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Abstract: Development of efficient system identification techniques is highly
relevant for large civil infrastructure for effective health monitoring, damage de-
tection and vibration control. This paper presents a system identification scheme
in time domain to estimate stiffness and damping parameters of structures using
measured acceleration. Instead of solving the system identification problem as an
inverse problem, we formulate it as an optimisation problem. Particle swarm opti-
misation (PSO) and its other variants has been a subject of research for the past few
decades for solving complex optimisation problems. In this paper, a dynamic quan-
tum behaved particle swarm optimisation algorithm (DQPSO) is proposed for the
solution of the complex nonlinear optimisation problem associated with the system
identification. If the uniqueness of the parametric solution is guaranteed for the
assumed model, this heuristic method allows finding a solution without incurring
restrictions of other classical optimisation methods, like the need for reliable initial
estimates and convergence to local optima. In order to solve large size problems,
we propose to use reduced order models. Proper orthogonal decomposition (POD)
is used for the model reduction instead of traditional modal analysis. The valid-
ity of the proposed method is demonstrated by a numerical simulation study on a
simply supported beam, 50 storey shear building model and a truss bridge. The
robustness of the proposed system identification technique is investigated using a
noise sensitivity study.
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1 Introduction

System identification is the process of constructing or updating the mathematical
model of a dynamical system based on input and output observations. Structural
system identification (SSI) is an important research topic and has greater signif-
icance for civil engineering applications. Apart from updating numerical models
for better response prediction, System identification can be applied to health mon-
itoring of structures and even detect damages based on changes in identified pa-
rameters. For active vibration control of structures, actual parameter values of the
structure, rather than the assumed or design values, are required for effective con-
trol.

Due to rapid advances in computer and instrumentation capabilities, the use of
structural identification methods has increasingly become a feasible option for non-
destructive structural assessment. Research interest in this subject has been intense
over the last two decades. Various system identification (SI) schemes [Ghanem
and Shinozuka (1995)] have been developed to verify structural models or to assess
damage in a structure during last few decades. Based on the types of measured
response, SI algorithms can be classified into static SI [Hjelmstad and Shin (1997);
Lee et al., (1999); Yeo et al., (2000); Park et al., (2001)] frequency-domain SI
[Hjelmstad and Shin (1996); Shi et al., (2000); Vestroni and Capecchi (2000)] and
time-domain SI [Hjelmstad et al., (1995); Banan et al., (1995); Ge and Soong
(1998); Huang (2001)]. Frequency-domain SI or time-domain SI may be more
practical in real applications. Even if frequency-domain SI algorithms utilize the
same source of dynamic responses as time-domain SI, the amount of data dealt
with is remarkably reduced through transformation. Due to the ease in handling
data, frequency-domain SI algorithms have been more widely developed and ap-
plied. However, local damage may influence higher modes that are usually difficult
to measure from experiments [Raghavendrachar and Aktan (1992)]. Moreover,
damping properties of structures cannot be estimated in frequency-domain SI. To
overcome these drawbacks of the frequency-domain SI and to yield more meaning-
ful identification results, the time-domain SI schemes are an attractive alternative.
In developing a time-domain SI algorithm, the incomplete measurements in space
and state should be considered in addition to measurement noise [Hjelmstad et al.,
(1995)]. The incompleteness in space occurs when structural responses are not
measured at all degrees-of-freedom (dof) corresponding to its numerical model.
Some SI algorithms circumvent this difficulty by including the unmeasured dof as
system parameters to be estimated in SI [Hjelmstad et al., (1995)]. The incomplete-
ness in state also occurs in most dynamic measurements because only one state of
acceleration, velocity, or displacement time history is usually measured. Numerical
schemes for integrating or differentiating the measured state vector [Hjelmstad et
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al., (1995)] are applied to compute unmeasured state vectors. Since the numerical
schemes naturally develop computational error and amplify noise in measured re-
sponses, the most desirable way may be to avoid computing unmeasured responses
using measured data in formulating a SI algorithm.

The majority of the earlier system identification methods come under the purview
of classical methods and they invariably use least square methods like Extended
Kalman Filter (EKF), recursive least squares, instrumental variable, and maximum
likelihood methods etc. These methods [Ghanem and Shinozuka (1995)], in one
way or other, search for the optimal solution by exploiting the previous solution.
In the present work, the system identification problem is formulated as an opti-
misation problem and a meta-heuristic algorithm based on swarm intelligence is
employed for solving the resulting complex non-linear optimisation problem. Al-
though using evolutionary algorithms for solving system identification problems is
not new, it is not very frequent. Moreover, most of the earlier works invariably use
genetic algorithms (GA) for SSI [Cunha et al., (1999); Franco et al., (2004); Perry
et al., (2006); Chou and Ghaboussi (2001); Koh et al., (2000. 2000a, 2003); Rama
Mohan Rao and lakshmi ( 2011)]. GA [Goldberg (1989)] is a stochastic optimisa-
tion algorithm employed for combinatorial and continuous optimisation problems.
GA can efficiently search large solution spaces due to its parallel structure and the
probabilistic transition rules employed in the operators. However, a basic GA has
two main drawbacks: lack of good local search ability and premature convergence.
On the other hand, swarm intelligence based algorithms like particle swarm opti-
misation algorithms [Kennedy and Eberhart (1995); Eberhart and Kennedy (1995)]
are gaining popularity over other meta-heuristic algorithms due to simplicity in pa-
rameter setting and also high adaptability for fine tuning. PSO has some attractive
characteristics and in many cases proved to be more effective when compared with
GA and other similar evolutionary techniques [Hassan et al., (2005)] .Keeping these
things in view, an advanced particle swarm optimisation algorithm called dynamic
quantum particle swarm optimisation algorithm (DQPSO) is proposed in this paper,
for solving the optimisation problem associated with system identification.

