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Optimal Sensor Placement for Structural, Damage and
Impact Identification: A Review
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Abstract: The optimum location of the sensors is a critical issue of any success-
ful Structural Health Monitoring System. Sensor optimization problems encompass
mainly three areas of interest: system identification, damage identification and im-
pact identification. The current paper is intended as a review of the state of the
art at the year 2012 and going back to 1990. The above topics have been dealt
with in separate contexts so far but they contain interesting common elements to be
exploited.
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1 Introduction

A key issue in Structural Health Monitoring (SHM) is the selection of the optimal
number and location of sensors. Damage and impact identifications are primary
issues in which the best deployment of sensors is vital to guarantee effectiveness
and robustness. They are strictly correlated as impact above certain energy level
would result in damage in the structure.

The optimum number and location of sensors is also a main concern in the general
field of System Identification (SI) where the model is selected from a parameterized
class by fitting measured dynamic data. The identification is aimed at choosing the
most "realistic" model among the available ones in order to reproduce the struc-
tural response as correctly as possible. SI is also linked to SHM; in fact a correct
identification of the structural numerical model is a necessary condition to improve
damage and impact detection procedures.

Sensor optimization is vital for safe operations of civil and aeronautic structures. It
allows cost reduction both in mounting/maintaining a structural monitoring system
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and, at the same time, in performing prognostic and preventative maintenance. Da-
ta acquisition systems (sensors and their supporting systems) have high costs and, if
designed with a sufficient level of reliability, may allow inspections to be scheduled
only when necessary. Normally the sensor selection is based purely on the engi-
neer’s judgement, but for large-scale complicated structures efficient optimisation
procedures are necessary.

In this review the state of the art in system, damage and impact identification will be
critically assessed. Due to the huge amount of work that has been produced so far
and far beyond their ability to cover all the developments, the authors have restrict-
ed their attention to papers published in scientific journals in the period 1990-2012
and mainly in aeronautic and civil engineering.

The survey is organized as follows. Section 2 comprises a review of the sensor
placement methods aimed at the identification of structural characteristics, empha-
sizing the adopted objective function. In Section 3 the recent literature on sensor
optimization in damage and fault detection is briefly reviewed; attention is paid on
the main aspects of the technique adopted. The review of the optimal sensor place-
ment for impact detection is carried out in Section 4. The paper ends with some
comments and concluding remarks in Section 5.

2 Optimal Sensors in System Identification

In a system identification methodology, the information about the condition of the
system is provided by the measured data. The sensor configuration should be select-
ed such that the resulting measured data are most informative about the condition
of the structure or, equivalently, the uncertainty in the parameter estimates is the
least possible. Implementation in structural dynamics is concentrated on the de-
sign of optimal sensor location for modal identification and estimation of structural
numerical model parameters.

The available literature on the above topic is dominant when compared to the other
two fields (i.e. damage and impact identification). This can be attributed mainly
to two factors: 1) the parametrization of the numerical model undoubtedly occur
before any non linear inverse identification problem, 2) SI has dealt with linear
problems for many years and only recently has been extended to the damage iden-
tification matter. The more-trodden property of this issue is also demonstrated by
the survey papers Kubrusly and Malebranche (1985) and Mottershead and Friswell
(1993).

It is clear that SI has a strong link with damage identification: in fact, most SHM
approaches establish their reliability on the changes of either the mechanical prop-
erties (e.g. the stiffness) or the dynamic behavior in terms of the natural frequencies
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and associated modes of vibration.

In Table 2 the papers dealing with the SI problem are grouped on the basis of the
choice performed on the objective function. The papers reported in the second
column are listed in increasing order of the publishing year.

Table 1: Papers reviewed per objective function (1990-2012). IE=Information En-
tropy, FIM=Fisher Information Matrix, off-MAC = off-diagonal elements of the
MAC, J(a) = least-squares output-error, EID = Effective Independence Distribu-
tion.

Objective
function

Papers

IE Yuen, Katafygiotis, Papadimitriou, and Mickleborough
(2001); Katafygiotis and Yeun (2001); Papadimitriou
(2004); Papadimitriou (2005); Papadimitriou and Lom-
baert (2012).

‖FIM‖ Kammer (1991); Yao, Sethares, and Kammer (1993)
Kirkegaard and Brincker (1994); Kammer and Brillhart
(1996); Kammer and Tinker (2004)

tr(FIM) Udwadia (1994); Heredia-Zavoni and Esteva (1998);
Heredia-Zavoni, Montes-Iturrizaga, and Esteva (1999).

off-MAC Yi, Li, and Gu (2011).
J(a) Beck and Katafygiotis (1998); Katafygiotis and Beck

(1998); Katafygiotis, Papadimitriou, and Lam (1998);
Reynier and Abou-Kandil (1999); Papadimitriou, Beck,
and Au (2000).

EID Yuen and Katafygiotis (2001)
kinetic ener-
gy

Heo, Wang, and Satpathi (1997)

else Hac and Liu (1993); Penny, Friswell, and Garvey (1994);
Li, Tang, and Li (2004); Meo and Zumpano (2005); Rao
and Anandakumar (2007); Li, Li, and Fritzen (2007).

Parametric identification has many applications in civil and aeronautic engineering.
Large-scale structures in civil engineering, such as high-rise buildings, suspension
bridges and transmission towers are more and more utilized nowadays. Long ser-
vice lives, inadequate designs and increasing traffic loads are causing severe crisis
in such structures; however, they must be kept operational provided that minimiz-
ing the chances of a collapse and, thus, of loss of life and property. Structural
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responses measured at specified sensor positions determine the accuracy of modal
parameter identification and they are crucial in the consequent model updating and
damage quantification (see Yi, Li, and Gu (2011)).

An example of application of optimal sensor positioning in civil engineering is giv-
en by the suspension footbridge tested in Meo and Zumpano (2005). In Fig. 1 the
Finite element model (FEM) of the bridge (a) and the optimal sensor positions (b)
are depicted. The goal was to find the best sensor locations in such a way to capture
the dynamic response of the structure, i.e. the best fit to a set of three targeted mode
shapes. Fig. 1(b) shows the final best location of the minimum number of sensors
on the basis of the EID method described in Kammer and Brillhart (1996).

Figure 1: (a) FEM of the suspension footbridge, (b) EID sensor location Meo and
Zumpano (2005).

Another typical application in civil engineering is the determination of the uncer-
tain lateral inter-storey stiffnesses of a typical steel/reinforced concrete shear build-
ing. In such a case the sensors located in their optimum location should provide
the best identification of the inter-storey stiffnesses on the basis of displacemen-
t/acceleration measurements. Fig. 2 presents the optimal arrays of accelerometers
for a 8-DOF system on the basis of the maximum of the expected trace of the FIM
as obtained by Heredia-Zavoni and Esteva (1998).

A similar issue is encountered in aeronautic engineering. Fig. 2 in Kammer and
Tinker (2004) shows the FEM of an advanced vehicle that was sensed in order to
measure 27 target modes. The paper presented the minimum number and loca-
tion of sensors distributed on the surface of the vehicle that best acquire the above
information.

For the sake of clearness the papers examined are listed in Table 2 in chronological
order. The sequence of the references in the same year coincides with the temporal
order.

Undoubtedly a starting point of the present review is given by Kammer (1991).
Given a set of (target) structural modes to be identified, the best sensors location
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Figure 2: Optimal from-1-to-3 accelerometer locations of a 8-DOF system Heredia-
Zavoni and Esteva (1998).

should provide measurement data that render the extracted test-mode shapes and
frequencies the most possible linearly independent, otherwise the test modes and
the corresponding FEM modal partitions would be indistinguishable. The proce-
dure is, thus, oriented towards modal identification by sensor measurements.

