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 Abstract: This paper presents the fault diagnosis of face milling tool based on machine 

learning approach. While machining, spindle vibration signals in feed direction under 

healthy and faulty conditions of the milling tool are acquired. A set of discrete wavelet 

features is extracted from the vibration signals using discrete wavelet transform (DWT) 

technique. The decision tree technique is used to select significant features out of all 

extracted wavelet features. C-support vector classification (C-SVC) and ν-support vector 

classification (ν-SVC) models with different kernel functions of support vector machine 

(SVM) are used to study and classify the tool condition based on selected features. From 

the results obtained, C-SVC is the best model than ν-SVC and it can be able to give 94.5% 

classification accuracy for face milling of special steel alloy 42CrMo4. 

 

Keywords: Fault diagnosis, face milling, decision tree, discrete wavelet transform, 

support vector machine. 

1 Introduction 

In modern manufacturing industries, there is an increasing need for reducing cost, high 

quality products with the healthy condition of the machine/machine tool. Damage/fault 

condition of the tool reduces the quality of the products or increases the quantity of rejected 

products. In order to maintain the condition based manufacturing, fault diagnosis and 

prognosis are essential. Tool wear and breakage modes are predominantly occur in 

machining process. These modes can be predicted by direct and indirect approaches. Direct 

measurement of tool condition using vision based and/or optical sensor can capture the 

actual changes in the geometry of the tool, but continuous contact of the tool-workpiece 

and the presence of coolant during process limit the direct measurement approach. In 

indirect approach, tool condition is correlated to the suitable sensor signals. Tool condition 

monitoring (TCM) system works based on signals such as vibration, current, cutting force, 

acoustic emission, etc. which are acquired from the sensors during the machining process. 

The TCM system provides an useful information about current condition of the tool during 

the process, consequently it improves the economy of production.  

Signal processing methods are used to analyse the data and some salient features are then 

extracted from the acquired raw signals. These extracted and selected features are used to 

predict the tool condition using artificial intelligence techniques. Numerous signal 
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processing methods are available in the field of condition monitoring system. DWT 

analysis is much more efficient, less computation and it is 98% reliable to identify small 

changes in acoustic emission (AE) and current signals of the drilling process for detection 

of tool breakage [Li, Dong and Yuan (1999)]. Further Wu et al. [Wu, Escande and Du 

(2001)] implemented a real time tool condition monitoring in transfer drilling station 

based on DWT using current signal. Li et al. [Li and Guan (2004)] proposed an algorithm 

consists of wavelet denoising, discrete wavelet analysis and FFT for detection of cutting 

edge fracture of end milling tool using feed motor current signals. They found that this 

algorithm is not applicable for light cutting operations, because it is difficult to extract the 

information from the current signal of low cuts for fault detection. Choi [Choi, 

Narayanaswami and Chandra (2004)] used the DWT and linear regression methods for 

estimating the tool wear in ramp cuts in end milling process. Franco-Gasca et al. [Franco-

Gasca, Herrera-Ruiz, Peniche-Vera et al. (2006)] applied the sensorless method for tool 

condition monitoring in a drilling process using DWT and driver current signals. Gong et 

al. [Gong, Obikawa and Shirakashi (1997)] compared the wavelet transform with the 

Fourier transform using cutting force signal for monitoring of tool flank wear during 

turning process and they found that the wavelet analysis is more reliable, sensitive and 

faster than Fourier analysis. Berger et al. [Berger, Minis, Harley et al. (1998)] studied the 

chatter and non-chatter cutting process through wavelet analysis using cutting force 

signals in turning operation. Klocke et al. [Klocke, Reuber and Kratz (2000)] computed 

wavelet parameters for finding variations in cutting force signals of ball end milling 

under different tool condition and they found that, this technique is reliable for 

monitoring the ball end milling tool. Suh et al. [Suh, Khurjekar and Yang (2002)] 

investigated the milling process based on the DWT analysis to find stability in machining 

process using cutting force signals. Yesilyurt [Yesilyurt (2006)] found the variations in 

mean frequency of the scalogram of vibration signals with different feed rates in breakage 

detection of end milling tool. Kim et al. [Kim, Lee, Lee et al. (2007)] demonstrated that 

DWT is the most effective technique among various signal processing techniques such as 

fast Fourier transform, Wigner-Ville distribution, short time-frequency transform and DWT 

in damage detection of rotor system using vibration signals. Kumar et al. [Kumar and Singh 

(2013)] used the Symlet wavelet and vibration signals for measuring the defect width on the 

outer race of the roller bearing. 

