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On the Structural Response of Elasto/Viscoplastic
Materials Subject to Time-Dependent Loadings

F. De Angelis1

Abstract: The influence of different loading rates on the structural response of
elasto/viscoplastic materials is illustrated with specific numerical examples. An
associated formulation of the evolutive laws in elasto/viscoplasticity is presented
within the framework of the generalized standard material model with internal vari-
ables. An appropriate solution scheme is applied which is capable to be adopted
for different constitutive models. Different loading programs are analyzed by con-
sidering different values of the loading rate and of the intrinsic properties of the
material. Computational applications and examples are illustrated which describe
the rate-dependency of the elasto/viscoplastic material behavior. The significance
of the loading program and the loading rate is therefore emphasized with respect to
the nonlinear structural response of elasto/viscoplastic materials.
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1 Introduction

Rate-independent plasticity has achieved in the last two decades a significant pro-
gress not only in the definition of an appropriate theoretical framework of the phe-
nomenon but also in the computational treatment of the model, see among others
Crisfield (1997), Simo and Hughes (1998), and Zienkiewicz and Taylor (2005).

On the other hand the problem of the numerical integration in viscoplasticity may
not be considered as trivial, see e.g. Simo (1991) and Simo and Govindjee (1991).
Considerations on the stability of the generalized midpoint rule integration algo-
rithms are reported for elastoplasticity by Ortiz and Popov (1985), while for vis-
coplasticity by Hughes and Taylor (1978), Simo (1991) and Simo and Govindjee
(1991).

In viscoplasticity a complete variational formulation of the structural evolutive
problem with internal variables is provided, e.g., by DeAngelis (2000). The deriva-
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tion of a class of return mapping algorithms associated with the system of varia-
tional inequalities is discussed, e.g., by Crisfield (1997), Simo and Hughes (1998),
and Zienkiewicz and Taylor (2005). More specifically, integration procedures were
developed by Zienkiewicz and Cormeau (1974) who considered time step restric-
tions for the Euler forward difference method in quasi-static elasto/viscoplasticity.
Hughes and Taylor (1978) reconsidered the application of implicit methods by the
use of an algorithmic procedure which requires the inversion of a compliance ma-
trix. Szabo (1990) compared different time integration schemes in a review article.
Integration algorithms for viscoplastic models involving non-smooth yield surfaces
are reported by Simo, Kennedy, and Govindjee (1988), while stability properties of
the algorithms are investigated by Simo (1991) and Simo and Govindjee (1991). In-
tegration procedures for viscoplastic models are also presented by Ju (1990) and by
Peric (1993). In the latter a perturbation method is also proposed for the solution of
stiff equations arising in low-rate-sensitive materials. Alternative integrator formu-
lations have been investigated by Freed and Walker (1992) and Freed and Walker
(1993). Chaboche and Cailletaud (1996) showed integration schemes specifically
developed for complex material models and analyzed integration methods for plas-
tic and viscoplastic models encompassing nonlinear kinematic hardening behavior.
General solution procedures suitable to be applied to different constitutive mod-
els have been proposed by Alfano, DeAngelis, and Rosati (2001). Extensions to
include rate plasticity have been investigated by DeAngelis, Cancellara, Modano,
and Pasquino (2011), DeAngelis and Cancellara (2012a) and DeAngelis and Can-
cellara (2012b). For a comprehensive account on the computational modeling of
elastoplasticity and elasto/viscoplasticity see, among others, Crisfield (1997), Simo
and Hughes (1998) and Zienkiewicz and Taylor (2005).

In the present paper the influence of different loading rates on the nonlinear struc-
tural response of elasto/viscoplastic materials is illustrated and specific numeri-
cal examples are detailed. A solution procedure is adopted which can be applied
to different viscoplastic constitutive models. The treatment is developed within
the framework of the generalized standard material model with internal variables
and an associated formulation of the evolutive laws in elasto/viscoplasticity is pre-
sented. Different loading programs are evaluated by considering different values
of the loading rates and of the intrinsic properties of the material. The loading is
enforced by increasing the prescribed boundary displacements and, accordingly,
a non-dimensional loading program parameter is introduced which is appropri-
ate to such cases. Numerical computations and results for both rate-independent
and rate-dependent loadings are reported. Computational applications are illus-
trated for evaluating the effects of the loading rates on the structural response of
elasto/viscoplastic materials. The significance of the type of loading program and
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loading rate on the structural response of elasto/viscoplastic materials is therefore
illustrated in detail with specific numerical examples.