If θ denotes the vector of the k target modal coordinates and θ̂ its estimation, the
optimization is led by the covariance matrix of the estimate error P:

P = E
[(

θ − θ̂
)
(θ − θ̂)t]= [(∂H

∂θ

)t

(σ2
0 )
−1
(

∂H
∂θ

)]−1

(1)

where E denotes the expected value, H the displacement/velocity/acceleration pre-
diction of the measured response based on a (Finite Element or Finite Difference
or Boundary Element) model and the right hand side (rhs) is the well-known FIM:

Q =

(
∂H
∂θ

)t
∂H
∂θ

σ2
0

(2)

In the entire time history T the rhs of Eq. (1) needs to be integrated over T :

P = E[(θ − θ̂)(θ − θ̂)T ] =
∫ T

0

[
( ∂H

∂θ
)t( ∂H

∂θ
)

σ2
0

]−1

dt (3)
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Table 2: Sensor optimization in SI. List of the papers in chronological order.

1991-1997 Kammer (1991), Hac and Liu (1993), Yao, Sethares, and
Kammer (1993), Udwadia (1994), Kirkegaard and Brinck-
er (1994), Penny, Friswell, and Garvey (1994), Kammer
and Brillhart (1996), Heo, Wang, and Satpathi (1997)

1998-2004 Beck and Katafygiotis (1998), Katafygiotis and Beck
(1998), Heredia-Zavoni and Esteva (1998), Katafygiotis,
Papadimitriou, and Lam (1998), Heredia-Zavoni, Montes-
Iturrizaga, and Esteva (1999), Reynier and Abou-Kandil
(1999), Papadimitriou, Beck, and Au (2000), Yuen and
Katafygiotis (2001), Katafygiotis and Yeun (2001), Yuen,
Katafygiotis, Papadimitriou, and Mickleborough (2001),
Kammer and Tinker (2004), Papadimitriou (2004), Li,
Tang, and Li (2004)

2005-2009 Papadimitriou (2005), Meo and Zumpano (2005), Rao and
Anandakumar (2007), Li, Li, and Fritzen (2007)

2010-2012 Yi, Li, and Gu (2011), Papadimitriou and Lombaert (2012)

The sensor output at any instant can be represented as:

us = H(θ)+N = Φsθ +N (4)

where the vector N is a stationary Gaussian white noise with variance σ2
0 and Φs the

k x s matrix of FEM target modes partitioned to the s sensor locations. Therefore
the covariance matrix P at any instant can be expressed as:

P =

(
ΦT

s Φs

σ2
0

)−1

= Q−1 (5)

The procedure proposed by Kammer (1991) reduces progressively an initially se-
lected candidate set of s sensor locations to an allotted number m< s by eliminating
the sensors that do not contribute substantially to the linear independence and iden-
tification of the mode shapes. The initial set is selected in order that the associated
modal kinetic energy distribution is about 40−50% of the total value for each tar-
get mode. The sensor elimination process is based on a related measure of the
contribution of each sensor location (out of s) given by the vector ED.
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If λ and Ψ are the eigenvalue and eigenvector matrices of A0 = ∑
s
i=1 Φit

s Φi
s (Φi

s
being the ith row of the modal partition Φ corresponding to the ith DOF or sensor
location), respectively, then the s x k matrix:

FE = [ΦsΨ]⊗ [ΦsΨ]λ−1 (6)

where the symbol ⊗ represents a term-by-term matrix multiplication, collects the
fractional contribution of the sensor locations to the eigenvalues. The s-dimensional
vector:

ED =

[
k

∑
j=1

FE1 j , · · · ,
k

∑
j=1

FEs j

]
(7)

referred as Effective Independence Distribution (EID), is demonstrated to be capa-
ble to rank the candidate sensor set, i.e. EDi = 0 means that the sensor location does
not contribute and it can be eliminated, whereas EDi = 1 means that the sensor is
vital in identifying the target mode.

In practice a sensor location will have a contribution in the range 0 ≤ EDi ≤ 1.0.
The final sub-optimal sensor configuration of a pre-defined number s of sensors is
obtained in an iterative manner by eliminating one sensor per time on the basis of
the values in ED. The sensor with the lowest value of EDi is iteratively eliminated
and ED is to be re-calculated at each iteration.

It can be shown (see for instance Kammer and Brillhart (1996)) that the ith com-
ponent of the ED vector represents the fractional change in the determinant of the
FIM if the ith candidate sensor location is deleted, i.e.:

EDi =
|Q|− |Qi|
|Q|

(8)

where Qi is the FIM with the ith candidate sensor location deleted. Furthermore,
Kammer and Brillhart (1996) shows that the EID method also enhances the modal
identification process as it maximizes the observability of the system.

Kammer and Tinker (2004) presents the reformulation of the procedure developed
in Kammer (1991) to place triaxial accelerometers as single units rather than as
three different sensors. The accelerometers are ranked on the basis of their effective
independence value. Its expression is re-obtained in order to measure the fractional
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change in the determinant of the FIM if the ith node, and not one of the three
directions sensored by the accelerometer, is deleted from the candidate set.

In Yao, Sethares, and Kammer (1993) the authors propose the Genetic Algorithm
(GA) as an alternative to the EID method which is not guaranteed to produce an
optimum solution. The fitness function is taken as the determinant of the FIM. Such
a paper represents the first application of a GA to the sensor placement problem.
The procedure slightly outperforms the EID algorithm in the examples presented
by the authors.

In Hac and Liu (1993) the problem is extended to the sensor and actuator best
location in systems governed by the generalized wave equation whose displacement
solution w in a point P at the instant t can be represented as the series:

w(P, t) =
∞

∑
i=1

Φi(P)ηi(t) (9)

where ηi(t) are modal co-ordinates and Φi(P) are eigenfunctions with correspond-
ing natural frequencies ωi. Following a common procedure in structural dynamics,
the governing equation can be replaced by a set of n ordinary differential equations:

η̈i +2ζiωiη̇i +ω
2
i ηi = Qi(t) =

p

∑
j=1

Φi(Pj) f j(t) (10)

under the assumption that higher order modes can be neglected as they are not likely
to be excited in practice and typically exhibit higher structural damping. Defining
the state and the input vectors as x= [η̇1,ω1η1, · · · ,ωnηn]

T , u= [ f1, · · · , fp]
T yields

the state representation of the above equation:

ẋ = Ax+Bu (11)

If the displacement y(t) is supposed to be measured at r sensor points, Hac and Liu
(1993) proposes to locate such sensors in order to maximize a Performance Index
(PI) expressed in terms of the eigenvalues λ j of the observability gramian:

PI =

(
2n

∑
j=1

λ j

)
2n

√√√√ 2n

∏
j=1

λ j (12)
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where it is well known that the observability gramian Q is proportional to the output
energy released by the system from the initial state x(0) = x0:

∫
∞

0
yT (t)y(t)dt = xT

0 Qx0 (13)

Maximization of PI is shown by Hac and Liu (1993) to guarantee that the system
response is large under a persistent excitation provided that the natural frequencies
to be well spaced and the damping to be low. Therefore, the idea, as a matter of
fact rather simplicistic, is to optimize the sensors location by imposing the system
output to be as large as possible. On the other hand the approach cannot guarantee
that the noise associated to the measurement is the lowest possible. Furthermore,
the observability gramian depends on the particular choice of the state variables,
making the application rather complicate.

In 1991 a different approach based on the FIM was proposed even if the paper was
only published in 1993. A research line aimed at obtaining the optimal sensors
locations as those providing the best structural parameters estimates had already
been trodden in the eighties, but the approaches were all depending on the specific
estimator adopted, thus, requiring an exhaustive search to be performed for each of
it.

Many older papers had shown that the optimal location of the sensors can be ob-
tained by maximizing the FIM (say Q) as such a maximization minimizes the co-
variance of the estimation error E[(θ− θ̂)(θ− θ̂)T ] on the basis of the Cramer-Rao
lower bound:

E[(θ − θ̂)(θ − θ̂)T ]≥ Q−1 (14)

Eq. (14) leads to a great simplification, but it is valid under the postulate that an
asymptotically efficient unbiased estimator exists.

