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Fault Diagnosis of Helical Gear Box using Variational
Mode Decomposition and Random Forest Algorithm
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Abstract: Gears are machine elements that transmit motion by means of succes-
sively engaging teeth. In purely scientific terms, gears are used to transmit motion.
A faulty gear is a matter of serious concern as it affects the functionality of a ma-
chine to a great extent. Thus it is essential to diagnose the faults at an initial stage
so as to reduce the losses that might be incurred. This necessitates the need for
continuous monitoring of the gears. The vibrations produced by gears from good
and simulated faulty conditions can be effectively used to detect the faults in these
gears. The introduction of Variational Mode Decomposition (VMD) as a new sig-
nal pre-processing technique along with the different decision trees have provided
good classification performance. VMD allows decomposition of the signal into
various modes by identifying a compact frequency support around its central fre-
quency, such that adding all the modes reconstructs the original signal. Alternating
direction multiplier method (ADMM) is used by VMD to find the intrinsic mode
functions on central frequencies. Meaningful statistical features can be extracted
from VMD processed signals. J48 decision tree algorithm was used to identify the
useful features and the selected features were used for classification using the deci-
sion trees namely, Random Forest, REP Tree and Logistic Model Tree algorithms.
The performance analyses of various algorithms are discussed in detail.
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1 Introduction

Gears are one of the most important components of the modern industrial machines.
All the machinery available in the industry, ranging from small scale machines to
the heavy-duty industrial machines rely on common gears. Thus, it is required to
make timely maintenance to ensure smooth functioning of the machines. Failure to
detect the fault in the gear will lead to huge economic losses and physical damages
as well. Hence it is essential to carry out an experimental study which provides
a method for its proper monitoring and fault diagnosis. A transmission refers to
the gearbox that uses gears and gear trains to provide speed and torque conversions
from a rotating power source to another device [Uicker, Pennock, Shigley (2003);
Paul (1979)]. A gear is a rotating machine part having cut teeth, which mesh with
another toothed part in order to transmit torque, in most cases with teeth on the one
gear being of identical shape, and often also with that shape on the other gear. De-
fects in gears can be classified into three categories namely; tooth breakage, cracked
tooth and surface wear [Staszewski and Tomilson (1994)]. Localized faults are the
most common defects which are observed in helical gear boxes. This occurs when
a sizable piece of material on the contact surface is dislodged during operation,
mostly by fatigue cracking under cyclic contact stressing. Vibration monitoring is
a traditional method used for monitoring of gearboxes.

The study uses physical parameters such as sound, acoustic emission, vibration
and wear debris for the detection and diagnosis of the inchoate faults as it is very
difficult to measure the severity of the localized faults directly when the gears are
running. A general review of monitoring and fault diagnosis techniques can be
found in S. Nandi and H. A. Toliyat (1999) and M. E. H. Benbouzid and G. B.
Kliman (2003). The recent studies suggest the application of the acoustic emission
technology in research and industry [Mba and Rao (2006)]. A Lamb wave-based
damage extension diagnosis method to monitor the damage on typical structures of
composite aircraft is found in Dongyue Gao, Yishou Wang, Zhanjun Wu and Rahim
Gorgin (2013). In relation to gearboxes a few investigators have assessed the ap-
plication of Acoustic Emission technology for diagnostic and prognostic purposes
[Wheitner, Houser, and Blazakis, (1993); Singh, Houser, and Vijayakar (1999);
Miyachika, Oda and Koide (1995); Miyachika, Zheng, and Tsubokura (2002)].
However, it was observed that AE was more sensitive to the scale of surface dam-
age than vibration analysis. Sound and vibrations generated by rotating machinery
often mask the features of fault-related signals generated by the machine elements
such as gears, bearings and cams [Wuxing, Tse, Guiicai, Shitielin (2004); Zvokelj,
Zupan, and Prebil (2010); Li and Ma (1997); Tinta, Petrov, Benko, Juric, Rakar,
Zele, Tavar, Rejec, and Stefanovska (2005)]. While taking fast Fourier transform
of vibration signals, the harmonic and noise overlaps with frequency components.
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This makes it difficult to read the actual frequency components present in the sig-
nal. The non-stationary nature of the signals makes the situation further worse by
changing the frequency component itself. Hence analysis of the above signals in
faulty operating conditions becomes difficult. Machine learning can be an effective
tool for fault diagnosis. Amarnath M, V. Sugumaran, Deepak Jain and Heman-
tha kumar (2013) and V. Sugumaran, Deepak Jain, M. Amarnath and Hemantha
Kumar (2013) have used decision tree algorithm in fault diagnosis of helical gear
boxes which has provided significant classification accuracies.