2 Continuum problem

2.1 General remarks

Let Ω ⊂ℜn, 1≤ n≤ 3 be the reference configuration of the body B and particles
labelled by their position vector x ∈ Ω relative to a Cartesian coordinate system.
Let T ⊂ ℜ+ be the time interval of interest. We denote with V the space of dis-
placements, D the strain space and S the dual stress space. We also denote by

u : Ω ×T →V (1)

the displacement field and by

σ : Ω ×T → S (2)

the stress field. The compatible strain field is defined as

ε(u) = ∇
s(u) : Ω ×T → D, (3)

where ∇s is the symmetric part of the gradient.

The hypothesis of small strains is adopted and viscous effects are assumed to show
beyond the elastic range. We therefore consider the class of material behavior often
referred to in the literature as rate-sensitive materials, see e.g. Naghdi and Murch
(1963) and Skrzypek and Hetnarski (1993). For a survey account see also Duvaut
and Lions (1972) and Lemaitre and Chaboche (1990). Accordingly, we denote with
εe the elastic strain. The strain difference

ε
vp = ε− ε

e (4)

is denoted as the viscoplastic strain, in which combined viscous and plastic effects
are represented.

The elastic energy W : D→ℜ and the complementary elastic energy W ∗ : S→ℜ

in case of linear elasticity are expressed in the quadratic forms

W (εe) =
1
2
〈Cε

e,εe 〉, W ∗(σ) =
1
2
〈σ ,C−1

σ 〉, (5)

where C is the elastic stiffness and the symbol 〈 . , . 〉 denotes a non-degenerate
bilinear form acting on dual spaces.

In order to represent hardening behavior we consider a dual pair of kinematic
α = (αkin,α iso) ∈ X ×ℜ and static χ = (χkin,χ iso) ∈ X ′×ℜ internal variables,
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where α iso ∈ℜ and χ iso ∈ℜ model isotropic hardening and αkin ∈ X and χkin ∈ X ′

model kinematic hardening, X and X ′ being dual spaces. The hardening matrix
H = diag[Hkin,H iso] is introduced, so that static and kinematic internal variables
are linked by the relation χ = Hα .

A convex yield function f (σ ,χkin,χ iso) defines the convex elastic domain E as

E
def= {(σ ,χkin,χ iso) ∈ S×X ′×ℜ : f (σ ,χkin,χ iso)≤ 0}. (6)

An important class of viscoplastic hardening materials arises when the yield func-
tion is expressed by

f (σ ,χkin,χ iso) = F(σ −χkin)−χ iso− yo, (7)

where yo is a material parameter.

The hardening potential H (α) : X ×ℜ→ ℜ and the complementary hardening
potential H ∗(χ) : X ′×ℜ→ℜ are introduced for modeling hardening phenomena.
For linear hardening they are expressed in the quadratic forms

H (α)=
1
2

Hkinαkin . αkin +
1
2

Hisoα
2
iso,

H ∗(χ)=
1
2

χkin . H−1
kinχkin +

1
2

H−1
iso χ

2
iso.

(8)

The Helmholtz free energy is thus expressed as

Ψ(εe,α) = W (εe)+H (α), (9)

and the complementary free energy as

Ψ
∗(σ ,χ) = W ∗(σ)+H ∗(χ). (10)

2.2 The generalized standard material model

In the generalized standard material model, introduced by Halphen and Nguyen
(1975), strains and kinematic internal variables, as well as the corresponding dual
ones, are collected in suitably defined generalized variables

E = (ε,o), Ee = (εe,α), Evp = (εvp,−α), Σ = (σ ,χ), (11)

for which the same formal rules of the basic variables apply. Accordingly the gener-
alized kinematic and static variables are defined respectively in the product spaces
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D̃ = D×X×ℜ and S̃ = S×X ′×ℜ. We remark that the additive decomposition of
the strains is carried over to the generalized variables, so that

E = Ee +Evp. (12)

The duality product between the generalized variables is induced by the corre-
sponding ones between D and S as well as the ones between X and X ′, so that

〈Σ,E 〉= 〈σ ,ε 〉, 〈Σ,Ee 〉= 〈σ ,εe 〉+ 〈χ,α 〉, 〈Σ,Evp 〉= 〈σ ,εvp 〉− 〈χ,α 〉,

(13)

where, for simplicity, the same symbol has been used to denote duality products
defined on different pairs of dual linear spaces.