In Udwadia (1994) the FIM is established for a m-dof structural dynamic system
and the proposed methodology may be also applied to systems governed by non-
linear differential equations. The authors assert that the sensors are to be placed at
those locations that are most sensitive to any changes in the parameters θ , i.e. at
those locations that maximize the slope of H(θ) or, better, that maximize a suitable
norm of the FIM. Among the various commonly used norms, Udwadia (1994) sug-
gests the trace of the FIM having the advantage to be linear. The author proposes an
algorithm to locate m optimal sensors in the positions corresponding to the largest
m values of the diagonal of the FIM. The expression of the trace of the FIM is giv-
en in terms of the sensitivities ∂xsk/∂θi where xsk is the response of node sk with



296 Copyright © 2013 Tech Science Press SDHM, vol.9, no.4, pp.287-323, 2013

sensor. The analytical expression of such a sensitivity is determined by the author
with an implicit approach in the case of N-dof classically damped linear dynamic
system.

The assumption of the above work is that the measurements are independent ran-
dom variables. In the case of the optimal location of sensors for a vibrating simply
supported beam, following Kirkegaard and Brincker (1994), if the measurements
are dependent, then the expression of the FIM is more cumbersome as it involves
an Ns x Ns-dimensional integral (Ns =number of sensors to optimally locate) to
be solved. The difference between the two cases is shown by the authors if one
observation is taken simultaneously once at each of two sensors, i.e. the integral
becomes 2D. The comparison shows that more reliable conclusions can be drawn
in the second case as the spatial correlation is taken into account. The optimal sen-
sor locations are obtained by maximizing the determinant of the FIM. Furthermore
the authors show that the optimal result is sensitive to the variance of the noise
but such a sensitivity decreases with increasing number of sensors. The proposed
method essentially formalises the old practical method of placing sensors near the
antinodes of the low-frequency vibration modes of the system.

In Penny, Friswell, and Garvey (1994) an a priori FE model is assumed to guide the
selection of the locations. Two approaches are considered. In the first the objective
function is the average driving point residue (ADPR):

ADPR j =
Nmodes

∑
i=1

ψ2
i j

ωi
(15)

where ψi j is the ith element of the j−th eigenvector and ωi is the ith natural fre-
quency. The coordinates with the highest ADPR are chosen, i.e. the coordinates
that give the highest contribution to the modeshapes. In the second approach the
objective function to maximize is related to the ratios mii/kii, following the idea of
Guyan model reduction: the coordinates to select are to be masters.

In 1998 a general Bayesian framework is proposed (Beck and Katafygiotis (1998),
Katafygiotis and Beck (1998)) for system identification. The procedure is detailed
in the model updating issue in which the FEM is adjusted so that either the calculat-
ed response time histories, frequency response functions, or the modal parameters
best match the corresponding quantities measured from the test data. The procedure
proposed is mainly aimed at finding the unknown parameters of the model that best
fit the measurement response in certain points and not at finding the related best
sensor locations. Despite of this, the above papers deserve attention as they give a
complete and mathematically consistent formulation of system identification in the
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statistical framework. In fact, in Beck and Katafygiotis (1998) the authors provide
the basic probability model for statistical identification of the free parameters a de-
scribing the input-output structural behavior. Such a model is given in terms of two
probability distribution functions (PDFs): the PDF for the system output, related
to the uncertainty in the prediction accuracy of the governing mathematical model,
and the PDF for the model parameters θ and σ relating to the uncertainty in the
prediction-error probability model. The former is given by:

p(Y M
1 ,XM

1 |θ ,σ ,ZM
1 ,M ) = gM(Y M

1 ,XM
1 ,θ ,ZM

1 )

=
1

(
√

2πσ)MNd
exp

[
− 1

2σ2

M

∑
n=1
‖y(n)−S0qqq(n;θ)‖2

]
x

x exp

[
− 1

2σ2

M

∑
n=1
‖x(n)−Suqqq(n;θ)‖2

] (16)

where θ are the free parameters, M the number of time steps, Y M
1 the observed

DOFs and XM
1 the unobserved DOFs, Nd the total number of DOFs, No the observed

DOFs, σ the variance of the prediction errors, S0q(n;θ) and Suq(n;θ) the model
output at the observed and unobserved DOFs, respectively.

The PDF related to the uncertainty in the prediction-error probability model is given
by:

p(θ |M ) = π(θ) (17)

The final PDF is provided prior to utilizing data (initial predictive PDF):

p(Y M
1 ,XM

1 |ZM
1 ,M ) =

∫
S(θ )

gM(Y M
1 ,XM

1 ,θ ,ZM
1 )π(θ)dθ (18)

and after a set of observed time history data from the structural system is measured
(updated predictive PDF):

p(θ |D ,M ) = c
1

(
√

2πσ)NNd
exp

[
− 1

2σ2

M

∑
n=1
‖y(n)−S0q(n;θ)‖2

]
p(θ |M ) (19)

where c is a normalizing constant.
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The optimal structural parameters and variance are obtained by maximizing the up-
dated predictive PDF, i.e. maximizing likelihood estimates. Again the assumption
that the prediction error at any location and any time is not influenced by the uncer-
tainty at other times or at other locations within the structure is formulated. As the
integrals involved are almost impossible to be evaluated for a relatively low number
of structural parameters to be identified, the authors propose an alternative asymp-
totic approach if a large number of data measurements is available. In Katafygiotis
and Beck (1998) an example is given where the best stiffnesses of a two-dof linear
planar building are determined in order that the corresponding FEM give exactly
the accelerations measured at the roof under a given base excitation.

In Katafygiotis, Papadimitriou, and Lam (1998) the general Bayesian statistical
model updating framework presented in Beck and Katafygiotis (1998) is discussed
in the cases in which the asymptotic approximations developed in Beck and Katafy-
giotis (1998) are not valid. In such a case the authors conclude with a numerical
algorithm that approximates the posterior PDF.

An extension of the approach proposed by Udwadia (1994) is formulated by Heredia-
Zavoni and Esteva (1998) to treat the case of large model uncertainties expected in
model updating. The most efficient unbiased estimator θ̂ of the uncertain structural
parameters collected in the vector θ is known to be the inverse of the FIM:

Cov(θ̂ |θ) = Q−1 (20)

The authors propose to minimize the expectation E[L(θ , θ̂)] of the squared error
loss function L(θ , θ̂) = (θ̂ − θ)t(θ̂ − θ) to obtain the optimal set of sensor loca-
tions. By carrying out a Taylor series expansion of L about θ and on the basis of
the results shown by Udwadia (1994) the authors demonstrate that:

min E[(θ̂ −θ)t(θ̂ −θ)] = min Eθ [tr Q−1] (21)

where Q is the FIM defined as:

Q = E
[(

∂

∂θ
ln f (Y|θ)

)(
∂

∂θ
ln f (Y|θ)

)t]
(22)

with f (Y|θ) denoting the conditional joint probability density function of the ran-
dom vector observations Y and the superscript t denoting vector transpose.
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The expression of

∂

∂θ
ln f (Y|θ) (23)

is obtained in terms of the covariances between Fourier coefficients of the record-
ed responses. Such expressions are derived by the authors for the case of linear
stochastic structural response. It is worthy to point out that in order to use the Eq.
(21) it is necessary to assign a prior distribution of θ before the measurements are
carried out.

In Heredia-Zavoni, Montes-Iturrizaga, and Esteva (1999) the expressions obtained
by Heredia-Zavoni and Esteva (1998) are extended to take into account the soil-
foundation interaction effects in 2D structures, with uncertain properties, subjected
to random earthquake ground motions. The base movement is approximated as
rigid, i.e. having horizontal displacement v0 and rotation φ of the base. The updated
expressions of the covariances between Fourier coefficients of recorded responses
are obtained.

The approach proposed in Reynier and Abou-Kandil (1999) has some points in
common with the strategies presented in Kammer (1991) and Hac and Liu (1993).
It limits the optimal sensor location issue to the low-frequency range. The target
is the estimation of the model coordinates q. The optimal location of sensors is
obtained by comparing two different approaches. The first one is based on the
minimization of the covariance matrix of the estimated error:

E[(q̂−q)(q̂−q)t ] (24)

If matrix φ collects the (FEM) eigenvectors of a n-dof structure and N the white-
Gaussian noise that affects the FEM solution to recover the measured displace-
ments, the covariance matrix is given by:

E[(q̂−q)(q̂−q)t ] = β
−2[φ t

φ ]−1 (25)

where β is the constant diagonal term of E[NNt ] as the noise is supposed to be
white and equal on each sensor location. By some simple matrix manipulations the
authors show that the minimization of the Eq. (24) is equivalent to the maximiza-
tion of λmin[φ

tφ ] where λmin is the smallest eigenvalue of [φ tφ ].