The classification tools have played a vital role in the TCM system for classifying the 

different tool condition. A good diagnose tool reduces error of misclassification for TCM 

system. Hong et al. [Hong, Rahman and Zhou (1996)] used a neural network technique 

for condition monitoring of turning tool based on wavelet decomposition. They found 

that the wavelet features of cutting force signal had a low sensitivity to the changes in 

machining conditions. Wang et al. [Wang, Mehrabi and Kannatey-Asibu (2002)] found 

97% accuracy in tool state detection for TCM of turning process based on hidden Markov 

models and DWT features using vibration signals. Cho et al. [Cho, Asfour, Onar et al. 

(2005); Hsueh and Yang (2009)] used the support vector machine (SVM) technique for 

tool breakage detection in a milling process using cutting force dynamometer and spindle 

displacement sensor. Widodo et al. [Widodo and Yang (2007)] provided a review of 

various applications of the SVM technique on fault diagnosis and machine condition 

monitoring system. Vernekar et al. [Vernekar, Kumar and Gangadharan (2014)] diagnosed 
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the faults in deep groove ball bearing using SVM and wavelet features. Saimurugan et al. 

[Saimurugan, Ramachandran, Sugumaran et al. (2011)] used statistical features and SVM 

for fault diagnosis of rotational mechanical system using vibration signals. 

The aforementioned literature motivates to do work on the TCM system with an efficient 

and effective intelligent technique as well as signal features. The combination of DWT 

and SVM techniques is not reported in the literature of tool condition monitoring of the 

milling process. This study aims to diagnose the faults in face milling tool based on 

machine learning approach. Vibration signals under healthy and fault conditions of the 

tool have been used to extract the DWT features by using MATLAB code. Significant 

wavelet features such as V1, V2, V3, V5 and V6 have been selected from extracted 

features using decision tree. C-SVC and ν-SVC models of SVM have been used to 

classify the different condition of the tool based on these selected features and their 

classification accuracies were compared. 

2 Experimental setup 

Experiments were carried out using universal milling machine with machining 

parameters as listed in Tab. 1. Experimental setup consists of universal milling machine 

with data acquisition (DAQ) system as shown in Fig. 1. Face milling tool with 6 carbide 

inserts (Mitsubishi make: SEMT13T3AGSN) of 80 mm diameter and work-piece 

material of special steel alloy (42CrMo4) were used in this work. 

Table 1: Experimental condition of face milling process 

Experimental condition 

Work material 42CrMo4/1.1225 special steel alloy 

Insert material Carbide 

Cutting speed 128 m/min 

Feed rate 0.12 mm/tooth 

Depth of cut 0.5 mm 

Faulty conditions of the tool Flank wear, breakage and chipping 

Lubrication Dry 
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(a) Experimental setup 

 

(b) Tool-Workpiece Material (TWM) structure with accelerometer 

Figure 1: Fault diagnosis of face milling tool test setup 

Experiments were conducted with four different conditions of the tool as shown in Fig. 2, 

out of which one is healthy and three are fault conditions, namely; 

a) Flank wear  

b) Cutting tip breakage (breakage)  

c) Chipping on rake face near cutting tip (chipping) 
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a) Healthy 

 

b) Flank wear 

 

c) Breakage 

 

d) Chipping 

Figure 2: Different conditions of face milling insert 

In the healthy condition of the tool, all six inserts are new/unworn inserts (Fig. 2(a)), 

whereas in faulty condition among six inserts one is either flank wear or breakage or 

chipping (Figs. 2(b) or 2(c) or 2(d)) have been considered for analysis. Vibration signals 

were acquired using tri-axial IEPE accelerometer (MEAS 7132A), which was mounted 

on spindle housing. Data acquisition system (National Instruments DAQ 9234) was used 

to acquire the acceleration signals from the sensor with a sampling frequency of 25.6 kHz 

and these signals were then processed by LabVIEW software and data was saved.  

Initially, rough machining was carried out to remove the oxidized layer and unevenness 

of the workpiece. The process was kept running for two or three minutes to stabilize the 

machine vibration before starting data acquisition. The first few signals were not 

considered to avoid random vibration. The vibration signals were acquired for healthy 

and different faulty conditions of the milling tool. Total 200 samples were taken, out of 

which 50 samples for each condition of the tool for a time interval of 1 second at 

sampling frequency of 25.6 kHz. Fig. 3 shows the time-series plots in feed direction for 

different conditions of the milling tool such as healthy, flank wear, breakage and 

chipping. The acceleration amplitude corresponding to faulty conditions shows slightly 

higher as compared to the healthy condition of the tool. It is quite difficult to diagnose the 

faults with the help of time-series plots. Hence, there is a need of an artificial intelligent 

technique for analysing the signals and fault diagnosis of milling tool based on the 

machine learning approach, which can be seen in forthcoming sections. 
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Figure 3: Time-series plots of (a) healthy, (b) flank wear, (c) breakage and (d) chipping 
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3 Machine learning approach 

Machine learning is a scientific method to examine diagnostically the construction and 

study of algorithms that can learn from data. These algorithms build a model based on 

inputs and using that to make decisions or predictions, rather than following only explicitly 

programmed instructions. The acquired signals are used to analyse the condition of the 

machine/machine tool by extracting some characteristics associated to the signal such as 

statistical features, histogram features, DWT features, empirical mode decomposition 

(EMD) features, etc. which are correlated to the tool condition. These extracted features are 

fed to the classifier for predicting the tool states. The flow chart of the TCM system for face 

milling process with DWT and SVM methods is as shown in Fig.  4. 