In most of the earlier investigations, the identification of system matrices has been
achieved by traditional modal analysis techniques. For low-frequency vibration
problems, only a few modes contribute to the total response of the system and thus
modal analysis can be used to identify the mass, stiffness and damping matrices
from the measured response [Ewins (2000)]. Thus, the accuracy of the identified
parameters depends on the presence of distinct peaks in the measured frequency
response functions (FRFs). This problem is inherent to the conventional modal
analysis. If the peaks in the measured FRFs are not distinct or are closely spaced,
the modal parameter extraction procedure is difficult to apply. Thus, the identified
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system matrices obtained using the extracted modal parameters become erroneous.
Apart from this, identification of complex modes poses a serious challenge in the
presence of non-proportional damping [Srikantha Phani and Woodhouse (2002)].
Keeping these things in view, the proper orthogonal modes are extracted by Proper
Orthogonal Decomposition (POD) of the response and used these modes for struc-
tural system identification. Recent innovation in the field of data-acquisition hard-
ware allows us to acquire highly resolved spatio-temporal vibration data. For ex-
ample, [Dionysius and Yozo (2009)] made use of the Laser Doppler vibrometer
(LDV) to conduct contact-free measurement for operational modal analysis.

The major issue with the population based stochastic algorithms for structural sys-
tem identification is the high computational time for convergence. In this paper, the
focus is on improving the computational performance of structural system identi-
fication algorithms, by substantially reducing the forward simulation time during
evolutionary process through reduced order models. Apart from that a new meta-
heuristic algorithm called DQPSO with better convergence characteristics is devel-
oped and employed to improve the computational performance of structural system
identification algorithms.

During experimental investigations, dynamic response is normally measured by
using accelerometers. Error is incurred to obtain velocity and displacement signals
by integration. Hence, direct use of acceleration signals is preferred over velocity
and displacement signals. Keeping this view, it is proposed to use only acceleration
measurements in the proposed system identification algorithm.

It is assumed that mass is known a priori and structures behave linearly. Since
structural dynamic behaviours are not only dependent on mass and stiffness but
also on damping properties, estimation of damping parameters may be important
for correct identification of structural systems. Nevertheless, most time-domain
SI schemes have assumed damping as known and thus dealt solely with stiffness
parameters [Banan et al., (1995); Ge and Soong, (1998)]. In this paper, the struc-
tural damping is modeled by the Rayleigh damping, and two Rayleigh damping
coefficients are estimated together with the unknown stiffness parameters.

To evaluate the proposed method, numerical simulation studies are carried out on
a simply supported beam, a fifty storey framed structure and a truss bridge. To
examine the developed algorithm with noisy measured data, random noise is added
to the generated time history of acceleration in the simulation study in the form of
signal to noise ratio (SNR). Discussions on numerical results and behaviours of the
proposed method are presented.
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2 Parameter estimation in time domain using reduced order models

The forced vibration of a linear, discrete viscously damped system with ‘n’ degrees
of freedom, can be represented by

Mnün(t)+Cnu̇n(t)+Knun(t) = fn(t) (1)

u(0) = 0 and u̇(0) = 0

where, Mn ∈ ℜnxn is the mass matrix, Cn ∈ ℜnxn is the damping matrix and Kn ∈
ℜnxn is the stiffness matrix. The damping matrix is computed using Rayleigh damp-
ing, which can be related to damping ratios for any two selected modes. The dis-
placement, velocity, acceleration and force vectors at time ‘t’ are represented by
un(t), u̇n(t), ün(t) and fn(t) respectively and are of size ℜn.

The system parameters include stiffness and damping properties of a structure,
which need to be identified. In the formulation, it is assumed that mass proper-
ties, load history and the initial conditions for Eq. (1) are known a priori, and that
the system parameters are invariant in time. The unknown system parameters are
identified through the following minimization of the least-squared error between
calculated and measured accelerations at observation points from the beginning up
to current time t.

Min Ψ(x,nt) =

k=nt
∑

k=1

np
∑

i=1

(
iüm

k − iüe
k(x)

)2

nt
(2)

where Ψ(x,nt) represents the function to be minimized, x is the estimated system
parameters , nt is the number of time steps, np represents the degrees of freedom
where the measured acceleration time history response is available, iük represents
the acceleration vector at ith measured degree of freedom for kth time step. The
superscripts ‘m’ and ‘e’ represent measured and estimated values.

Considering member stiffness parameters and damping ratios as design variables,
the optimisation can be performed using an evolutionary approach to arrive at iden-
tified parameters. However, for large structures, population based evolutionary
optimisation process takes enormous time as the time integration with estimated
parameters to arrive at üe

k is computationally intensive. In order to overcome this
problem we use reduced order models. Instead of identifying parameters using the
physical equations of motion (searching in a domain of usually a high order of di-
mensions), the evolutionary search is conducted using the reduced (transformed)
equations of motion (searching in a number of smaller domains). Physical param-
eters are then recovered by making use of the orthogonal properties of the basis
vectors.
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The most important consideration for any kind of reduced-order modelling is the
selection of a good reduced-order basis that represents the response of the high-
dimensional system. POD [Kerschen et al. (2005); Liang et al. (2002); Ker-
schen and Golinval (2002); Feeny and Kappagantu (1998); Feeny (2002); Azeez
and Vakakis (2001)] provides a basis for the spectral decomposition of a spatio-
temporal signal and its property of mean-square optimality provides an efficient
means of capturing the dominant components of a high-dimensional signal through
a few dominant scales of fluctuations called Proper Orthogonal Modes.