The second approach is based on the maximization of a measure associated to the
observability gramian matrix W0:
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W0 =
∫

∞

0
eAtCtCeAtdt (26)

where:

A =

[
0 I
ψ Σ

]
(27)

and 0 is the η x η zero matrix, I is the η x η unit matrix, ψ is the η x η diagonal
matrix collecting the eigenvalues ωi and Σ is the η x η diagonal matrix with Σi =
−2ξ ωi and supposing that η modes describe the response of the structure.

The numerical results presented by the authors appear to be more efficient than the
ones obtained by the approach in Kammer (1991) and in Hac and Liu (1993).

Papadimitriou, Beck, and Au (2000) is the natural extension of the work carried
out in Beck and Katafygiotis (1998),Katafygiotis and Beck (1998) to the compu-
tation of the optimal sensor locations. In coherence with the Bayesian framework
described in Beck and Katafygiotis (1998), the uncertainties in the parameters θ

to be identified and in the prediction error e(n,θ) at the time tn are quantified us-
ing a probability density function (PDF) whose updated expression is given by the
asymptotic expression for large sampling time interval provided by the authors in
similar expressions to eqs. (14) and (21) in Udwadia (1994). The optimal value
θ̂ of θ is chosen as minimizing a measure of the uncertainty in θ expressed by
the information entropy. It must be pointed out that an important advantage of the
information entropy measure is that it allows to make comparison between sensor
configurations involving a different number of sensors in each configuration.

The above minimization is equivalent to the maximization of either ln det Q(δ ,θ 0)
or det Q(δ ,θ 0) when the updated values of the model parameters θ ,σ0 do not devi-
ate significantly from the nominal values θ 0, σ0 (chosen by the designer as repre-
sentative for the structure and the given classes of models). Here σ2 is the variance
of the prediction error vector affecting the model output that is supposed to be
Gaussian with zero mean; θ 0 is such that S0q(n,θ 0) is the mean of the Gaussian
PDF model output.

The minimization is carried out by a GA. The formulation allows the comparison
between configurations with different number of sensors. It is worthy to point out
that the expressions of the FIM provided by the authors are analogous to those de-
rived by Udwadia (1994), but the determinant rather than the trace is involved. The
authors demonstrate that the determinant and the trace provide different optimal
sensor configurations.
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On the other hand, large uncertainties in the values may arise: for instance a severe
damage may cause a significant reduction in the stiffness of the structure. In such
a case the updated model is not close to the nominal model, the nominal values
θ 0 and σ0 need a prescribed PDF to be represented. The optimal parameters are
obtained by minimizing the change in information entropy, or, equivalently, maxi-
mizing:

∫
ln det Q(δ ,θ 0)p(θ 0)dθ 0 (28)

i.e. maximizing the expected value of ln det Q(δ ,θ 0) over θ 0. Heredia-Zavoni
and Esteva (1998) proposed an alternative formulation where the maximization is
carried out with respect to the expected value of tr[Q−1(δ ,θ 0)] over θ 0.

Yuen and Katafygiotis (2001) and Katafygiotis and Yeun (2001) do not express-
ly deal with the sensor network optimization, but the framework developed is the
starting point of successive optimization papers and, thus, deserve a brief introduc-
tion.

The issue is the knowledge of the input excitation related to the response measure-
ment, that is usually completely known. What happens if the input is not available?
For instance ambient vibrations surveys may offer a means of obtaining dynamic
data in an efficient and economic manner. In such a case there is an additional un-
certainty to take into account of. In Yuen and Katafygiotis (2001) a Bayesian time-
domain approach for modal updating using ambient data is developed on the basis
of the Bayesian framework developed by Beck and Katafygiotis (1998), Katafygi-
otis, Papadimitriou, and Lam (1998). The external force is modeled as Gaussian
white noise with known spectral density. The usual expression of the PDF of the
random measurement vector Ŷ1,N for given θ :

p(Y1,N |θ) = (2π)−N/2|Γ(θ)|−1/2exp
[
−1

2
Yt

1,NΓ
−1(θ)Y1,N

]
(29)

with Γ(θ) being the covariance matrix, is unfeasible for a large number of observed
data. Yuen and Katafygiotis (2001) propose an approximate expansion provided
that only the lower Nm modes contribute significantly to the response and only
Np previous time-data points have significant effect on the statistical behavior of
the present. The update expression involves smaller matrices and smaller time
intervals, thus, requiring a numerical effort that is negligible compared to the one
required by the exact formula.
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The optimal parameters θ̂ are determined as the most probable, i.e. as the ones
maximizing p(θ)p(Ŷ1,N |θ) where p(θ) is the prior PDF of θ .

Katafygiotis and Yeun (2001) develop a similar procedure for modal updating us-
ing ambient data based on the statistics of an estimator of the spectral density.
The response of an N-dof dynamic system under a Gaussian white noise force is a
Gaussian process with zero mean and spectral density S(ω). An estimator of such
a spectral density matrix is introduced by the authors. Assuming there is a set of
M independent, identically distributed, N−step time histories Y(1)

N , · · ·Y(M)
N with

N→ ∞ the authors provide the PDF of the average spectral density estimate:

SM
y,N =

1
M

M

∑
m=1

S(m)
y,N (ωk) (30)

The most probable parameters θ are determined by minimizing the term:

g(θ) =− ln
[

p(θ)p(SM,k1,k2
y,N |θ)

]
(31)

where SM,k1,k2
y,N = SM

y,N(k∆ω),k = k1, · · · ,k2 and p(SM,k1,k2
y,N |θ) is the updated PDF of

the model parameters θ given the data SM,k1,k2
y,N . The above results are correct only

asymptotically as N→ ∞.

Yuen, Katafygiotis, Papadimitriou, and Mickleborough (2001) represents the natu-
ral extension of the work developed in Yuen and Katafygiotis (2001), Katafygiotis
and Yeun (2001) to the optimal sensor placement problem for the case of uncertain
excitation. In fact, the optimal sensor configuration is selected as the one which
minimizes the information entropy measure:

Hθ = E[g(θ)] = E [− ln p(θ |D,δ ,M)] (32)

where E denoting the mathematical expectation with respect to θ and D,δ ,M denot-
ing the class of models, the sensor configuration and the available data, respectively.
The PDF involved in Eq. (32) is expressed in Yuen, Katafygiotis, Papadimitriou,
and Mickleborough (2001) in terms of p(SM

y,N(ωk)|θ). For large number of avail-
able data the information entropy Eq. (32) can be expressed in terms of the Hessian
Q(δ , θ̂ ,D) of g(θ):

Hθ =
1
2

N
δ
[ln(2π)+1]− 1

2
lndet Q(δ , θ̂ ,D) (33)
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where θ̂ are the most probable parameters. For large number of data the informa-
tion entropy does not depend on the data that are not available at the initial stage,
i.e. Q(δ , θ̂ ,D)→ Q(δ , θ̂), but the dependence on θ̂ is still a problem. The issue
can be solved either assigning a nominal model θ 0 or prescribing a PDF p(θ 0). In
the latter case the information entropy to be minimized changes into:

h(δ ) =
1
2

N
δ
[ln(2π)+1]− 1

2

∫
lndet Q(δ ,θ ′0)p(θ ′0)dθ

′
0 (34)

where the multi-dimensional integral involved needs to be evaluated numerically
by efficient asymptotic expansions.