The consistency condition is now enforced on the generalized stress Σ and states
that Σ must belong to the closed generalized convex elastic domain Ẽ ⊆ S̃ defined
as

Ẽ
def= {Σ∈ S̃ : f̃ (Σ)≤ 0 ⇐⇒ (σ ,χkin,χ iso)∈ S×X ′×ℜ : f (σ ,χkin,χ iso)≤ 0}, (14)

where f̃ : S̃→ℜ is the yield function expressed in terms of generalized stresses.

2.3 Evolutive equations

The principle of maximum plastic dissipation (see, e.g., Hill (1950)) plays a crucial
role in the formulation of elasto/viscoplasticity by supplying the associative form
of the flow rule.

Given a generalized viscoplastic strain Ėvp, among all possible generalized stresses
Γ = (τ,q) ∈ S̃, the actual generalized stress Σ = (σ ,χ) satisfies the condition of
maximum dissipation

Dvp(Ėvp) = sup
Γ∈S̃
{〈Γ, Ėvp 〉−Π

∗(Γ)}, (15)

where Π∗(Γ) indicates a viscoplastic convex potential.

Problem (15) can be expressed by enforcing the stationarity condition for the La-
grangian

L vp(Γ) def= −〈Γ, Ėvp 〉+Π
∗(Γ), (16)

which yields

0 ∈ [∂L vp(Γ)] (Σ) ⇐⇒ Ėvp ∈ ∂Π
∗(Σ). (17)



346 Copyright © 2012 Tech Science Press SDHM, vol.8, no.4, pp.341-358, 2012

The flow rule (17)2 is given in components as

ε̇
vp∈ ∂σ Π

∗(σ ,χ),

−α̇kin∈ ∂ χ kinΠ
∗(σ ,χkin,χ iso),

−α̇ iso∈ ∂ χ isoΠ
∗(σ ,χkin,χ iso),

(18)

which express the flow law of the viscoplastic strain and the evolutive equations of
the kinematic internal variables.

In the sequel we represent the viscoplastic problem as a penalty regularization of
the plastic problem, see e.g. Yosida (1980). A penalty function g+(x) of the con-
straint f (Γ) is thus introduced and the regularized form of the Lagrangian (16) has
the expression

L vp
η (Γ) def= −〈Γ, Ėvp 〉+

1
η

g+(f (Γ)), (19)

where η > 0 is a penalty parameter which has the meaning of a viscosity coef-
ficient.

Accordingly, the viscoplastic dissipation is expressed in the regularized form

Dvp
η (Ėvp) = sup

Γ∈S̃
{〈Γ, Ėvp 〉− 1

η
g+(f (Γ))}. (20)

The penalty function g+(x) is required to be continuous in [0,∞), g+(x) ≥ 0 and
convex in [0,∞), with g+(x) = 0 if and only if x ≤ 0. In these assumptions the
solution Ση of the regularized problem tends to the solution Σ of the constrained
plastic problem for η → 0+, see e.g. Luenberger (1973).