The response function of acceleration at the ith (i = 1 to r time steps) snapshot
obtained at n locations typically looks like

ü(ti) =

 ü1(ti)
...
ün(ti)

 . (3)

The response correlation matrix Ruu ∈ℜnxn in the time domain is found to be Ruu

=〈ü(t)üT (t)〉, where 〈.〉 is the time averaging operator. Further, its spectral de-

composition is obtained as Ruu =
n
∑

i=1
λiφiφ

T
i where λi are the eigenvalues (average

energy contributed by mode φi) of Ruu and φi are the corresponding eigenvectors
which form an orthonormal basis. The first few dominant modes known as the
proper orthogonal modes contain the greatest amount of energy and need to be se-

lected. If E =
n
∑
j=1

λ j represents the total energy content in the data, then
p
∑
j=1

λ j
E ≥ κ

represents the p modes required to capture κ energy of the measured accelerations.
The transformation matrix containing the first p dominant POD eigenvectors can
now be written as

Σ = [φ1, . . . ,φp] ∈ ℜ
nxp (4)

Using this POD transformation matrix ∑, the reduced order representation of the
system in equation (1) can be written as

Mpüp(t)+(αMp +βKp)u̇p(t)+Kpup(t) = fp(t), p = 1,2, . . .N̄ (5)

where

Mp = Σ
T MnΣ ∈ ℜ

pxp; Cp = Σ
TCnΣ ∈ ℜ

pxp; Kp = Σ
T KnΣ ∈ ℜ

pxp (6)

are the reduced-order mass, damping and stiffness matrices respectively. The reduced-
order acceleration and force vectors are respectively given by

üp = M−1
P Σ

T Mnün (7)
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fp(t) = Σ
T fn(t) (8)

The modal response is computed in the time domain numerically using Newmark’s
time integration scheme.

3 Cost function for system identification

As mentioned earlier, instead of working in the physical domain, the search for op-
timal parameters is carried out in the modal domain. Accordingly, the cost function
given in equation (2) can be modified as

Min ψ(x, nt) =

p=nm
∑

p=1

k=nt
∑

k=1

(
küa

p− küe
p
)2

nt
(9)

where ‘nt’ are the number of samples, ‘nm’ are the number of POD modes küe
p is

the modal acceleration responses corresponding to the estimated system and küa
p

corresponding to the modal acceleration responses of the actual system.

An advanced evolutionary algorithm called dynamic quantum particle swarm op-
timisation (DQPSO) algorithm is proposed for solving the resulting complex non-
linear optimisation problem. Comparisons have also been made with other variants
of swarm intelligence algorithms and also hybrid genetic algorithm to demonstrate
the superiority of the proposed approach.

4 Particle swarm optimisation algorithm

Particle swarm optimisation (PSO) is a population based stochastic optimisation
technique developed by Eberhart and Kennedy (Kennedy and Eberhart (1995),
Eberhart, and Kennedy (1995)), inspired by social behaviour of bird flocking or fish
schooling. PSO shares many similarities with evolutionary computation techniques
such as Genetic Algorithms (GA). However, unlike GA, PSO has no evolution op-
erators such as crossover and mutation and PSO is also easy to implement. PSO
has been successfully applied in many areas: function optimisation, artificial neural
network training, fuzzy system control, and other areas where GA can be applied.

PSO is initialized with a group of random particles (solutions) and then searches for
optima by updating these solutions iteratively. Each particle is updated by follow-
ing two "best" values in every iteration. The first one is the best solution (fitness) it
has achieved so far. This value is called pbest. Another "best" value that is tracked
by the particle swarm optimizer is the best value, obtained so far by any particle
in the population. This best value is a global best and called gbest. After finding
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the two best values, the particle updates its velocity and positions with following
equations.

vk+1
i j = ω vk

i j + c1r1(pbesti j− xk
i j)+ c2r2(gbest j− xk

i j) (10)

xk+1
i j = xk

i j + vk+1
i j (11)

vi j is the particle velocity, xi j is the current particle (solution) and ω , c1 and c2 are
weight coefficients, r1 and r2 random values between 0 and 1. The subscripts, i
refer to the particle number and j refers to the element (design variable) in a typical
ith particle. The superscript k indicates the iteration number. In PSO, the existence
of position data on the swarm-shared best solution gbest assures interaction among
agents.

It can be shown that, PSO algorithm can be made adaptive by suitably tuning the
weight coefficients c1 and c2 using the information acquired in the course of the
search. For this purpose, a parameter P is defined as

P =
2 .|gbest− x|

c1.|pbest− x|+ c2.|gbest− x|
(12)

It can be easily verified that by adjusting the single parameter P adaptively [Rama
Mohan Rao and Ganesh Ananda kumar (2007)] during the course of the search
based on the current state of swarm, PSO can be made as an adaptive algorithm.
The parameters c1 and c2 can be determined uniquely as

c2 =
2
P

when x = pbest (13)

The value of c1 has no significance here, as (pbest - x) = 0 in equation (10)

c2 =
1
P

and c1 = c2
|gbest− x|
|pbest− x|

when x 6= pbest (14)

Numerical experiments [Rama Mohan Rao and Ganesh Ananda kumar (2007)] in-
dicate that while, P = 0.10 diversifies the search, P = 0.50 intensifies. Thus by
varying a single parameter, P adaptively, a good balance between intensification
and diversification can be maintained.