Considering these circumstances, researchers were forced to pay their attention on
signal processing methods for improving fault classification tools. Recent stud-
ies illustrate the use of Empirical Mode Decomposition (EMD) to detect incipient
faults in gears. R.Ricci and P. Pennachhi (2011) used Empirical Mode Decompo-
sition (EMD) along with intrinsic mode functions (IMF) to detect incipient faults
in gears. The IMF doesn’t work well with non-stationary signals. Y. G. Lei, M. J.
Zuo and Z. J. He (2010) used EMD to extract features from signals for classifying
the different modes and degrees of gear faults. However, EMD lacks mathemat-
ical theory foundation; the technique is faced with the difficulty of being essen-
tially defined by an algorithm, and therefore of not admitting an analytical for-
mulation which would allow for a theoretical analysis and performance evaluation
[Gabriel Rilling, Patrick Flandrinand Paulo Goncalves (2003)]. The wavelet can
represent signals in time frequency plane; however, it has some limitations [Li and
Ma (1997); Huang (1998)].

The present study makes use of a new preprocessing technique to decompose the
signal into various modes or IMFs using calculus variations. The modes have com-
pact frequency support around the central frequency. ADMM was used as opti-
mization tool to find such central frequencies concurrently. The main purpose of
decomposing a signal is to identify various components of the signal. This work fo-
cuses on a new algorithm - variational mode decomposition (VMD), which extracts
different modes present in the signal. In the present study, an attempt is made to ex-
ploit vibration signals for the purpose of fault diagnosis of helical gear. To extract
some meaningful features, the vibration signals were preliminarily pre-processed
for finding the modes and IMFs. Then, descriptive statistical features like mean,
median, kurtosis etc. were extracted. With the extracted statistical features, clas-
sification was carried out using various decision tree algorithms namely; Random
Forest, REP Tree and Logistic Model Tree.

2 Experimental setup and Procedure

The experimental setup is shown in Fig. 1. A two stage helical gearbox with a 5
HP rating is used in the experiment. The gear box is driven by a 3-phase induction
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motor which has a 5.5 HP rating and a rated speed of 1440 rpm. An inverter drive
controls the speed of the motor. For the present study; the motor is operated at 80
rpm, i.e., the speed of the first stage of the gearbox is 80 rpm. A step-up ratio of
1:15 is established which generates a speed of 1200 rpm at the pinion shaft in the
second stage of the gear box. Table.1 summarizes the specifications of the test rig.
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Figure 1: Experimental setup of two stage helical gearbox.

Table 1: Specifications of helical gear box.

Specifications First Stage Second Stage
No. of teeth 44/13 73/16

Pitch circle diameter (mm) 198/65 202/48
Pressure angle (˚) 20 20

Helix angle (˚) 20 15
Modules 4.5/5 2.75/3

Speed of shafts 80 rpm 1200 rpm
Mesh frequency 59 Hz 320 Hz

Step-up ratio 01:15
Rated power 5 Hp

Power transmitted 2.6 Hp

The pinion is connected to a D.C motor (which is used as generator) to generate
2 kW power. The power generated is dissipated in a resistor bank. Hence, the
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actual load on the gearbox is only 2.6 HP which is 52% of its rated power 5 HP. In
industrial environment utilization of load varies from 50% to 100%. In the case of
traditional dynamometer, torque fluctuations cause additional torsional vibrations.
This can be avoided by using D.C motor and resistor bank.

Backlash can be restricted to the gears by fitting tyre couplings between the elec-
trical machines and gear box. The generator, gear box and motor are mounted on
I-beams, which are anchored to a massive foundation. Bruel & Kjær accelerometer
are used to measure Vibration signals which are installed close to the test bearing.
Signals are sampled at a sampling frequency of 8.2 kHz. The optimum location of
the sensors is a critical issue of any successful Structural Health Monitoring Sys-
tem. Sensor optimization problems encompass mainly three areas of interest: sys-
tem identification, damage identification and impact identification [Mallardo and
Aliabadi (2013)]. The experimental setup with equipment and sensors is shown in
Fig. 2.
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Fig. 2 Photograph of experimental set up with sensors and equipments. 