For linear viscous effects the penalty function g+ may be assumed in the form

g+(x) def=


1
2

x2 for x≥ 0

0 for x < 0,

(21)

and the derivative is given by dg+(x)
dx =< x >, where the MacAuley brackets < . >

are defined as < x >= (x+ |x|)/2. In order to model nonlinear viscous effects a
flow function Φ(x) is introduced such that dg+(x)

dx =< Φ(x) >. Accordingly, the
stationarity condition for the regularized viscoplastic potential L vp

η (Γ) yields the
viscoplastic flow law of the Perzyna (1963) constitutive model

0 ∈
[
∂L vp

η (Γ)
]

(Σ) ⇐⇒ Ėvp ∈ 1
η

< Φ(f (Σ)) > ∂ f (Σ). (22)
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The flow rule (22)2 is expressed in components as

˙εvp∈ 1
η

< Φ(f (σ ,χkin,χ iso)) > ∂σ f (σ ,χ),

−α̇kin∈
1
η

< Φ(f (σ ,χkin,χ iso)) > ∂ χ kin f (σ ,χkin,χ iso),

−α̇ iso∈
1
η

< Φ(f (σ ,χkin,χ iso)) > ∂ χ iso f (σ ,χkin,χ iso),

(23)

which are respectively the flow law of the viscoplastic strain and the evolutive equa-
tions of the kinematic internal variables for the Perzyna constitutive model.

For linear viscous effects the flow function of the Perzyna model is often assumed
as

Φ(f (σ ,χkin,χ iso)) = f (σ ,χkin,χ iso). (24)

For nonlinear viscous effects other proposed expressions of the flow function are
reported e.g. by Perzyna (1963) and Skrzypek and Hetnarski (1993).

In the sequel we assume a Von Mises yield criterion in the form

f (σ ,χkin,χ iso) = ‖devσ −χkin‖−χ iso− yo = ‖ξ‖−R≤ 0, (25)

where devσ is the stress deviator, the relative stress is defined as ξ
def= devσ −χkin,

the current radius of the yield surface in the deviatoric plane is

R = χ iso + yo =

√
2
3
(σ yo +Hisoēvp), (26)

σ yo denotes the uniaxial yield stress of the virgin material and ēvp =
∫

0

t√
2
3‖ε̇

vp‖d t

represents the equivalent viscoplastic strain. In the following a linear hardening
behavior is assumed, with a static internal variable related to isotropic hardening
defined by χ iso = H isoα iso and the dual kinematic internal variable α iso represented
by the equivalent viscoplastic strain.

For a prescribed increment of the displacement field ∆u, the unknown fields are
updatet at time tn+1 ∈ [0,T ] consistently with the flow rule

Ėvp =
1
η

< Φ(f (Σ)) >dΣf (Σ), (27)



348 Copyright © 2012 Tech Science Press SDHM, vol.8, no.4, pp.341-358, 2012

where a Perzyna viscoplastic constitutive model has been adopted. Setting n =
ξ/‖ξ‖, the flow rule of the viscoplastic strain and the evolutive equations of the
internal variables are expressed by

ε̇
vp=

1
η

< Φ(f (σ ,χ)) >
ξ

‖ξ‖
=

1
η

< Φ(f (σ ,χ)) >n,

χ̇kin=
2
3

Hkinε̇
vp =

2
3

< Φ(f (σ ,χ)) >

η
Hkin

ξ

‖ξ‖
=

2
3

< Φ(f (σ ,χ)) >

η
Hkinn,

˙̄evp=

√
2
3

< Φ(f (σ ,χ)) >

η
.

(28)

In the solution procedure an algorithmic scheme has been adopted which is suitable
to be applied to different viscoplastic constitutive models (see for details DeAngelis
(1998) and Alfano, DeAngelis, and Rosati (2001)). An extension to include non-
linear kinematic hardening rules is illustrated in DeAngelis (2012a). The adopted
approach shows to be useful also in the development of variational formulations in
rate plasticity, see e.g. DeAngelis (2007a), and in nonlocal plasticity and viscoplas-
ticity, see e.g. DeAngelis (2007b) and DeAngelis (2012b).

3 Validation of the elastoplastic numerical model

In order to describe the behavior of the model and the effective reliability of the
numerical results we analyze the problem addressed by Theocaris and Marketos
(1964). In their paper Theocaris and Marketos (1964) analyzed the problem of a
rectangular strip with a circular hole. The analysis is aimed at determining the
elastic-plastic strain and stress distribution that occurs in perforated strips of a
strain-hardening material when the applied stress is increased monotonically from
the elastic region of loading to values producing an impending plastic flow. In their
analysis the values of elastic and plastic components of strains were experimentally
determined by using the birefringent coating method complemented with the elec-
trical analogy method which yields the elastic and plastic strain distribution. The
complete solution of the strain distribution at the elastoplastic domain of straining
was illustrated and reported. The elastoplastic strain distribution that occurs in per-
forated strips is a good and experimentally verified example and it can be properly
considered for the validation of the proposed numerical analysis and for evaluating
the soundness and the effective reliability of the adopted computational model.