In the same Bayesian statistical system identification methodology framework set
by Beck and Katafygiotis (1998), Papadimitriou (2004) discusses the information
entropy as measure to minimize. The Bayesian statistical framework is the same
of the one developed by Beck and Katafygiotis (1998) to provide the expression
of the updating PDF p(θ ,σ |D) of the set of structural model and prediction er-
ror parameters (δ ,σ) given the measured data D. Furthermore, the information
entropy as introduced by Papadimitriou, Beck, and Au (2000) is approximated by
an asymptotic expansion valid for a large number of data and obtained by the use
of the Laplace method. Such an approximation is similar to the one obtained by
Yuen, Katafygiotis, Papadimitriou, and Mickleborough (2001) and it is expressed
in terms of the determinant of the FIM. Some useful propositions are also obtained:
1) the information entropy for M sensors is higher than the information entropy for
M+L sensors; 2) the min and max information entropy are decreasing functions of
the number of sensors. Finally, two interesting numerical algorithms are proposed
and investigated in alternative to the GA: the forward sequential sensor placemen-
t algorithm and the backward sequential sensor placement algorithm, the former
placing one sensor at a time at a position that results in the highest reduction in
the information entropy, the latter removing one sensor at a time at a position that
results in the smallest increase in the information entropy.

Also in Papadimitriou (2005) the information entropy is used as measure to min-
imize for optimizing the sensor configuration. The corresponding multi-objective
optimization problem of finding the sensor locations that simultaneously minimize
appropriately defined information entropy indices for all model classes is addressed
by estimating the Pareto optimal solutions with different algorithms. The Bayesian
statistical framework is the one described by Beck and Katafygiotis (1998). The
asymptotic approximation of the information entropy valid for large number of da-
ta and provided by Papadimitriou (2004) is adopted. An information entropy index
IEI(δ ) is introduced as follows:
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IEI(δ ) =
H(δ )−H(δ re f

H(δ 0,re f )−H(δ re f )
(35)

where H(δ re f ) and H(δ 0,re f ) are the information entropies computed for two refer-
ence sensor configurations. Such reference configurations depend on the problem
under analysis. If the number of sensors is fixed, they correspond to the optimal
and to the worst sensor configurations; if the number of sensors is variable between
1 and NP, they correspond to the optimal sensor locations for 1 and NP sensors,
respectively.

Let Ji(x) = IEIi(δ i(x)) be the IEI of a sensor configuration x where δ i(x) maps the
sensor configuration for different model classes Mi. The optimal sensor locations
are identified by minimizing J(x) = (J1(x), · · · ,Jµ(x)) (where µ is the number of
structural models), i.e. as a multi-objective optimization problems that, in principle,
may have alternative solutions known as Pareto optimal solutions. The authors in
Papadimitriou (2005) use two algorithms to solve it: the Strength Pareto Evolution-
ary Algorithm and an heuristic algorithm based on the sequential sensor placement
approach introduced by Papadimitriou (2004).

Meo and Zumpano (2005) is a useful comparison of different optimal sensor place-
ment techniques for a bridge structure. The optimal sensor locations are obtained
on the basis of the first three global modal properties of the bridge. Six different
methods are investigated: the EID method developed by Kammer (1991), a com-
promise between the EID method and an energetic approach, the kinetic energy
method introduced by Heo, Wang, and Satpathi (1997), the variance method devel-
oped by the authors, and two approaches based on the maximization of the vibration
energy content of the signal acquired. After the description of the six techniques,
the authors conclude that the EID technique results to have the best performance
in identifying the optimal sensors capable to capture the low frequency vibration
characteristics. It must be pointed out that the comparison is limited to a specif-
ic example and to a specific objective function. A connection between the EID
method and the modal kinetic energy (MKE) method for the accelerometer place-
ment problem is also investigated in Li, Li, and Fritzen (2007) for eigenfrequencies
and mode shapes identification. The MKE ranks all candidate sensor positions by
their MKE indices as follows:

MKEi j = Φi j

n

∑
k=1

MikΦk j (36)

where MKEi j is the kinetic energy associated with the ith dof in the jth target mod-
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e. The sensor locations with higher values of MKE are selected as measurement
sensor set. The authors demonstrate that the EID method is an iterated version of
MKE with re-orthonormalized mode shapes.

Li, Tang, and Li (2004) also compares four different fitness functions in optimiz-
ing the sensor locations for structural vibration measurements. If Φ collects the
n modes in the free vibration analysis of a structure, the first fitness function (to
minimize) is given by:

f1 =
n

∑
i=1

n

∑
j=1
|∑

r∈0
ΦirΦ jr| (37)

where Φir is the rth component of the ith mode, r ∈ 0 means that a whole set r is
within the locations where there is no sensor installed. The other fitness functions
are all oriented to avoid measurements of similar modes. The second fitness func-
tion is based on the modal scale factor (MSF), the third fitness function is set in
terms of the Modal Assurance Criterion (MAC) and the fourth one is expressed in
terms of:

f (a,b) =
L

∑
i=1

(Φai−Φbi)
2

Φ
t
aiΦbi

(38)

where Φia is the ith mode shape from calculation and Φib is the measured ith mode
shape with m nodes. The optimization procedure is carried out with the uniform
design method introduced in Statistics.

It can be argued that the information-based approach, firstly introduced by Heredia-
Zavoni and Esteva (1998) and Heredia-Zavoni, Montes-Iturrizaga, and Esteva (1999),
reduce the initial candidate sensor locations to the optimal one in suboptimal way.
Furthermore, when GAs have been used, they have been tested only for problems
with a small number of possible candidate sensor locations. In Rao and Anandaku-
mar (2007) the authors propose an improved hybrid version of the particle swarm
optimization (PSO) technique combined with the Nelder-Mead algorithm to im-
prove the local search step. Total mean square error and determinant of FIM are
taken as objective functions. The procedure, tested on a cantilever beam and on a
rectangular plate, shows superior performance with respect to other information-
based approaches (such as EID).

In Yi, Li, and Gu (2011) number and locations of the sensor are determined in order
to guarantee the most possible that the measured modal vectors are orthogonal. This
can be achieved by forcing the matrix MAC:
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MACi j =
(Φt

iΦ j)
2

(Φt
iΦi)

(
Φt

jΦ j

) =
a2

i j

aiia j j
(39)

to be as more diagonal as possible. The procedure starts with assigning an initial
set of sensor locations by maximizing the determinant of FIM. Then the sequen-
tial sensor placement (SSP) algorithm already presented by Papadimitriou (2004)
is adopted, i.e. one sensor at a time is added at a position that results in the high-
est reduction in the maximum off-diagonal element of the MAC. The solution is
clearly suboptimal or near-optimal. The SSP can also be used in an inverse order,
obtaining the backward SSP (BSSP). The entire procedure is tested with reference
to a simplified 3D beam FEM of the Guangzhou New TV Tower in China.

The influence of the spatial correlation between prediction errors on the design of
the optimal sensor locations is investigated in Papadimitriou and Lombaert (2012).
The covariance Σt of the total prediction error is the sum of the covariance Σ̄ of the
measurement error with the covariance Σ of the model errors. If the measurement
error is assumed to be independent of the location of the sensors, its covariance Σ̄

becomes diagonal. On the other hand, it is reasonable to expect a certain degree
of correlation for the model errors between two neighborhood locations. Such a
correlation is assumed by the authors of the type:

Σi j =
√

ΣiiΣ j jR(δi j) (40)

R(δ ) = exp[−δ/λ ] (41)

where λ is a measure of the spatial correlation length.

The measure to minimize is the information entropy as introduced by Papadimitri-
ou, Beck, and Au (2000) and asymptotically expanded by Papadimitriou (2004) in
terms of the determinant of the FIM. Along the line of the propositions demon-
strated in Papadimitriou (2004), it is shown that the information entropy is a de-
creasing function of the shortest distance δ of a new sensor added to previous M
sensors. This implies that sensors locations further away from an existing sensor
have a higher information content, thus, the spatial correlation of the prediction
error tends to shift a sensor away from existing sensor locations.

3 Optimal Sensors in Damage Identification

All load-carrying structures, such as aircraft, spacecraft, bridges, and offshore plat-
forms, continuously accumulate damage during their service life. Any crack or
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local damage in a structure may affect the structural safety. So a structural moni-
toring system is needed. The location optimization of sensors is a crucial problem
in a structural monitoring system. Taking the cost of sensors into account, it is
uneconomical to install sensors on every part of a structure.