 

Figure 2: Photograph of experimental set up with sensors and equipments.

It is very difficult to study the fault detection procedures without seeded fault trials.
Local faults in a gear box can be classified into three categories. (a) Surface wear
spalling (b) cracked tooth and (c) loss of a part of tooth due to breakage of tooth at
root or at a point on working tip (broken tooth or chipped tooth). There are differ-
ent methods to simulate faults in gears viz. electric discharge machining (EDM),
grinding and adding iron particles in gearbox lubricant and over loading the gear
box i.e., accelerated test condition. The simplest approach is partial tooth removal.
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3 Pre-Processing using Variational Mode Decomposition

Variational Mode decomposition decomposes the signal into various modes or in-
trinsic mode functions using calculus of variation. Each mode of the signal is as-
sumed to have compact frequency support around a central frequency. VMD tries
to find out these central frequencies and intrinsic mode functions centered on those
frequencies concurrently using an optimization methodology called ADMM. The
original formulation of the optimization problem is continuous in time domain.

VMD is formulated as; Minimize the sum of the bandwidths of k modes subject to
the condition that sum of the k modes is equal to the original signal. The unknowns
are k central frequencies and k functions centered at those frequencies. Since part
of the unknowns is function, calculus of variation is applied to derive the optimal
functions.

Bandwidth of an AM-FM signal primarily depends on both, with the maximum
deviation of the instantaneous frequency ∆ f ∼ max(|ωk (t)−ωk|) and the rate of
change of instantaneous frequency. Dragomiretskiy and Zosso proposed a func-
tion that can measure the bandwidth of a intrinsic mode function uk(t). At first they
computed Hilbert transform of uk(t). Let it be uH

k (t). Then formed an analytic func-
tion

(
uk(t)+ juH

k (t)
)
. The frequency spectrum of this function is one sided (exist

only for positive frequency) and assumed to be centered on ωk. By multiplying this
analytical signal with e− jωkt , the signal is frequency translated to be centered at
origin. The integral of the square of the time derivative of this frequency translated
signal is a measure of bandwidth of the intrinsic mode function uk(t).

Let uM
k (t) =

(
uk(t)+ juH

k (t)
)

e− jωkt

It is a function whose spectrum is around origin (baseband). Magnitude of time
derivative of this function when integrated over time is a measure of bandwidth.
Hence,

∆ωk =
∫ (

∂t
(
uM

k (t)
))(

∂t
(
uM

k (t)
))

dt

where, ∂t
(
uM

k (t)
)
= ∂t

[(
δ (t)+

j
πt

)
∗uk(t)

]
.

The integral can also expressed as a norm.

∆ωk =

∥∥∥∥∂t

[(
δ (t)+

j
πt

)
∗uk(t)

]∥∥∥∥2

2

The sum of bandwidths of k modes is given by
K
∑

k=1
∆ωk
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The resulting variational formulation is as follows:

min
uk,ωk

{
∑
k

∥∥∥∥∂t

[((
δ (t)+

j
πt

)
∗uk(t)

)
e− jωkt

]∥∥∥∥2

2

s.t. ∑
k

uk = f

Where f is the original signal.

The augmented Lagrangian multiplier method converts this into an unconstrained
optimization problem as follows:

L(uk,wk,λ ) =α ∑
k

∥∥∥∥∂t

[((
δ (t)+

j
πt

)
∗uk(t)

)
e− jωkt

]∥∥∥∥2

2

+

∥∥∥∥∥ f −∑
k

uk

∥∥∥∥∥
2

2

+

〈
λ , f −∑

k
uk

〉 (1)

In ADMM philosophy , one variable at a time is solved assuming all others are
known.