Accordingly, the problem of an infinitely long rectangular strip with a circular hole
is analyzed. The geometry of the problem and the loading conditions are illustrated
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Figure 1: Perforated strip: geometry of the problem and finite element mesh.

in Fig. 1. The loading is performed by controlling the vertical displacement of
the top and bottom boundaries of the strip. An increasing displacement of the
boundary upper edge is prescribed in the direction perpendicular to the axis of the
strip and parallel to one of its sides. For symmetry reasons only one quarter of the
section is analyzed. The adopted mesh consists of 325 nodes and 288 elements with
4-node bilinear isoparametric quadrilateral elements. The numerical simulations
are performed and implemented into the Finite Element Analysis Program (FEAP)
(Zienkiewicz and Taylor (2005), Taylor (2008)).

In the computations we assume the following material properties: elastic modulus
E = 70 · 103 MPa, Poisson’s ratio ν = 0.2, yield limit σ yo = 243 MPa, hardening
moduli Hkin = H iso = 1.5 · 102 MPa. The upper edge displacement is prescribed
in single steps ∆u up to the final displacement u = 20 cm. In the computational
analysis a constitutive model of the Perzyna type is assumed, with linear viscous
effects.

For the analyzed problem the evolution of the plastic interface is illustrated in Fig. 2
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Figure 2: Evolution of the plastic process for an increasing upper edge prescribed
displacement u and a rate-independent behavior. (Top left: u =4 cm. Top right:
u =5 cm. Bottom left: u =6 cm. Bottom right: u =8 cm.)

by reporting the contour plots of the equivalent plastic strain in the strip for pre-
scribed displacements equal to u =4, 5, 6, 8 cm and a rate-independent loading
program. As the prescribed displacement at the upper edge of the strip is increased
it is observed that the plastic strain originates at the rim of the hole and it evolves
towards the external lateral edge of the strip.

The numerical results herein illustrated show to be in excellent agreement with the
experimental results reported by Theocaris and Marketos (1964), at this regard see
e.g. Fig. 12 of page 388 in Theocaris and Marketos (1964). This illustrates the
trustworthiness and soundness of the numerical model. The effective reliability of
the reported numerical analysis is thus verified.
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4 Computational applications for evaluating the effects of the loading rates

In this section the effect of different loading programs on the mechanical response
of elasto/viscoplastic material behavior is investigated. In order to account for dif-
ferent values of the displacement rate ∆u/∆t and the intrinsic properties of the
material in rate-sensitive loading programs, a non-dimensional loading program
parameter is introduced

τ =
tR

Lc

∆u
∆t

, (29)

where tR = η/2G is the relaxation time and Lc = L/c is a reduced length, being L
the length of the strip and c a dimensionless constant. The dimensionless constant
c is introduced in order to reduce the length L to a reduced value of the length
Lc = L/c. In this numerical example it has been assumed c = 2900. The value of c
has been adopted herein for having more friendly values of τ ranging from 0 to 10.

Figure 3: Perforated strip: load vs. displacement curves.

In Fig. 3 load versus displacement curves are plotted for different values of the load-
ing program parameter τ at constant material properties, that is for different values
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Figure 4: Contour plots of the equivalent plastic strain for the same prescribed
displacement u = 6 cm and with different prescribed loading rates. Top: τ = 0
(rate-independent behavior). Bottom: τ = 0.1 (prescribed loading rate).

of the upper edge displacement rate. In Fig. 3 the load is the sum of the nodal reac-
tions on the bounded upper edge and the displacement is the prescribed displace-
ment at the bounded upper edge. It is observed that the plastic rate-independent
behavior is recovered for τ = 0, which corresponds to a static imposition of the
load. Nonzero values for τ correspond to a rate-dependent behavior with nonzero
prescribed displacement rates ∆u/∆t.