4.1 Neighbourhood search algorithm

Although PSO algorithm provides promising result, it remains clear that meta-
heuristic algorithms, in many cases, cannot compete with specialized neighbour-
hood search algorithms [Johnson and McGeoch(1997)]. However, neighbourhood
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search algorithms often suffer from the initialization problem. That is, the per-
formance of a local optimizer is often a function of the initial solution to which
it is applied. Therefore hybridization of meta-heuristic algorithm with an effec-
tive neighbourhood search algorithm is likely to provide much superior solutions
as metaheuristic algorithms generates good initial solutions for the local search al-
gorithm to explore further to provide a good local optimised solution. Keeping
this in view, a neighbourhood search algorithm is embedded into the adaptive PSO
algorithm to search in the better local areas. For this purpose, the Nelder-Mead al-
gorithm [Nelder and Mead (1965)] is employed as neighbourhood search algorithm
in our adaptive PSO algorithm.

The Nelder-Mead algorithm is given in Figure 1 and it will be discussed briefly
in the subsequent sections. However, detailed implementation of Nelder-Mead al-
gorithm in self configurable PSO can be found in Rama Mohan Rao and Ganesh
(2007). After every L iterations, the swarms are sorted according to their fitness
values and best 80 % of the particles in the swarm are refined using Nelder-Mead
algorithm. The self configurable PSO augmented with Nelder-Mead Algorithm
is found to be more effective for sensor optimisation applications [Rama Mohan
Rao and Ganesh Ananda kumar (2007)] and it is termed as hybrid adaptive PSO
algorithm.

In the present work, efforts are made to further improve the convergence charac-
teristics by employing quantum behaved PSO algorithm [Sun et al. (2004, 2004a)]
and also by incorporating dynamic reconfigurable features in the quantum PSO
algorithm.

4.2 Quantum PSO algorithm (QPSO)

In the quantum physics, the state of a particle with momentum and energy can
be depicted by its wave function ψ(x, t) instead of the position and velocity used
in traditional PSO. The dynamic behavior of the particle is widely divergent from
that of the particle in traditional PSO systems. In this context, the probability of a
particle appearing in a certain position xi can be obtained from probability density
function |ψ(x, t)|2, the form of which depends on the potential field in which the
particle lies. The particle move according to the following equation

xt+1
i j = pt

i j
±β

∣∣mbestti j− xt
i j

∣∣∗ ln(1/ui j) (15)

where mbesti j is the mean best of all the particles in jth dimension and ui j is a
random number uniformly distributed in (0,1). The subscripts i and j refers to the
particle and design variable respectively. This equation is implemented by using
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Figure 1: Nelder Mead Algorithm
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Monte-Carlo technique as

xt+1
i j = pt

i j
+β

∣∣∣mbestti j− xt
i j

∣∣∣∗ ln(1/ui j) i f k > 0.50

xt+1
i j = pt

i j
−β

∣∣∣mbestti j− xt
i j

∣∣∣∗ ln(1/ui j) i f k ≤ 0.50
(16)

where k is a random number in the range [0, 1]. The most commonly used con-
trolled strategy of β is to initially setting it to 1.0 and reducing it linearly to 0.30. In
the present work, the parameter β varied linearly from 1.0 to 0.30 with the iteration
as

β
t = βmax−

(βmax−βmin)

max_iterations
x t (17)

pt
i j is the local attractor and defined as:

pt
i j = φ

t
i j Pbestti j +(1−φ

t
i j).gbesttj (18)

where φ t
i j is a random number uniformly distributed in (0, 1). β is called the

contraction-expansion coefficient, which can be tuned to control the convergence
speed of the algorithm. The ‘mbest’ is the mean best position and is defined as the
center of pbest positions of the swarm and it can be written as:

mbestti j = (mbestt1,mbestt2,mbestt3......mbesttD) =(
1
M

M

∑
i=1

Pt
i1,

1
M

M

∑
i=1

Pt
i2,

1
M

M

∑
i=1

Pt
i3, ..........,

1
M

M

∑
i=1

Pt
iD,

)
(19)

where M is population size and Pi is the personal best position of particle i. The
details of the QPSO algorithm are given in Figure 2.

The characteristics of QPSO algorithm are reflected mainly in two ways. First of
all, the introduced exponential distribution of positions makes QPSO search in a
wide space. Furthermore, the introduction of Mean Best Position into QPSO is
another improvement. In the standard PSO, each particle converges to the global
best position independently. In the QPSO with mean best position GP, each parti-
cle cannot converge to the global best position without considering its colleagues,
because the distance between the current position and GP determines the position
distribution of the particle for the next iteration.