Hence, the formula for updating uk at the ‘n+1’ the iteration is as follows:

Update for u terms

un+1
k =argmin

uk(t)
α

∥∥∥∥∂t

[((
δ (t)+

j
πt

)
∗uk(t)

)
e− jωkt

]∥∥∥∥2

2

+

∥∥∥∥∥ f −∑
i

ui

∥∥∥∥∥
2

2

+

〈
λ , f −∑

i
ui

〉

By the absorbing the last inner product which is basically
∫

λ (t)
(

f (t)−∑
i

ui(t)
)

dt

in to the term
∥∥∥∥ f −∑

i
ui

∥∥∥∥2

2
=
∫ (

f (t)−∑
i

ui(t)
)2

dt, then

∥∥∥∥∥ f −∑
i

ui

∥∥∥∥∥
2

2

+

〈
λ , f −∑

i
ui

〉
=

∥∥∥∥∥ f −∑
i

ui +
λ

2

∥∥∥∥∥
2

2

Therefore

un+1
k = argmin

uk(t)
α ∑

k

∥∥∥∥∂t

[((
δ (t)+

j
πt

)
∗uk(t)

)
e− jωkt

]∥∥∥∥2

2
+

∥∥∥∥∥ f −∑
i

ui +
λ

2

∥∥∥∥∥
2

2
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This problem can be solved in spectral domain by noting the fact that norm in time
domain is same as norm in frequency domain.

The following results are used in Fourier transform

uk(t)⇔ ûk(ω)⇒ ∂t (uk(t))⇔ ( jω) ûk(ω)

uk(t)⇔ ûk(ω)⇒
(

δ (t)+
j

πt

)
∗uk(t) = uk(t)+

j
πt
∗uk(t)⇔ (1+ sgn(ω)) ûk(ω)

Note that,

for negativeω , (1+ sgn(ω)) ûk(ω) = 0

and for positive ω , (1+ sgn(ω)) ûk(ω) = 2ûk(ω)

uk(t)+
j

πt
∗uk(t)⇔ (1+ sgn(ω)) ûk(ω)⇒

(
uk(t)+

j
πt
∗uk(t)

)
e− jωkt

⇔ (1+ sgn(ω +ωk)) ûk(ω +ωk)

Therefore

un+1
k = argmin

ûk(ω)

α ‖ jω (1+ sgn(ω +ωk)) ûk(ω +ωk)‖2
2 +

∥∥∥∥∥ f̂ −∑
i

ûi +
λ̂

2

∥∥∥∥∥
2

2

Replacing ω → ω +ωk

un+1
k = argmin

ûk(ω)

α ‖ j(ω−ωk)(1+ sgn(ω)) ûk(ω)‖2
2 +

∥∥∥∥∥ f̂ −∑
i

ûi +
λ̂

2

∥∥∥∥∥
2

2

In the above expression, the first term vanishes for negative frequencies

‖(1+ sgn(ω +ωk)) ûk(ω +ωk)‖2
2

=
∫
w

( j(ω−ωk)(1+ sgn(ω)) ûk(ω))( j(ω−ωk)(1+ sgn(ω)) ûk(ω))dω

=

∞∫
0

4(ω−ωk)
2 |ûk(ω)|2 dω

Second term is symmetric around origin, therefore∥∥∥∥∥ f̂ (ω)−∑
i

ûi +
λ̂

2

∥∥∥∥∥
2

2

=

∞∫
−∞

(
f̂ −∑

i
ûi +

λ̂

2

)(
f̂ −∑

i
ûi +

λ̂

2

)
dω

= 2
∞∫

0

(
f̂ (ω)−∑

i
ûi +

λ̂

2

)(
f̂ −∑

i
ûi +

λ̂

2

)
dω
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Also
(

f̂ (ω)−∑
i

ûi +
λ̂

2

)
being a complex number(

f̂ (ω)−∑
i

ûi +
λ̂

2

)(
f̂ −∑

i
ûi +

λ̂

2

)
=

∣∣∣∣ f̂ −∑
i

ûi +
λ̂

2

∣∣∣∣2 , where || represent

magnitude of the complex number.

Therefore,

ûn+1
k = argmin

ûk(ω),ω>0

∞∫
0

4α(ω−ωk)
2 |ûk(ω)|2 +2

∣∣∣∣∣ f̂ −∑
i

ûi +
λ̂

2

∣∣∣∣∣
2
dω

Here unknown is a function. Hence, apply Euler Lagrangian condition to obtain
the solution.