Two critical constraints exist in SHM applications: the number of sensors (and pos-
sibly actuators) available for the network, and the power available for interrogation.
Due to the difficulty of replacing batteries for sensors embedded in a structure, the
sensors energy efficiency is a critical concern for SHM systems. It is quiet com-
mon to consider the use of piezoelectric patches in the active-sensing process. For
this reason in the present review only will be considered piezoelectric patches. T-
wo actuation-sensing schemes are possible: pulse-echo, involving a single patch
actuating a waveform and then detecting its reflections, pitch-catch, involving two
different patches one to actuate and another one for sensing.

As a matter of fact, there have been only a few studies on optimal sensor placement
in SHM. A list of the most relevant ones in the last twenty years are listed in Table
3.

Table 3: Optimal sensor placement in damage identification. Papers reviewed in
chronological order.

Publication’s
year

Papers

1997-2000 Cobb and Liebst (1997), Sohn and Law (1997), Shi, Law,
and Zhang (1999), Shi, Law, and Zhang (2000)

2001-2004 Worden and Burrows (2001), Trendafilova, Heylen, and
van Brussel (2001), Guo, Zhang, Zhang, and Zhou (2004)

2005-2012 Field and Grigoriu (2006), Lee and Staszewski (2007),
Chang, Markmiller, Ihn, and Cheng (2007), Azarbayejani,
El-Osery, Choi, and Taha (2008), Flynn and Todd (2010).

Sensor optimization in damage identification is a natural extension of the work-
s illustrated in the previous section. Such an assertion is confirmed by the fact
that many papers involving parametric identification are cited in the contributions
dealing with damage identification.

An attempt to properly locate the sensors and to measure the related extension of
damage is developed in Cobb and Liebst (1997). The approach is mainly based
on sensitivity analysis, i.e. on examining the 1st order eigenstructure sensitivity
to changes in the structural stiffness of each Finite Element; structural damping is
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neglected. The location of the sensors is chosen in order to maximize such a sen-
sitivity. If λi and Φi represent the FE eigenvalue and eigenvector for the ith mode,
the authors extract the expression of the eigenvector sensitivity ∇λi and ∇Φi. Some
metrics are then developed in terms of the above sensitivities; such metrics are ca-
pable 1) to distinguish in which elements the damage can be detected on the basis
of the r measured modes (elements D) and in which one it cannot (elements U),
2) among the detectable elements D, in which ones the damage can be localized
(elements I) and in which one it cannot (elements S). The optimal sensor locations
are obtained by removing sensors from the dofs in order to have one sensor for
each element I and one sensor for each group of elements S. It is worthy to under-
line that the procedure is developed with reference to truss structures for which it
results to be straight and efficient. Furthermore, the damage is simply modeled by
a reduction of the structural stiffness, without taking care to its nature. In conclu-
sion, the procedure is aimed at prioritizing the dofs to instrument (as shown in the
example in Fig. 3) when used to collect modal data for stiffness-reduction-damage
identification.

Figure 3: Prioritized sensor location for 3D structure Cobb and Liebst (1997).

A similar approach is given in Shi, Law, and Zhang (2000). The damage under anal-
ysis is again the reduction in the element’s stiffness, identifiable by the decrease in
the natural frequencies and modification of the modes of vibration of the structure.
The dofs to measure are selected by progressively reducing a larger candidate set
on the basis of their contribution in localizing the structural damage. The authors
provide expressions of the 1st order change ∆Φi of the ith mode shape with respect
to the damage coefficients αk (∆K = ∑

L
k=1 αkKk). The procedure is improved with

respect to that in Cobb and Liebst (1997) by including the measurement noise and
by introducing the FIM. Following the suggestion given in Udwadia (1994), the
best estimate of the damage coefficients is led by the maximization of the FIM.
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The optimal sensor locations are chosen retaining the ones that mostly contribute
to the diagonal term of a matrix Ē. Such a matrix is similar to the matrix FE in-
troduced in Kammer (1991) and the approach is equivalent to maximize the FIM.
After locating the optimal sensors, the damaged sites are estimated by the Mul-
tiple Damage Location Assurance Criterion (MDLAC) and the damage extent is
assessed by the measured modal frequencies as suggested in Shi, Law, and Zhang
(1999).

Figure 4: Optimal sensors on a 2D truss Shi, Law, and Zhang (2000).

Fig. 4 shows the optimal sensor configuration for the 2D truss presented in Shi,
Law, and Zhang (2000). The sensors are located in the nodes highlighted either
by a circle (two sensors measuring both dofs), or by an horizontal rectangular (one
sensor measuring the horizontal dof) or a vertical rectangular (one sensor measur-
ing the vertical dof).

In Guo, Zhang, Zhang, and Zhou (2004) the fitness function described in Shi, Law,
and Zhang (2000) is optimized by GA. A binary coding is adopted; this means
that each chromosome is coded by a binary string with a length that is equal to the
number of all the possible sensors’ positions. Thus, the crossover and mutation
operators may not satisfy the constraint that the sum of the active sensors is con-
stantly equal to the pre-defined value. For this reason an improved GA is proposed
to guarantee the offsprings to satisfy the constraint.

The previous papers are mainly developed in the civil engineering context: the
damage is included as a reduction of the beam’s stiffness. In Worden and Burrows
(2001) an approach that is more oriented to mechanical and aeronautical engineer-
ing is proposed. The optimal sensor locations are obtained by combining the neural
network approach with the GA, the simulated annealing (SA) and iterative inser-
tion/deletion. The occurrence of the damage is simulated by removing small groups
of elements from the FE model. A neural network (NN) is trained and tested by
simulating faults in different positions and of different severity. For each fault, the
response in terms of modeshapes and curvature is measured by a FE model. The
input layer of the NN requires nsen nodes (nsen=number of pre-set possible sensor
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locations), the output is given by one value for each finite element that measures
the level of damage. The optimal sensor locations are chosen in order to minimize
the error given by the NN with reference to the testing data, i.e.:

MSE(ŷ) =
100

NT σ2
i

Nt

∑
j=1

(yi( j)− ŷi( j))2 (42)

where i represents the ith output neuron and NT is the number of training sets in-
dexed by j. The optimization is tested with three different algorithms. In the first,
one sensor per time is removed from the fully-occupied sensor arrangement N and
the N− 1 set is found in order to minimize Eq. (42). The algorithm is repeated
until the desired number of sensors. The second and the third approach use the GA
and the SA algorithm, respectively.

A different approach is proposed in Trendafilova, Heylen, and van Brussel (2001).
Here the optimal sensor arrangement is located on the basis of the best mutual
distance, i.e. no information is lost and no information is doubled. The sensor
selection tool is based on the average mutual information IAB between two different
sensor configurations A and B, a concept which is well known in the Information
Theory context. If A and B are formed by acceleration signals taken in n discrete
time points and in N sensors regularly distributed on the structure, then the mutual
information can be written as:

I∆x =
N

∑
i=1

P(ai,ai+∆x) log2

[
P(ai,ai+∆x)

P(ai)P(ai+∆x)

]
(43)

where ∆x is the difference of sensor density between A and B, P stands for proba-
bility density. When the two sets tend to be completely independent, I tends to zero
as P(ai,ai+∆x)→ P(ai)P(ai+∆x).

The best sensor distribution is chosen by minimizing Eq. (43). The procedure is ca-
pable to determine the best mutual distance but it cannot take into account complex
structural geometries where it is difficult to respect the exact mutual distance. In
fact the authors show examples on simple rectangular plates where the probabilities
are determined by following a stochastic pattern procedure described in previous
papers.