4.3 Dynamic quantum PSO (DQPSO) algorithm

The dynamic quantum particle swarm optimizer is constructed based on the QPSO
algorithm with a new neighborhood topology. It has been reported in the literature
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Figure 2: Quantum PSO algorithm
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Figure 3: Dynamic Quantum PSO algorithm
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[Clerc and Kennedy (2002)] that, PSO with small neighborhoods performs better
on complex problems. Hence, in order to increase the diversification to achieve
better results especially on multimodal problems, the proposed DQPSO uses small
neighborhoods. The swarm is divided into small sized swarms called sub-swarms.
Each sub-swarm uses its own members to search for better area in the search space.
Since the small sized swarms are searching by using their own best historical in-
formation, they are likely to converge to a local optimum, because of typical PSO’s
convergence characteristics. In order to prevent the convergence to sub-optimal so-
lution, the information needs to be exchanged among the swarms. While exchang-
ing information among sub-swarms, it is necessary to exercise sufficient care to
maintain larger diversity in sub-swarms. In order to accomplish this, we have pro-
posed a shuffling schedule to have a dynamically changing neighborhood structure
for the particles. After every user defined ‘S’ generations, the population is shuf-
fled and the search will be continued using a new configuration of small swarms.
In the proposed DQPSO algorithm, search is based on quantum principles (QPSO)
in each sub-swarm and dynamic mixing of the results obtained through this parallel
searches contributes to move towards a global solution. The details of the algorithm
are as follows:

1. In DQPSO, each possible solution Xi= (xi1, xi2, xi3, . . . ..,xiD), where D is the
number of design variables is considered as a particle. The initial population
of N particles (solutions) is generated randomly and it constitutes the swarm.
The fitness of each of the solution (frog) is evaluated and the particles are
then sorted in descending order according to their fitness.

2. Divide the swarm into ‘M’ sub-swarms each holding ‘K’ particles such that
N = K × M. The division is done in round robin fashion i.e., the first parti-
cle is assigned to the first sub-swarm. Second one is assigned to the second
sub-swarm, the Mth particle to the Mth sub-swarm and (M+1)th particle back
to the first sub-swarm. This way of distributing particles to sub-swarms pre-
serves diversity among frogs within each sub-swarm.

3. Each sub-swarm works independently in achieving the goal of exploring the
search space for optimum solution. Various steps involved in each of the sub-
swarm of DQPSO algorithm are same as QPSO algorithm discussed earlier.

After user specified number (say ‘S’) of evolutions in each of the sub-swarm, the
particles are regrouped and are sorted again. Repeat steps (2) and (2) till the conver-
gence criteria are satisfied. With the randomly regrouping schedule, particles from
different swarms are grouped in a new configuration, so that each small swarms
search space is enlarged and better solutions are possible to be found by the new
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small swarms. Figure 3 clearly depicts the proposed dynamic QPSO implementa-
tion.

4.4 Hybrid GA algorithm

A modified version of genetic algorithm usually known in the literature as a memetic
algorithm [Moscato (1999)] is also employed for solving the optimisation problem
associated with the proposed system identification technique. Basically, they are
genetic algorithms that apply a separate neighbourhood search process to refine in-
dividuals. It is usually being applied after crossover and mutation and before the se-
lection. One big difference between memes and genes is that memes are processed
and possibly improved by the people that hold them - something that cannot happen
to genes. Experimental results show that the memetic algorithms have better results
over simple genetic or evolutionary algorithms [Moscato (1999)]. The memetic al-
gorithm employed here is devised by introducing a neighbourhood search algorithm
to improve the intensification mechanism of the algorithm by way of searching
around a good solution and adopting a better solution if found.

Nelder-Mead algorithm [Nelder and Mead (1965)] is one of the most popular derivative-
free nonlinear optimisation algorithms. Instead of using the derivative information
of the function to be minimized, the Nelder-Mead algorithm maintains at each it-
eration a non-degenerate simplex, a geometric figure in n dimensions of nonzero
volume that is the convex hull of n+1 vertices, x1; x2;. . . . . ; xn+1, and their
respective function values. In each iteration, new points are computed, along with
their function values, to form a new simplex. Four scalar parameters must be spec-
ified to define a complete Nelder-Mead algorithm; coefficients of reflection (ρ),
expansion (χ), contraction (γ), and shrinkage (σ): These parameters are chosen to
satisfy: ρ >0, χ >1, 0< γ <1, and 0 < σ <1 The Nelder-Mead algorithm is given
in Figure 1. The implementation of Nelder-Mead algorithm in the float encoded
GA algorithm is as follows:

1. After every user specified number of iterations, the population is sorted ac-
cording to their fitness values and chooses best twenty percent of the total
number of population for refinement using neighbourhood search algorithm.

2. After several years of studying and applying the Nelder-Mead method, McK-
innon (1999) shows that the Nelder-Mead algorithm can stagnate and con-
verge to a non-optimal point even for very simple problems. However, Kel-
ley [Kelley (1999a), (1999)] proposes a test for sufficient decrease which, if
passed for all iterations, will guarantee convergence of the Nelder-Mead iter-
ation to a stationary point under some appropriate conditions. The Kelley’s
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modification [Kelley (1999a), (1999)] of the Nelder-Mead method is em-
ployed in the final stage of our method i.e. at the end of the search, the best
solution is refined using the Kelly’s modification of Nelder-Mead algorithm.

The resulting memetic algorithm is termed in this paper as hybrid genetic algo-
rithm. Numerical studies have been carried out using hybrid GA, hybrid adaptive
PSO, quantum PSO algorithms to compare and evaluate the performance of the
proposed DQPSO algorithm.

5 Numerical studies

The effectiveness of the proposed structural system identification technique com-
bining proper orthogonal decomposition technique with dynamic hybrid particle
swarm optimisation algorithm is demonstrated by solving three different structural
systems. The first numerical example is a simply supported beam, the next one is a
50-DOF shear building model. The third example considered is a truss bridge. The
data of all DOFs of the numerical model is first calculated in the form of accelera-
tion time history using Newmark’s time integration method.