Let F = 4(ω−ωk)
2 |ûk(ω)|2 +2

∣∣∣∣∣ f̂ −∑
i

ûi +
λ̂

2

∣∣∣∣∣
2

dF
dûk

= 0⇒ 8α(ω−ωk)
2ûk +4

(
f̂ −∑

i
ûi +

λ̂

2

)
(−1) = 0

⇒ 2α(ω−ωk)
2ûk + ûk =

(
f̂ −∑

i 6=k
ûi +

λ̂

2

)

⇒ ûk
(
1+2α(ω−ωk)

2)=( f̂ −∑
i6=k

ûi +
λ̂

2

)

ûn+1
k =

(
f̂ −∑

i 6=k
ûi +

λ̂

2

)
1

(1+2(ω−ωk)2)
, ω ≥ 0

Update for ωk s

ω
n+1
k = argmin

ωk

∥∥∥∥∂t

[((
δ (t)+

j
πt

)
∗uk(t)

)
e− jωkt

]∥∥∥∥2

2

ω
n+1
k = argmin

ωk

‖ jω (1+ sgn(ω +ωk)) ûk(ω +ωk)‖2
2

ω
n+1
k = argmin

ωk

‖ j (ω−ωk)(1+ sgn(ω)) ûk(ω)‖2
2

ω
n+1
k = argmin

ωk

∫
∞

0
(ω−ωk)

2 |ûk(ω)|2 dω
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Here

ω
n+1
k is given by the solution of

∫
∞

0
d

dωk

(
(ω−ωk)

2 |ûk(ω)|2
)

dω = 0

∫
∞

0
−2(ω−ωk) |ûk(ω)|2 dω = 0

⇒ ω
n+1
k =

∞∫
0

ω |ûk(ω)|2 dω

∞∫
0
|ûk(ω)|2 dω

Update for λ (Lamda)

λ
n+1← λ

n + τ
(

f −un+1
k (t)

)
Final algorithm for VMD:

initialize û1
k , ω̂

1
k , λ̂

1, n← 0

repeat

n← n+1

for k = 1 : K do

Update ûk for all ω ≥ 0

ûn+1
k ←

f̂ −∑i<k ûn+1
i −∑i>k ûn

i +
λ̂ n

2
1+2α(ω−ωn

k )
2 (2)

Update ωk:

ω
n+1
k ←

∞∫
0

ω
∣∣ûn+1

k (ω)
∣∣2 dω

∞∫
0

∣∣ûn+1
k (ω)

∣∣2 dω

(3)

end for

Dual ascent for all ω ≥ 0:

λ̂
n+1← λ̂

n + τ( f̂ −∑
k

ûn+1
k ) (4)

until convergence: ∑k

∥∥ûn+1
k − ûn

k

∥∥2
2

/
‖ûn

k‖
2
2 < ε
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3.1 Discretization of Frequency

It is first assumed that length of the mirrored signal in the time domain is 1. If
total length of the mirrored signal in terms of number of discrete values is T, then
sampling interval is 1/T.

The discrete frequency is assumed to vary from -0.5 to +0.5 so that it represents
normalized discrete frequency. It must be noted that algorithm construct Fourier
transform of different mode function values for positive frequencies only. The
other half can be easily created by conjugating and reflecting on the left side.

Once all the mode functions in the frequency domain are obtained, then obtain
the time domain mode functions by taking inverse Fourier transform. These mode
functions correspond to mirrored signal. Then cut off the appended (reflected por-
tions) part of the signal to obtain the desired intrinsic mode functions.

4 Feature Extraction

Descriptive statistical parameters such as kurtosis, mean, variance and standard
deviation extracted from the vibrational signals are computed to serve as features.
They are named as ‘statistical features’ here. Brief descriptions about the extracted
features are given below.

(a) Standard deviation: This is a measure of the effective energy or power con-
tent of the vibration signal. The following formula was used for computation of
standard deviation.

Standard Deviation =

√
∑x2− (∑x)2

n(n−1)

(b) Sample variance: It is variance of the signal points and the following formula
was used for computation of sample variance.

Sample Variance =
∑x2− (∑x)2

n(n−1)

(c) Kurtosis: Kurtosis indicates the flatness or the spikiness of the signal. Its value
is very low for normal condition of the gear and high for faulty condition of the
gear due to the spiky nature of the signal.

Kurtosis =

{
n(n+1)

(n−1)(n−2)(n−3) ∑

(
xi− x̄

s

)4
}
− 3(n−1)2

(n−2)(n−3)

where ‘s’ is the sample standard deviation.
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(d) Mean: Mean is computed as arithmetic average of all points in the signal.