An interesting application of the decision theory to the optimal sensor network is
developed in Field and Grigoriu (2006). The procedure is presented as aimed at
vehicle detection, classification and monitoring for the purpose of surveillance, but
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it may be extended to other fields of engineering. The vehicle traffic is modeled
as a Poisson process and the sensor is assumed to measure an attribute Zk of the
kth vehicle in order split the vehicles in "good" (g) and "bad" (b). Two probability
density functions are assumed with reference to Z and to the measurement error
typically associated to sensor applications. The sensor optimization consists in im-
posing given maximum allowable false alarm (i.e. sensor is activated but g vehicle
is passing) and miss rates (i.e. sensor is not activated despite b vehicle is passing).
The design variable is the sensitivity level δ of the sensor that classifies the vehicle
either g or b if the measurement error is zero, whereas the design variables are two,
i.e. δ and the variance σ of the measurement error, under non zero measurement
error. Methods from decision theory are used to select the optimal design. The
final procedure is tested to design the best location of a given number of sensors to
monitor the road network in a region inside the New York state.

The problem of the position transducers for Lamb wave propagation aimed at dam-
age detection is faced in Lee and Staszewski (2007). Their relative distance is
particularly relevant to composite structures where amplitude attenuation is signifi-
cant. In the paper a full 2D Lamb wave propagation field is simulated in a damaged
structure for a selected actuator position and all possible sensor locations. The pro-
cedure is tested in an aluminum plate with a rectangular damage slot and a real
fatigue crack. The wave propagation is simulated by the aid of the local interaction
simulation approach, introduced in 2D by the authors in previous papers. Two sim-
ple experimental tests are performed to validate the numerical simulation method.
The actuator is fixed and located as depicted in Fig. 1 of Lee and Staszewski (2007),
approximately at the bottom center of the plate.

All possible sensor positions are investigated by gathering two wave packages of
the Lamb wave response. Fig. 2 of Lee and Staszewski (2007) shows the contour
plot for the peak-to-peak amplitudes of the first wave package for a slot damage
in the centre of the plate: the higher the amplitude the better position the sensor
has. The amplitude contour plots for the undamaged plate are subtracted from the
amplitude maps for damaged plate. The resulting 2D amplitude maps shows the
amplitude change due to damage for each sensor location (x,y). The procedure
is also tested with a crack positioned in the centre of the plate and two actuators
generating the Lamb wave. As a general comment it must be underlined that the
sensor optimization procedure is strictly dependent on the position of the damage
and it cannot be easily extended to any possible location of the damage.

So far the research on optimal sensor allocation for SHM has been mainly driven by
the optimization of the area of coverage per sensor. On the other hand, the authors
in Chang, Markmiller, Ihn, and Cheng (2007) introduce the probability of detection
(POD) as a better measure for quantifying the reliability of a sensor network. The
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idea seems to be more successful as it keeps into account that the damage may
occur in any part of the structure and, thus, it is important to address the issue of
uncertainty in handling the optimal sensor configuration. The POD, in conjunction
with the GAs, is tested to identify the optimal sensor network for detecting damage
in a composite plate.

A similar probabilistic approach is developed in Azarbayejani, El-Osery, Choi, and
Taha (2008). Numerous dynamic FE analysis are carried out with NL different dam-
age locations and Nd damage levels in each damage location. A certain number of
damage features is supposed to be able to describe the damage state in the structure
and it is measured at each sensor. The potential locations of the sensors coincide
with the nodes of the FE mesh. The damage features measured by the FE analy-
ses are used as inputs to an Artificial Neural Network (ANN); the corresponding
damage locations represent the ANN outputs. No hidden layers are adopted and
the hyperbolic tangent sigmoid function is used as transfer function. The network
weights h′ associated to N′ sensors is obtained in terms of the weights h associated
with a coarser distribution N by the finite impulse response interpolation function:

h′ = τ

[
h(k)
N′/N

]
k = 1,2, · · · ,N′ (44)

A Probability Distribution Function (PDF) f (n) at each sensor location n can be
established.

f (n) =
N′

∑
k=1

h′(k)

∑
N′
m=1 h′(m)

δ (n− kr) (45)

where δ is a discrete impulse function. Such a PDF represents the probability of
the sensor ability to detect the damage. For a given number of sensors, the method
allocates the sensors to places that have the highest probability to detect damage
in the structure. The performance of the sensor distribution is tested by its POD,
expressed by the authors as:

POD =
N(Γmean ≥ Γα)

Ntotal
(46)

where N(Γmean ≥ Γα) is the number of simulations where the sensor network un-
der testing is capable to identify the damage class correctly and Ntotal is the total
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number of simulations performed. In order to guarantee the operativity of the sen-
sor network in case one or more sensors fail, additional sensors are used at some
critical positions. Such positions are identified by performing a "leave one sensor
out" analysis and measuring the significance factor Si for each sensor:

Si =
|PODopt −PODi|

PODopt
x100 (47)

where sensors with higher Si are considered critical and useful to be redundant.

The procedure results to be interesting even if it is highly dependent on the a priori
knowledge of the assumed locations and levels of damage.

The very first contribution dealing with the SHM optimal sensor placement fully
cast in the theoretical framework of Bayes risk is given by Flynn and Todd (2010).
Despite there have been numerous contributions dealing with damage detection
methods based on a Bayesian probabilistic approach (see for instance Sohn and
Law (1997)), Flynn and Todd (2010) is the first work including the optimization of
the sensor locations.

After providing a general form of the Bayes risk as the sum of the expected costs
of each type of damage, the position of N actuator-sensor pairs is determined by
optimizing either the global detection rate (for given global false alarm rate) or the
global false alarm rate (for given global detection rate). Under the assumption that
the damage state is of binary type, i.e. state m0 equals "no damage" and state m1
equals "damage present", the global detection rate P̄D is the expected fraction of the
structure’s damaged regions that will be correctly identified as damaged, i.e.:

P̄D =
K

∑
k=1

P(dk1|hk1)P(hk1)

∑
K
k=1 P(hk1)

(48)

where K is the total number of subregions whose union form the entire structure,
dk1 is the event by which m1 is decided to be the local damage state in region k
and hk1 is the data by which m1 results to be the true local damage state in region
k. On the other hand, the global false alarm rate P̄FA is the expected fraction of the
structure’s undamaged regions that will be incorrectly identified as damaged, i.e.:

P̄FA =
K

∑
k=1

P(dk1|hk0)P(hk0)

∑
K
k=1 P(hk0)

(49)



314 Copyright © 2013 Tech Science Press SDHM, vol.9, no.4, pp.287-323, 2013

where hk0 is the data by which m0 results to be the true local damage state in region
k.

Both P̄D and P̄FA depend on a cost function γ[k], generally related to inspection and
failure costs, and on the deflection coefficient d2[k] = st

kC
−1
k sk, with sk being the

expected values of the (supposed) Gaussian distributed SHM features extracted in
the region k, Ck their covariance matrix, i.e.:

P(dk1|hk1)

P(dk1|hk0)

=
K

∑
k=1

1
2

Er f c(γ/2)

(
γ + ln(P(hk0)/P(hk1))∓0.5d2[k]√

d2[k]

)
(50)

where γ[k] = γ is supposed to be constant on the entire structure. The performance
of a given actuator-sensor arrangement is to be determined at each step of the opti-
mization process. Such a performance is obtained by using Eqs. (50) where one is
used to evaluate γ , the other one provides the fitness function. The authors present
the results for various demonstration cases: local false alarm and detection rate
map with five-sensor optimal arrangement in a square plate in their Figs. 3-4, local
damage, local detection and local detector rate maps with sixteen-sensor optimal
arrangement in a gusset plate in their Figs. 5-6 and, finally, global detection rate
analysis on T-shaped plate in their Fig. 7.

It must be pointed out that the procedure requires the setting of the probability of
damage P(hk1) of the expected value of the SHM feature sk and of its covariance
Ck. These terms are established by the authors to present some demonstration cas-
es. The formulation is interesting and would deserve to be implemented for more
realistic damage scenarios, and with the support of experimental and numerical
analyses.

4 Optimal Sensors in Impact Identification

The issue of impact identification is strictly connected to damage identification. It
is well known that the major cause of in-service damage to composite structure is
impact, both with debris during take-off and landing operations, and with ground
support equipment. The problem is that the damage caused by the impact is often
barely visible, especially when low energy impact events like tool drop occur. Thus,
impact identification has direct relevance to the problem of damage detection in
aerospace structures.