One of the main issues related to structural system identification techniques, when
applied to real situations, is their sensitivity to noise. In view of this, it was decided
to add white Gaussian noise to the acceleration time history response generated by
the finite element code. The white Gaussian noise is added to the acceleration time
history before it is processed. The white Gaussian noise is added in the form of
‘SNR’ (signal-to-noise ratio) that defines the ‘amplitude’ of the noise with respect
to that of the clean signal. When the noise level is given by a particular value of
‘SNR’ it means that a noisy signal with such an SNR’ has been added to the time
series of each node. Moreover the noisy sequences affecting different nodes are
uncorrelated, in this way severe experimental conditions were simulated.

Numerical Example 1: Simply supported beam

The first numerical experiment considered is a simply supported beam girder shown
in Figure 4. For the purpose of numerical simulation studies the beam is discretised
into 20 elements as shown in Figure 4. The material and geometrical properties
are also shown in the Figure. The first four natural frequencies of the structure are
51.33 Hz, 205.1Hz, 462 Hz, and 648 Hz respectively. The two damping coefficients
of the Rayleigh damping model are computed assuming 5% damping ratio for the
first two modes of vibration. Accordingly the Rayleigh coefficients α and β are
taken as 4.119 and 0.389 e-03 respectively.

The beam is excited using a known excitation force. The acceleration time history
response is computed using finite element analysis and Newmark’s time marching
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20 x 0.2 m  

Elastic Modulus = 205 GPa ;      Cross sectional Area = 0.225m2 

Mass Density     = 7850 Kg/m3;   Moment of Inertia = 0.000562 m4 

 

Figure 4: Simply supported beam

scheme. The acceleration time history response thus obtained is used for compu-
tation of POM and POV as outlined in the earlier sections. The time step size is
chosen based on the sampling rate requirements during online vibration monitoring.
The sampling rate is chosen as 2500 Hz for all the numerical examples considered
in the present work. This sampling rate was enough according to the Nyquist crite-
rion to capture all the frequency content of the vibration responses in the range of
0–500Hz. Accordingly, the time step length is chosen in the numerical simulations
as inverse of the sampling rate. Eventhough the acceleration time history response
is available in all nodes, we have considered only vertical acceleration time history
responses at alternative nodal points i.e. at 9 nodes ( i.e., at node numbers 1, 2, 5,
8, 11, 14, 17, 19, 20) in order to simulate the practical situation of limited measure-
ments. The numerical simulations have been carried out for 4 seconds i.e. 10000
samples.

The mass is assumed to be known and the unknown parameters are the stiffness
parameters and the Rayleigh damping coefficients. These unknown parameters are
considered as design variables in the DQPSO algorithm. The cost function given
in equation (9) is employed in the proposed system identification algorithm using
DQPSO. The total number of particles considered as 30 and the number of swarms
are taken as five. The swarms are regrouped after every 5 evolutions. The solution
is said to have been converged if there is no improvement in the solution for the last
thirty continuous evolutions.

Table 1 gives the identified parameters of the simply supported beam. The twenty
stiffness values and two damping parameters are identified using the proposed
DQPSO based system identification algorithm. Table 1 also presents the identi-
fied parameters using Hybrid adaptive PSO, QPSO and hybrid GA algorithms. In
order to have fair comparison, the maximum number of iterations and convergence
criteria are maintained as same for all the four algorithms evaluated here. A close
look at the results presented in Table 1, clearly indicates that the errors in parameter
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identification is marginal in DQPSO algorithm and it is closely followed by QPSO
algorithm. The hybrid PSO and hybrid GA algorithms are also able to identify the
parameters reasonably accurately. However, DQPSO appears to be a clear winner
among all algorithms.

Since all the optimisation algorithms considered here are stochastic algorithms,
each algorithm is executed thirty times with the same data and the consistent solu-
tion obtained for each of the algorithm is shown in Table 1. Here the ‘consistent
solution’ means that the optimal solution which is obtained in maximum num-
ber of independent runs of the same stochastic algorithm and happens to be same
or nearly same i.e., with a variation of 0.01%. It can be observed from the data
furnished in Table 1 that DQPSO generally performs better than the other three
algorithms considered here for the measurements without noise. The maximum,
minimum and absolute average percentage of errors in identified element stiffness
with DQPSO algorithm is found to be 4.41%, 0.14% and 1.802% respectively. Sim-
ilarly, with QPSO, the maximum, minimum and absolute mean errors found to be
6.29%, 0.16% and 2.81% respectively. For hybrid adaptive PSO, the maximum,
minimum and absolute mean errors are found to be 9.23%, 1.57% ad 3.96% re-
spectively. The maximum, minimum and absolute mean errors in hybrid GA are
6.78, 2.32%, and 5.12 % respectively.

Since the optimisation algorithms used in the proposed system identification algo-
rithm are stochastic algorithms, it is not ensured that final solutions obtained in
each run are same. In order to ensure the consistency of each of the algorithm
used, the concept of practical reliability is used. Practical reliability is given by the
percentage of converged solutions obtained with the same stiffness and damping
coefficients using the stochastic algorithm under consideration. However a varia-
tion of one percent in the solutions obtained is considered as same. The practical
reliability is obtained by running 30 different instances of each stochastic algo-
rithm and determining ratio of the maximum number of final solutions that satisfy
the above requirement to the total number of independent executions of the same
algorithm.