Mean =
n

∑
i=1

xi

5 Feature Selection using J48 Decision tree

All the statistical features extracted from the vibrational signals do not contribute
equally to the classification accuracy. It may be observed that some features are sig-
nificant for the classification process, while some are purely irrelevant. The process
of selecting only the relevant statistical features for the classification process so as
to reduce the computational effort is known as feature selection. In the present
study, the dataset is used with J48 algorithm to generate the decision tree which
facilitates the feature selection process. The generated decision tree is shown in
Fig.3.

 
 

 

Fig.3 Decision tree for feature selection 
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Figure 3: Decision tree for feature selection.

The features that are appearing on top of the decision tree are good for classifica-
tion. The ones that do not appear are not useful for classification. The features
appearing in the bottom of the tree are relatively less important ones. Hence, one
can consciously choose or omit depending on the classification accuracy require-
ment and computational resources available.
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6 Classifier

In machine learning, classification is considered an instance of supervised learning,
i.e. learning where a training set of correctly identified observations is available. A
path from the root to a leaf represents the rules for classification [Mohamed, Nor
Haizan, Salleh, Mohd Najib Mohd Omar, Abdul Halim (2012); Breiman, Fried-
man, Olshen, Stone (1984)]. An algorithm that implements classification, espe-
cially in a concrete implementation, is known as a classifier. In the present study,
three classifiers are used namely, Random Forest, REP Tree and Logistical Model
Tree. A brief description is given below.

6.1 Random Forest

Random Forest algorithm is an ensemble learning method for classification that op-
erate by constructing a multitude of decision trees at training time and outputting
the class that is the mode of the classes output by individual trees. The algorithm
for inducing a random forest was developed by Leo Breiman [Breiman, and Leo
(2001)] and Adele Cutler [Liaw, and Andy (2012)]. The term came from random
decision forests that were first proposed by Tin Kam Ho of Bell Labs in 1995. The
method combines Breiman’s "bagging" idea and the random selection of features,
introduced independently by Ho [Ho, Tin Kam (1995, 1998)] and Amit and Ge-
man [Amit, Yali and Geman, Donald (1997)] in order to construct a collection of
decision trees with controlled variance.

6.2 REP Tree (Reduced Error Pruning Tree)

One of the simplest forms of pruning is reduced error pruning. Starting at the
leaves, each node is replaced with its most popular class. If the prediction accu-
racy is not affected then the change is kept. While somewhat naive, reduced error
pruning has the advantage of simplicity and speed.

6.3 Logistic Model Tree

A logistic model tree (LMT) is a classification model with an associated super-
vised training algorithm that combines logistic regression (LR) and decision tree
learning [Niels Landwehr, Mark Hall, and Eibe Frank (2003)] [Landwehr, Hall,
Frank, (2005)]. Logistic model trees are based on the earlier idea of a model tree:
a decision tree that has linear regression models at its leaves to provide a piecewise
linear regression model (where ordinary decision trees with constants at their leaves
would produce a piecewise constant model) [Zvokelj, Zupan, and Prebil (2010)]
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7 Results and Discussion

A total of 420 vibrational signals were collected for normal and abnormal condi-
tions from a helical gear box; 60 signals from each class. The statistical features
extracted from these signals were selected as features and act as input to the al-
gorithm. 50 signals were used for training and 10 signals were used for testing.
The statistical features were treated as features and act as input to the algorithm.
The corresponding status or condition (10% fault, 20% fault, 30% fault, 40% fault,
80% fault, 100% fault, Good) of the classified data will be the required output of
the algorithm. This input and corresponding output together forms the dataset.

7.1 Effect of number of features on Classification Accuracy

All the descriptive features extracted from the vibrational signals do not contribute
equally to the classification accuracy. The process of reducing the number of input
features for classification is known as dimensionality reduction. Table 2 and Fig.
4 illustrate the variation of classification accuracy with change in the number of
features.

 
 

 

Fig. 4 Effect of number of features on classification accuracy 
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Figure 4: Effect of number of features on classification accuracy.

It is to be noted that the maximum classification accuracy is obtained when 19
features are being used instead of the total 24 features.
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7.2 Classification of Raw Signals using Decision Tree Algorithms

V. Sugumaran, Deepak Jain, M. Amarnath and Hemantha Kumar (2013) recorded
vibration signal samples and used with decision tree J48 algorithm for generating
the decision tree for the purpose of feature selection and classification. The gener-
ated decision tree is shown in Fig.5.
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Figure 5: Decision Tree.