In Fig. 4 a straightforward assessment of the structural response of the elasto/visco-
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Figure 5: Contour plots of the equivalent viscoplastic strain in the strip for the
final prescribed displacement u = 20 cm and for increasing values of the prescribed
loading rate. Top left: τ =0 (rate-independent behavior). Top right:τ =0.1. Bottom
left: τ =0.3. Bottom right: τ =1.

plastic material behavior is readily obtained by comparing the contour plots of the
equivalent plastic strain for the same prescribed displacement u = 6 cm with two
different loading rates, corresponding respectively to τ = 0 (rate-independent be-
havior) and τ = 0.1 (prescribed loading rate).

The effects of the different loading rates on the structural response of the elasto/vis-
coplastic material behavior are also illustrated in Fig. 5 and Fig. 6. The contour
plots of the equivalent viscoplastic strain are reported in Fig. 5 for the same fi-
nal prescribed displacement u = 20 cm and for increasing values of the prescribed
loading rate, corresponding respectively to τ =0, 0.1, 0.3, 1.

In Fig. 6 the contour plots of the equivalent viscoplastic strain in the strip are re-
ported for the same final prescribed displacement u = 20 cm and for increasing
imposed loading rate, corresponding respectively to τ =1.5, 3, 6, 10.
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Figure 6: Contour plots of the equivalent viscoplastic strain in the strip for the
final prescribed displacement u = 20 cm and for increasing values of the prescribed
loading rate. Top left: τ =1.5. Top right:τ =3. Bottom left: τ =6. Bottom right:
τ =10.

From Fig. 5 and Fig. 6 it is possible to assess the influence of an increasing loading
rate on the mechanical response of elasto/viscoplastic materials. In particular the
plots of Fig. 5 and Fig. 6 are all related to the end points of the curves of Fig. 3,
corresponding to the final prescribed displacement u = 20 cm, but with an increas-
ing loading program parameter τ . In a rate-independent loading process (τ =0) the
plastic strain evolves in an area of restricted width. In a rate-dependent loading
process it is shown in Fig. 5 and Fig. 6 that for the same prescribed displacement
and for increasing loading rates, the areas of the strip interested by viscoplastic
deformations are more spread over the strip. Part of the areas that initially in a
rate-independent loading process were not experiencing inelastic strains, with the
increasing of the loading rate become involved in the plastic straining process. With
the increasing of the loading program parameter τ , the feature of having more ar-
eas interested by plastic strains is associated with a decrease of the maximum value
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of the equivalent plastic strain experienced at the rim of the hole in the strip. The
feature of having more solid material and more areas involved in the dissipation
is beneficial with regard to the limitation of the maximum value of the equivalent
plastic strain in the solid. In this sense the material shows to act for the benefit of
security when subject to loading programs with increasing loading rates.

5 Conclusions

In the present paper the evolutive problem of the elasto/viscoplastic material be-
havior has been considered and the consequences of different loading programs
and different loading rates have been analyzed in order to illustrate their effects
on the structural response of elasto/viscoplastic materials. The treatment has been
developed by resorting to an internal variable theory and within the framework
of the generalized standard material model. The associated problem of evolution
in elasto/viscoplasticity has been presented by considering a formulation which is
capable to be specialized to different constitutive models. Different loading pro-
grams and different loading rates have been considered and their influence on the
structural response of the elasto/viscoplastic material behavior has been described.
Numerical results for both rate-independent and rate-dependent loading programs
have been presented. Computational examples have been illustrated which describe
the rate-dependency of the elasto/viscoplastic material behavior. Computational ap-
plications have been developed for assessing the influence of different loading pro-
grams and different loading rates on the structural response of elasto/viscoplastic
materials. Some characteristical features have been highlighted with regard to the
structural response of elasto/viscoplastic solids subjected to rate-dependent load-
ings and it has been noted that the material shows to act for the benefit of security
when subject to a loading process with increasing loading rates. Finally, the signif-
icance of the different types of loading programs and loading rates and the effects
that they produce on the structural response of elasto/viscoplastic materials have
been illustrated in detail with specific numerical examples.
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