To investigate the effectiveness of the proposed parameter identification technique
with noisy measurements, SNR values of 30, 40, and 50 are considered. Table 1
also shows the identified stiffness parameters and damping coefficients with vari-
ous SNR values. Figure 5 shows the identified stiffness of each element for various
SNR values of measurement noise and has been compared with the results obtained
without measurement noise. A close look at the results presented in Table 1 and
also Figure 5, clearly indicates that the proposed system identification algorithm
with DQPSO performs rather well even with noisy measurements. For the cases
with the measurement noise, the maximum error with SNR 30, 40 and 50 using
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DQPSO is found to be 12.89%, 10.67%, 7.44% respectively. Similarly, the abso-
lute mean error with SNR 30, 40 and 50 is found to be 7.85%, 5.32% and 3.36% re-
spectively. The maximum errors with QPSO for SNR values of 30, 40, 50 is found
to be 24.66%, 10.13% and 8.29% and absolute mean errors are 13.68%, 6.57%
and 3.33% respectively. For system identification algorithm with hybrid adaptive
PSO, the maximum errors are 26.27%, 21.75%, 18.28% and absolute mean errors
are 15.02%, 9.62% and 7.83% for the measurement data with SNR as 30, 40 and
50 respectively. Finally, hybrid GA rather yield inferior results when compared to
the other three algorithms and the maximum errors with SNR 30, 40 and 50 are
found to be 24.38%, 23.76%, 19.39% and the corresponding absolute mean errors
are found to be 16.90%, 11.73% and 8.39% respectively.
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Figure 5: Identified stiffness ratios of simply supported beam using DQPSO algo-
rithm

The damping parameters are also identified with reasonable accuracy. In order to
study the convergence characteristics of the proposed DQPSO algorithm, the con-
vergence plots are drawn and compared with hybrid GA, hybrid PSO and QPSO
algorithms. The details of these convergence plots are shown in Figure 6. A close
look at Figure 6 clearly indicates that the proposed DQPSO algorithm converges
faster and also solution obtained is optimal. Further, the DQPSO algorithm con-
verges in less number of evolutions thus makes it fastest among all the algorithms



Structural System Identification 119

considered in this paper. The practical reliability of the proposed DQPSO algo-
rithm is also very encouraging. The consistency coupled with faster convergence
makes this algorithm highly suitable for complex optimisation problems associated
with structural system identification.

Figure 6: Convergence characteristics of DQPSO

Numerical Example 2: 50-DOF shear building model

The second numerical example considered is a 50-DOF framed structure shown in
Figure 7. The frame is idealized as a shear building model . The exact stiffness is
700 kN/m for each level, while mass is 600 kg for the first level and 300 Kg for
others. The first four natural frequencies of the structure are 0.2392 Hz, 0.7174Hz,
1.1945 Hz, 1.6698 Hz respectively. The two damping coefficients of the Rayleigh
damping model are computed assuming 5% damping ratio for the first two modes
of vibration. Accordingly the Raleigh coefficients α and β are taken as 0.1127 and
0.0167 respectively. The time history response is assumed to be available only at
thirteen equally spaced locations in the shear building model (i.e., at 1st , 5th ,9th ,
13th , 17th , 21st , 25th , 29th , 33rd , 37th , 41st , 45th , 50th floor).

The maximum, minimum and mean errors for each of the algorithm with no mea-
surement noise and also with noise measurements considering SNR values 30, 40
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Figure 7: n-DOF framed Structure

Table 2: Performance of the proposed structural system identification algorithm for
50 storey framed structure

Details DQPSO QPSO Hybrid adaptive PSO Hybrid GA
With no measurement noise

Minimum error (%) 0.0 0.17 0.39 0.44
Maximum error(%) 2.89 3.14 5.66 8.23
Absolute mean error(%) 1.64 1.98 3.91 4.34

With noise SNR=30
Minimum error(%) 1.34 1.77 1.61 1.82
Maximum error(%) 6.18 6.94 7.63 11.01
Absolute mean error(%) 4.89 6.01 6.98 9.46

With noise SNR=40
Minimum error(%) 1.02 1.06 1.31 1.08
Maximum error(%) 4.12 4.67 5.03 7.88
Absolute mean error(%) 2.94 3.56 4.08 6.04

With noise SNR=50
Minimum error(%) 0.09 0.12 0.56 0.78
Maximum error(%) 3.36 3.46 4.02 4.67
Absolute mean error(%) 2.05 2.87 3.31 3.86
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and 50 are shown in Table 2.

A close look at the results presented in Table 2, clearly indicates that the errors
in parameter identification is marginal in DQPSO algorithm and it is closely fol-
lowed by QPSO algorithm. Using DQPSO, the maximum and absolute mean errors
in identification of member stiffness without measurement noise are 2.89% and
1.64%, respectively. For the cases with the measurement noise with SNR as 50, the
maximum and absolute mean errors are found to be 3.36% and 2.05%, respectively.
Similarly, with the QPSO algorithm, the maximum and absolute mean errors with-
out noise are found to be 3.14% and 1.98%, respectively and with noise( SNR=50),
the errors are 0.12% and 2.87%. The hybrid adaptive PSO and hybrid GA al-
gorithms are also able to identify the parameters with reasonable accuracy. The
maximum and absolute mean errors for hybrid adaptive PSO are 5.66%, 3.91%,
and hybrid GA algorithms are 8.23%, 4.34% respectively. The details furnished
in Table 2 related to measurement noise clearly indicate that, the performance of
DQPSO is impressive even with noisy measurements.