The rectangles represent classes (condition of the helical gear box). In rectangle the
information about the condition is given using abbreviations. Then within paren-
thesis, there are two numbers separated by a slash or one number. The first number
(in case of two numbers) or the only number represents the number of data points
that support the decision. Meaning, if one follows the rule (as described above
‘if-then’ rules) how many data points will be correctly classified is given as first
number. The second number (after slash) is optional and it represents the number
of data points that is against the rule followed. Meaning, if one follows a rule, how
many data points will be incorrectly classified is given as second number.

The class wise accuracy generated by this study is illustrated in Table 3. The results
indicate that it generates a classification accuracy of 85% only. The number of
objects used for forming a class was altered from 1 to 60 and it was found that the
algorithm gives best classification accuracy when the number of objects used is 7.
(85.6492% - refer Fig.6). When the number of data points is less the algorithm
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tends to over fit the data and when it is more the algorithm tends to generalize the
model built.

Table 2: Detailed Class wise accuracy.
TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.855 0.042 0.768 0.855 0.809 0.944 10% fault
0.767 0.018 0.868 0.767 0.814 0.963 20% fault
0.79 0.027 0.831 0.79 0.81 0.947 30% fault

0.857 0.021 0.871 0.857 0.864 0.975 40% fault
0.953 0.013 0.924 0.953 0.938 0.997 80% fault
0.828 0.024 0.855 0.828 0.841 0.943 100% fault
0.906 0.027 0.853 0.906 0.879 0.97 Good
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7.3 Classification of VMD pre-processed signals using Logistic Model Tree Algorithm 

Classification accuracy of 87.1429% was achieved using Logistic Model Tree (LMT). Fig.8 

illustrates the confusion matrix obtained by this method. 

Figure 7: Confidence factor Vs Classifi-
cation accuracy.

7.3 Classification of VMD pre-processed signals using Logistic Model Tree Al-
gorithm

Classification accuracy of 87.1429% was achieved using Logistic Model Tree
(LMT). Fig.8 illustrates the confusion matrix obtained by this method.

The diagonal elements of the confusion matrix represent the correctly classified
instances indicating an overall accuracy of 87.1429%.

It is observed from the confusion matrix that there have been instances where good
signals have been wrongly classified as having 10%, 20% and 30% faults. Though
this is not harmful, it leads to wastage of time in verifying the gears. There have
been other instances as well where one type of fault has been wrongly classified as
other.
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Figure 8: Confusion matrix of Logical Model Tree algorithm.

In LMT, the minimum no. of instances to consider node splitting was varied from
0 to 20. Fig. 9 depicts the variation in the classification accuracy with change in
number of instances. Therefore, the default value of 15 was set as the number of
instances for maximum accuracy.
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Figure 9: Minimum number of Instances vs Classification accuracy.

Figure 10 shows the variations of classification accuracy with change in the num-
ber of boosting iterations. Highest classification accuracy was achieved when the
number of boosting iterations was set to 10.
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Figure 10: Number of boosting iterations vs Classification accuracy.

7.4 Classification of VMD pre-processed signals using REP Tree Algorithm

This section discusses the results obtained from REP Tree Algorithm. Confu-
sion matrix obtained by optimizing the parameters is shown in the Fig. 11. Re-
duced Error Pruning Tree method provides a maximum classification accuracy of
90.4762%.
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Figure 11: Confusion matrix of REP Tree algorithm.
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The variation of classification accuracy with change in maximum depth of tree is
shown in Fig. 12. The accuracy varied from 14% to 90% when the depth of tree
was changed from 0 to 10 with a maximum value attained when the depth of tree
was assigned the value of 9. The maximum classification accuracy obtained is
90.4762%.
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Figure 12: Max depth of tree vs Classification Accuracy.

The variation of classification accuracy with minimum number of objects is shown
in Fig. 13. The accuracy varied from 89% to 80% when the number of objects
was changed from 0 to 10 with a maximum value attained when the number of
objects attribute was assigned the value of 0. The maximum classification accuracy
obtained is 89.7619%.
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Figure 13: Minimum number of objects vs Classification Accuracy.
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The variation of classification accuracy with minimum number of folds is shown in
Fig. 14. The accuracy remained constant when the number of folds was changed
from 2 to 10 as this attribute requires a value greater than 1. Number of folds was
taken as the minimum value, ie 2 to reduce computational effort. The maximum
classification accuracy obtained is 90.4762%.
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Figure 14: Number of folds vs Classification Accuracy.

