in a finite solid is readily calculated:

f =
1

πa

∫ a

0

σ(x)
σ

J+1

∑
i=1

βi(a) · [1− (
x
a
)2]i−

3
2 dx, for centre crack (8)

f =
1√
2πa

∫ a

0

σ(x)
σ

J+1

∑
i=1

βi(a) · (1− x
a
)i− 3

2 dx, for edge crack (9)

For many σ (x)–distributions, the above integrations are often amenable to analyt-
ical treatment. It is advantageous to make use of the closed-form f –solutions for
some basic loadings, as this will further minimize computation, and eliminate the
possible error by numerical quadrature. A large variety of load cases have been
considered [Wu and Carlsson (1991)], and solution accuracy has been thoroughly
assessed. Three typical basic loadings are treated in the following.

(i) For a pair of point forces P (unit thickness) acting on the crack faces at x, the
SIF becomes

K =
P√
πaw

G(a,x/a) (10)

The function G(a,x/a) is the Green’s function (or influence function), which is
related to weight function m(a, x) by

G(a,x/a) = m(a,x) ·
√

πa (11)
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(ii) If the crack line stress distribution over the considered crack length is of power
function type:

σ(x)/σ = |xn| , 0≤ |x| ≤ a (12)

the corresponding non-dimensional SIF denoted by fn becomes

fn =
∫ a

0
xn · m(a,x)√

πa
dx =

an

π

J+1

∑
i=1

βi(a) ·Ti,n for centre crack (13)

fn =
2n+ 1

2 n!an

π
[
J+1

∑
i=1

βi(a) ·
n

∏
k=0

1
2i−1+2k

] for edge crack (14)

The fn–expressions is very useful, as most continuous crack line stress distributions
can be represented by a single polynomial in 0≤ |x| ≤ a:

σ(x)/σ =
N

∑
n=0

Snxn, 0≤ |x| ≤ a (15)

The SIF is then simply obtained by superposition:

K = f σ
√

πaW , f =
N

∑
n=0

Sn fn (16)

(iii) For a linear stress segment acting at any part of the crack faces

σ(x)/σ = k |x|+b, |x1| ≤ |x| ≤ |x2| (17)

the SIF can be determined by:

K = f σ
√

πaW , f = k fl +b fc (18)

where fl and fc represent the contribution from the linear and constant part, respec-
tively.

For centre crack(s):

fl =
a
π

[
J+1

∑
i=1

βi(a)
2i−1

[
1−
( x

a

)2
]i− 1

2
]x1

x2

,

fc =
1
π

[
J+1

∑
i=1

βi(a)Qi (x/a)

]x2

x1

(19)
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Q1 (x/a) = sin−1 (x/a) , i = 1

Qi (x/a) =
1

2i−2

{
x
a

[
1−
( x

a

)2
]i− 3

2

+(2i−3) ·Qi−1 (x/a)

}
i≥ 2

For edge crack(s):

fl =
√

2a
π

[
J+1

∑
i=1

βi(a) ·
[
2+(2i−1) · x

a

]
(2i−1)(2i+1)

(
1− x

a

)i− 1
2

]x1

x2

fc =
√

2
π

[
J+1

∑
i=1

1
2i−1

βi(a) ·
(

1− x
a

)i− 1
2

]x1

x2

(20)

The resultant SIF is readily obtained by summation of all the segment contributions
over the entire crack length. The piecewise-linearization provides a most versatile
way to calculate the SIFs for any crack line stress distribution. It is particularly
useful for cases where a single polynomial is not adequate to fit the drastic stress
variations over the entire crack length of interest.

A large number of SIFs for 2D crack problems were obtained by the present writer
and co-workers using the 2D closed form weight functions [Wu and Carlsson (1991),
Wu (1992a, 1992b)]. Examples of SIF-solutions are shown in Figs 1∼6. The effec-
tiveness and accuracy of this approach is clearly demonstrated. The weight function
method was also extensively studied by Fett and Munz, useful information can be
found in Reference [Fett and Munz (1997)].
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Figure 1: SIF for double radial cracks
at a circular hole in infinite plate under
inclined tension
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Figure 3: SIF for a centre crack in a
butt-welded plate subjected to longitu-
dinal welding residual stress

 

Figure 4: SIF for an internal ra-
dial crack in a hollow cylinder with
autofrettage-induced residual stress

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

a

Ro/Ri :
 1.25
 1.5
 1.75
 2
 2.25
 2.5
 3
 4
 6
 8

from top  

N=1

 

Figure 5: SIF for double radial internal
cracks in circular hollow cylinder sub-
jected to steady state thermal loading

 

Figure 6: SIF K/K0 for a single edge
crack in a circular cylinder subjected to
thermal shock loading

3 Weight Function Method for 3D-Crack Problems

Because of the SIF-variation along the crack front, 3D crack problems are much
more difficult to analyze than the 2D cases. For 3D analysis, a weight function
method was developed by Zhao and Wu (1989, 1990), by using a combination
of the slice-synthesis procedure and the above 2D closed form weight function.
In this approach, a 3D crack configuration is converted into an “equivalent” slice
model which is able to simulate all the major 3D characteristics with the aid of
the analytical solution for an embedded elliptical crack in an infinite body. The
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3D WFM transforms the restraining effect of the un-cracked part of a 3D cracked
body into a kind of elastic boundary condition on 2D slices. As shown in Fig.7,
the cracked body is decomposed into two orthogonal slices (basic slice and spring
slice) of infinitesimal thickness, being parallel with the major and minor axis, re-
spectively. The restraining effect due to the un-cracked part is treated as a kind
of elastic boundary condition on those boundaries of the 2D slices towards which
the crack extends. The weight function for these slices are constructed through the
two limiting cases, one for zero constraint, the other for fixed constraint, by using
the general weight functions for 2D crack problems. The mechanical coupling be-
tween the two sets of slices is represented by the spring force P(X , Y ), which is
determined by the crack opening displacement compatibility requirement:

V (x,y) = V (ax,y) = V (cy,x) (23)

To calculate the crack opening displacements, 2D weight functions are again used.
After having determined the spring forces, SIFs for the two sets of slices, one of
which is subjected to spring forces alone and the other to both applied load and the
negative of the spring forces, are calculated using the 2D weight functions. Finally
these 2D-SIFs for each set of slices are used to compound the 3D-SIFs along the
crack periphery according to the following general relationship between the 2D and
3D-SIFs:

k(ϕ) =
1

1−ν2

{
K4

a (ax)+
[

E
Es

Kc(cy)
]4
}1/4

(−1)n (24)

Details of this 3D approach and typical applications are referred to Zhao et al.
(1989), Zhao and Wu (1990), Wu et al. (1998) and Zhao et al. (1995). Fig-
ure 8 shows the high accuracy level of the weight function solution as compared
with Newman’s various FEM-results for a semi-circular surface crack and quarter-
circular corner crack at a semi-circular notch of single edge notch tension specimen
[Wu et al. (1998)]. Bakuckas made a detailed study for the comparison of 3D SIFs
for two symmetric corner cracks in a straight-shank hole, obtained by a variety
of numerical methods and the above 3D weight function method. It was found
that all the solutions were within a narrow band of 3% about the average solution,
[Bakuckas (2001)].

4 Crack Opening Displacements

Another important application of the weight function method is the evaluation of
crack opening displacements (COD), or profiles, for cracks subjected to arbitrary
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Figure 7: Slice model for a surface crack at a notch: basic slices, (a), (c) and (g);
spring slices, (b), (d), (f) and (h)
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Figure 8: (a) Comparison of SIFs by 3D weight function method and FEM, surface
crack at semi-circular notch; (b) Comparison of SIFs by 3D weight function method
and FEM, corner crack at semi-circular notch
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loading. Such knowledge is very useful for crack-tip plastic zone analysis, crack-
closure-based fatigue crack growth life prediction, modeling of various material
toughening mechanisms, bridging stress computation, residual stress influence on
crack tip parameters, and experimental determination of crack lengths using com-
pliance methods, etc.

A general way to determine COD for arbitrary crack line loadings is to use the
relationship between the weight function m(a,x) and the COD, u(a, x), via Eq. 2:

u(a,x) =
σ

E ′

∫ a

a0

[ f (s)
√

πs] ·m(s,x)ds (25)

where f (s) is the non-dimensional SIF associated with the load case for which
the COD is desired. This f (s), if not available, can be evaluated with the weight
function method for any crack line loading σ (x). In explicit form, Eq. 21 becomes

u(a,x) =
σ

E ′

∫ a

a0

[ f (s)
I

∑
i=1

βi(s) · [1− (
x
s
)2]i−

3
2 ds, for centre crack (26)

u(a,x) =
σ

E ′
√

2

∫ a

a0

[ f (s)
I

∑
i=1

βi(s) · (1−
x
s
)i− 3

2 ds, for edge crack (27)

For a segment of uniform pressure acting in the immediate wake of the crack tip,

u(a,d/a,x/a) =
σ

E ′π

∫ a

a0

[1− (
x
s
)2]−

1
2 ·

I

∑
i=1

βi(s) ·Qi(
d
s
) ·

I

∑
i=1

βi(s) · [1− (
x
s
)2]i−1ds

(28)

Q1(
d
s
) = cos−1(

d
s
), i = 1

Qi(
d
s
) =

1
2i−2

{
(2i−3) ·Qi−1(

d
s
)− (

d
s
) · [1− (

d
s
)2]i−

3
2

}
, i≥ 2

for centre crack, and

u(a,d/a,x/a) =
σ

E ′π

∫ a

a0

[
1− d

s
1− x

s
]−

1
2 ·

I

∑
i=1

βi(s)
2i−1

· (1− d
s
)i−1 ·

I

∑
i=1

βi(s) · (1−
x
s
)i−1ds

for edge crack (29)

A large number of cases for COD were obtained in Wu and Carlsson (1991).
One example for a partially loaded centre crack is given in Fig. 9, which shows
good agreement of the COD between the results from the above weight function
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method and the exact solution. Using the weight function approach, Liu and Wu
extended the crack-closure model to study fatigue crack closure behavior for var-
ious cracked geometries, and developed analytical approximate COD-expressions
for edge cracks subjected to a segment uniform crack face pressure [Liu and Wu
(1997)], which can facilitate fatigue crack growth analysis.

5 Conclusions

The weight function method is a very powerful method for the evaluation of fracture
mechanics parameters, such as stress intensity factors and crack opening displace-
ments, especially for cracks in complex stress fields, and when a large number of
load cases are considered. The distinct advantages of the method are versatility,
high efficiency, easy-to-use and good accuracy. The method is well established,
and provides a very efficient and reliable tool for engineering structural integrity
assessment where the presence of crack-like defects is a major concern.
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