In Table 4 the most relevant contributions expressly dealing with the problem of
determining the best number and location of sensors for impact identification are
listed in chronological order. It must be underlined that a relatively small propor-
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tion of the effort has been concentrated on optimal sensor placement for impact
identification. It is the authors’ opinion that this is mainly due to the high complex-
ity of the issue, as involving highly nonlinear dynamic phenomena with complex
probabilistic characteristics.

On the other hand to identify the best number and location of the sensors aimed at
impact identification is a fundamental issue both for economical reasons, that is,
less sensors means less weight, and for safety reasons, i.e., best locations means
higher probability to successfully detect the impact.

Table 4: Sensor optimization in impact identification. Papers reviewed in chrono-
logical order.

Publication’s
year

Papers

1990-2000 Staszewski, Worden, Wardle, and Tomlinson (2000), Wor-
den and Staszewski (2000)

2001-2005 Lin and Chiu (2005)
2006-2012 Markmiller and Chang (2010), Mallardo, Aliabadi, and

Khodaei (2012)

An impact identification procedure involving experimental data and ANN is pro-
posed in Staszewski, Worden, Wardle, and Tomlinson (2000), Worden and Staszews-
ki (2000). Two Multi-Layer Perceptron trained with the backpropagation learning
rule NN are implemented separately to locate the impact and to quantify the impact
force amplitude. The training set obtained experimentally is expanded by corrupt-
ing it with different Gaussian noise vectors. A rectangular composite plate with
four aluminium channels and 17 piezoceramics sensors is investigated. The im-
pacts are simulated by an instrumented hammer and are kept below 0.1 N. Two
features (to train the two NNs) are extracted from the data recorded by each sensor:
time after impact of maximum response and magnitude of maximum response. The
best sensor distribution is obtained by minimizing the error in the impact identifi-
cation with the aid of the GA: the number of sensors is set a priori and the gene is
given by a vector of integers each specifying the position of each sensor. It must
be underlined that the adopted GA does not avoid that repeated sensors in the gene
occur after the application of the crossover and mutation operations. Two different
fitness functions are tested: the inverse of the percentage error in predicting the
impact level over a testing set of the NN, and the fail-safe fitness parameter that
measures the performance of a sensor distribution if one of the sensor fails.
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Figure 5: Optimum three-sensor distribution with reference to the percentage error
(left), and to the fail-safe fitness (right) Staszewski, Worden, Wardle, and Tomlin-
son (2000).

Results are presented in Fig. 5 with reference to three-sensor distributions. It is
worthy to underline that the two fitness functions generate solutions in conflict, and
both are different from the one obtained by the exhaustive search depicted in Fig.
6.

Figure 6: Optimum sensor distribution obtained by exhaustive search Staszewski,
Worden, Wardle, and Tomlinson (2000).

A general algorithm to cope with the sensor placement problem for target location
under constraints of the cost limitation and of the complete coverage is proposed in
Lin and Chiu (2005). Such a paper is worthy to be cited as the proposed procedure
may be easily suited to the impact identification problem. The efficiency of the
sensor is measured on the basis of its coverage. The detection radius rk of the
sensor k, i.e. the maximum distance of an impact that is detected by the sensor k,
is assumed to be known a priori. The field is said to be completely covered, as
depicted in Fig. 7, if any grid point can be detected by at least one sensor.

A power vector v (collecting 0 and 1) for each grid point can be defined to indicate
which sensors cover it. A sensor field is said to be completely discriminated when
each grid point is identified by a unique power vector.
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Figure 7: A complete covered field Lin and Chiu (2005).

The sensor placement problem is then formulated as a combinatorial optimization
problem in which the highest discrimination is searched:

min
v

max
(i, j)

di j

1+K ∑
m
k=1(vik− v jk)2 (51)

where di j is the Euclidean distance between the sensor i and the sensor j, K is
an arbitrarily large number. Eq. (51) is subject to five constraints: the first three
involve the relationship between rk and dik, the fourth limits the total deployment
cost of the sensors, the fifth is the complete coverage limitation. The SA algorithm
is used to solve the above combinatorial optimization problem. The merit of the
procedure is its generality and its capacity to include cost limitation, the limit is the
need to know the detection radius a priori.

In Markmiller and Chang (2010) the POD is taken as measure to evaluate the per-
formance of a sensor deployment. The POD for the entire network is defined as:

PODnetwork =
1
m

(
m

∑
j=1

(
1
k

n

∑
i=1

PODi j

))
(52)

where m is the total number of impacts, n the number of sensors. PODi j for each
possible sensor location xi and impact force at x j is given by:

PODi j =

{
1 if ε j(xi)≥ εmin

0 if ε j(xi)< εmin
(53)

In Eq. (52) k provides the total number of sensors that detect the impact, i.e. with
PODi j = 1. The POD for each sensor and for diffused possible impact forces is
evaluated by the aid of the FEM.
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The optimum sensor network is finally found by:

max
sensor location

PODnetwork for all impact forces Fj ≥ Fmin (54)

GAs are adopted to solve the above optimization problem for a given number of
sensors. The whole procedure is repeated changing the number of sensors. Exam-
ples are given with reference to two stiffened composite panels.

It must be pointed out that the procedure is related to a kind of detection radius;
thus, it has some common points with the general formulation developed in Lin and
Chiu (2005). The detection radius, here included in the POD, is the key point and
needs to be determined numerically for each example. Furthermore, the definition
of the strain threshold εmin needs special attention, and it is not simple to define it
correctly.

An interesting formulation taking into account the probabilistic behavior of the er-
ror to detect the impact is developed in Mallardo, Aliabadi, and Khodaei (2012).
The procedure is tested with reference to a composite plate, stiffened in both di-
rections, on which 45 candidate sensors are located. The best sensor deployment
is obtained by minimizing a suitable fitness function. An ANN network is built
by carrying out nonlinear explicit time domain FE simulations for different impact
locations and energy.

Figure 8: Probabilistic behavior of the impact error Mallardo, Aliabadi, and Kho-
daei (2012).

The parametric analysis of the error provided by the ANN with reference to the
testing set and for different sensor networks shows that the behavior of the associ-
ated PDF (and consequently the associated Cumulative Distributive Function CDF,
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see Fig. 8), independently on the number of cycles, tends to be either of lognormal
type or of Weibull type:

Lognormal PDF =
1

eσl
√

2π
exp

[
−1

2

(
lne−µl

σl

)2
]

(55)

Weibull PDF


k

λ k xk−1e−(
x
λ
)k

x≥ 0

0 x < 0
(56)

where the governing parameters (i.e. µl and σl or k and λ ) can be evaluated with a
low number of cycles. On the basis of the above probabilistic behavior, the fitness
function is assumed to be either the inverse of the probability associated to a pre-
assigned error or the error related to a pre-assigned probability. The optimization
is performed by the aid of GA modified by the authors in order to deal with integer
genes and avoid repeated sensors with cross-over and mutation operations.

Figure 9: Best three-sensor (left) and five-sensor (right) configuration Mallardo,
Aliabadi, and Khodaei (2012).

Numerical results are provided with reference to various sensor numbers (see Fig.
9) and some of them are validated by an exhaustive search analysis (see Fig. 10).

5 Conclusions

In this paper a thorough description of the state of the art in sensor optimization
aimed at system identification, damage identification and impact identification has
been provided. It is the authors’ opinion that the topics need more testing periods
in an industrial environment. Furthermore, the probabilistic issue has not been
fully trodden in the procedures developed in the damage identification and impact
identification contexts.
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Figure 10: Fitness function distribution for all the possible two-sensor combination.
In blue the GA solution Mallardo, Aliabadi, and Khodaei (2012).

Surely the topic that deserves more improvement is the impact identification as very
few contributions have been reported in the literature. The threshold over which to
extract the arrival time requires more investigation and it has too much influence on
the performance of the procedure. Furthermore, more work on coupling experimen-
tal and numerical tests is necessary to improve the performance of the optimization
procedure. Finally, there is still lack of tests in actual flight operations.

Sensor optimization in damage identification still lacks of generality as either it is
built with reference to beam structures or the damage phenomenon is included in
very simple way.
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