Figure 8 shows the time history responses of original 50 storey shear building
model and the structure with the identified stiffness and damping ratios using the
proposed system identification algorithm. It is clearly evident from Figure 8 that
the responses are exactly matching.

Numerical Example 3: Truss bridge

The proposed system identification method is evaluated using truss bridge with 55
elements, 24 nodes and 44 DOFs. The detailed geometrical configuration of the
truss bridge is shown in Figure 9. The structure is subjected to vertical harmonic
excitation at F1and F2. It is considered here for the identification of axial rigidity of
the substructure members and the two Rayleigh damping coefficients. The elastic
modulus E, cross-sectional area Aand mass density of all the elements are 210GPa,
0.03m2 and 8000 kg/m3, respectively. The two damping coefficients α and β are
chosen as 2.177 and 0.0011, respectively, resulting in a 5% damping ratio for the
first two modes. The first two natural frequencies of the structure are 5.9Hz and
8.3Hz. The maximum, minimum and mean errors for each of the algorithm with no
measurement noise and also with noise measurements considering SNR values 30,
40 and 50 are shown in Table 3. Figure 10 shows the stiffness ratio i.e. the ratio of
identified axial rigidity to the actual value of members for the case studies carried
out without noise and also with varied SNR values of noise using the proposed
dynamic quantum behaved PSO algorithm.

A close look at the results presented in Table 3 clearly indicate that the proposed
system identification technique with DQPSO performs rather well even for noisy
measurements. The maximum and absolute mean errors in identification of axial
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(a) Displacement       

        

(b) Velocity

 

(c) Acceleration

Figure 8: Displacement, velocity and acceleration time history of 50 storey shear
building model subjected to harmonic excitation on top storey

rigidity are 3.46% and 1.94%, respectively, for the noise free case. The absolute
mean errors with measurement noise are found to be 4.99%, 2.72% and 1.99%
respectively for SNR values of 30, 40 and 50.

Figure 9: Truss bridge
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Figure 10: Identified stiffness ratios of Truss bridge using DQPSO algorithm

Table 3: Performance of the proposed structural system identification algorithm for
truss bridge

Details DQPSO QPSO Hybrid adaptive PSO Hybrid GA
With no measurement noise

Minimum error(%) 0.04 0.12 0.52 0.69
Maximum error(%) 3.46 5.16 7.02 4.78
Absolute mean error(%) 1.94 2.17 3.31 3.89

With noise SNR=30
Minimum error(%) 2.15 2.59 2.88 2.42
Maximum error(%) 5.33 6.43 7.26 7.31
Absolute mean error(%) 4.99 5.61 6.98 8.24

With noise SNR=40
Minimum error(%) 1.01 1.12 1.29 1.23
Maximum error(%) 4.12 4.88 6.16 6.74
Absolute mean error(%) 2.72 3.74 4.27 5.91

With noise SNR=50
Minimum error (%) 0.002 0.07 0.18 0.17
Maximum error(%) 6.18 6.73 7.22 7.47
Absolute mean error(%) 1.99 2.25 4.01 4.19
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6 Conclusions

This paper explored the feasibility of identifying a reduced-order model of linear
dynamical system using proper orthogonal decomposition. POD is used for the
model reduction strategy. Such a reduced-order model circumvents the limitations
of traditional modal analysis. The inverse problem relating to the identification of
the damping and stiffness matrices was tackled by formulating it as an optimisation
problem and solved by using a meta- heuristic algorithm based on swarm intel-
ligence. A new variant of particle swarm optimisation algorithm called dynamic
quantum particle swarm optimisation algorithm is developed and implemented in
the proposed system identification algorithm.

Numerical studies have been carried out to study the efficacy of the proposed algo-
rithm by solving three problems. In order to demonstrate the effectiveness of the
proposed DQPSO algorithm for system identification, we have compared with the
performance of hybrid adaptive PSO, hybrid GA and Quantum PSO algorithms.
The studies carried out in this paper clearly indicate that the proposed algorithm
is effective in identifying the system matrices accurately. Eventhough all the four
stochastic optimisation algorithms are effective in identifying the system param-
eters accurately, the performance of DQPSO appears to be more superior. The
convergence plots drawn clearly indicate that the proposed system identification al-
gorithm with DQPSO convergences faster and much more accurate when compared
to other three stochastic optimisation algorithms employed in this paper.

For the numerical examples investigated in this paper, it is demonstrated that POD
can be successfully applied for the reduced-order modelling. The dimension of
the reduced model may be an order of magnitude smaller than the corresponding
comprehensive model. The predictions from the identified reduced-order models
match reasonably well with the original system response.

In the present work we have used the acceleration measurement as they are more
commonly used for system identification. However, for ambient vibration mea-
surements, the acceleration response will usually be very small. In such situations
it is preferable to use velocity measurements. The proposed algorithm can be used
straightaway without many modifications. Proper orthogonal modes can be gen-
erated using the measured velocity data in the similar way explained earlier for
acceleration measurements. In the objective function given in equation (9) we need
to use velocity instead of acceleration

Studies using measurement noise indicate that the noise influences the results. The
proposed POD based system identification algorithm combined with DQPSO ex-
hibits superior performance and exhibits low sensitivity to noisy measurements.
The experimental verification of the proposed system identification algorithm will
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be taken up in future.
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