7.5 Classification of VMD pre-processed signals using Random Forest Algo-
rithm

This section discusses the results obtained from Random Forest Algorithm. Confu-
sion matrix obtained by optimizing the parameters is shown in the Fig. 15. The di-
agonal elements of the confusion matrix represent the correctly classified instances
indicating an overall accuracy of 91.4286%. The Random Forest algorithm also
provided an improvement over the other two classifiers used and hence gives the
best result among the lot.

Figure 16 shows the variation in classification accuracy with change in the maxi-
mum allowed depth of trees (0 for unlimited depth). There was a decline in accu-
racy when the maximum depth was changed to values 1 and 2. For all other values
an accuracy of 91.4286% was observed.

Similarly the number of attributes to be used in random selection was varied from -
5 to 10 and the corresponding change in classification accuracy was observed (refer
figure 17).

Figure 18 depicts the variation in classification accuracy on changing the number
of trees from the minimum value of 1 to 15. It is observed that the accuracy in-



Fault Diagnosis of Helical Gear Box 75

 
 

requires a value greater than 1. Number of folds was taken as the minimum value, ie 2 to reduce 

computational effort.  The maximum classification accuracy obtained is 90.4762%. 

 

 

Fig. 14 Number of folds vs Classification Accuracy 

7.5 Classification of VMD pre-processed signals using Random Forest Algorithm 

This section discusses the results obtained from Random Forest Algorithm. Confusion matrix 

obtained by optimizing the parameters is shown in the Fig. 15. . The diagonal elements of the 

confusion matrix represent the correctly classified instances indicating an overall accuracy of 

91.4286%. The Random Forest algorithm also provided an improvement over the other two 

classifiers used and hence gives the best result among the lot.   

 

Fig.15 Confusion Matrix of Random Forest algorithm 

0

20

40

60

80

100

0 2 4 6 8 10 12

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 

Number of Folds 

Figure 15: Confusion Matrix of Random Forest algorithm.
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Figure 16: Max depth vs Classification Accuracy.
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Figure 17: Number of features vs Classification Accuracy.
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creased from 82% to 90% when the number of trees was increased from 1 to 10
and remained constant after that.
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Figure 18: Number of trees vs Classification Accuracy.

The variation in classification accuracy on changing the random number seed to be
used from 0 to 10 is shown inFig.19. Random variations were observed for seed
values from 0 to 5 and on further increase in seed value the accuracy increased.
Therefore the seed value was set to 0 to obtain the maximum accuracy of 91.4286%.
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Figure 19: Random number seed vs Classification Accuracy.
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7.6 Summary of Results

The different algorithms used for classifications of VMD preprocessed signals and
the maximum classification accuracy obtained with each algorithm is listed in table
3 in descending order of accuracy.

Table 3: Classification accuracy obtained with VMD preprocessed signals using
various decision tree classifiers.

Sl No. Algorithm Classification Accuracy ( in % )
1 Random Forest 91.4286
2 REP Tree 90.4762
3 Logistic Model Tree 87.1429

Classifications performed using Random Forest Algorithm was able to provide
maximum classification accuracy of 91.4286%.

8 Conclusion

All the machinery available in the industry, ranging from small scale machines to
the heavy-duty industrial machines rely on common gears. Hence, this necessi-
tates the need of monitoring the condition of gears. Faulty gears can affect the
functionality of a machine to a large extent. Here, Machine Learning was used
as a simple but powerful tool for fault diagnosis. The introduction of Variational
Mode Decomposition (VMD) as a new signal pre-processing technique along with
the different decision trees have provided outstanding performance characteristics
with a classification accuracy reaching 91.4286%. For bench marking the new fea-
tures and classier, statistical features extracted from raw signal (without VMD pre-
processing) and various decision tree algorithms have been taken up. The accuracy
achieved by VMD pre-processed vibration signals is far superior to that generated
using the signals which were not VMD pre-processed (86%). From the results and
discussions, one can conclude that VMD pre-processed signals with decision tree
perform impeccably in fault diagnosis of helical gear box. Its ability to distinguish
between good and faulty signals with more than 90% accuracy motivates its use in
the industry.
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