 

Figure 4: Flow chart of TCM system using DWT and SVM 

3.1 Discrete wavelet transform (DWT) features 

The acquired signal can be represented in another form of a signal using basic function, 

this is called transformation of a signal. It does not change the information which exists 
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in the signal. The wavelet transform is a mathematical tool that transforms a signal into a 

different form (in the time-scale domain, a series of wavelet coefficients, etc.) using a 

wavelet function. A wavelet function is a short wave with finite energy characteristics 

[Yan, Gao and Chen (2014)]. Wavelet transform represents the signal in time-frequency 

domain. Applications of wavelet transform can be seen in various fields such as 

mathematics, science and engineering as watermarking, image registration, signal 

denoising, compression, feature extraction, time-frequency analysis, etc. [Zhu, Wong and 

Hong (2009)]. DWT is one of the wavelet transforms and it was evolved by Mallat 

[Mallat (1989)] with fast algorithm based on the conjugate quadratic filters. The DWT in 

the mathematical form of a signal x(t) is expressed as [Yan, Gao, Chen et al. (2014)]; 

𝑑𝑤𝑡 (𝑗. 𝑘) =
1

√2𝑗
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝑘2𝑗

2𝑗 ) 𝑑𝑡                                 (1) 

The DWT uses low-pass wavelet filter h(k) and high-pass wavelet filter g(k)=(-1)kh(1-k). 

These wavelet filters work based on selected wavelet function ψ(t) and its corresponding 

scaling function ϕ(t), expressed as, 

𝜙(𝑡) = √2 ∑ ℎ(𝑘)𝜙(2𝑡 − 𝑘)𝑘

𝜓(𝑡) = √2 ∑ g(𝑘)𝜙(2𝑡 − 𝑘)𝑘

}                                              (2) 

With ∑ ℎ(𝑘) = √2 𝑘 and ∑ 𝑔(𝑘) = 0𝑘 .  

Using these filters, the signal is decomposed into two components. One is low frequency 

component and another one is high frequency component as, 

𝑎𝑗,𝑘 = ∑ ℎ(2𝑘 − 𝑚)𝑎𝑗−1,𝑚𝑚

𝑑𝑗,𝑘 = ∑ g(2𝑘 − 𝑚)𝑎𝑗−1,𝑚𝑚
}                                                (3) 

Where aj,k is ‘approximation’ coefficient and dj,k is ‘detail’ coefficient. Approximation 

and detail coefficients represent low frequency components and high frequency 

components of the signal respectively. Approximation and detail coefficients are 

produced at multiple scales by iterating the process on the approximation coefficients of 

each scale. The entire process is represented as tree-structure as shown in Fig. 5. 

 

Figure 5: Wavelet decomposition tree 

These coefficients represent a set of features. Based on the scale and position of wavelet, 

the wavelet coefficients represent the characteristics of a signal. The set of such features 
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obtained using DWT termed as feature vector and it is given by Vernekar et al. [Vernekar, 

Kumar and Gangadharan (2014)], 

𝑣𝑖
𝑑𝑤𝑡 = {𝑣1

𝑑𝑤𝑡, 𝑣2
𝑑𝑤𝑡, … 𝑣12

𝑑𝑤𝑡}𝑇                                           (4) 

Where 𝑣𝑖
𝑑𝑤𝑡 component is related to the individual resolutions and can be computed as 

follows, 

𝑣𝑖
𝑑𝑤𝑡 =

1

𝑛𝑖
∑  Wi,j   

2 ;   i = 1,2, … . 12ni
j=1                                 (5) 

Where n1=212, n2=211,.…. n12=20, 

𝑣𝑖
𝑑𝑤𝑡 is the ith feature element in a DWT feature vector, ni is the number of samples in an 

individual sub-band.  𝑊𝑖,𝑗   
2 is the jth coefficient of the ith sub-band. vi gives the mean 

square value of the decomposed signal at different levels.  

3.2 Feature selection 

The process of feature selection is a different task as compared to feature extraction; in 

this case, no new features are generated. It is a process of choosing a subset of ‘M’ 

features from the existing set of ‘N’ features (M<N), so that feature space is optimally 

decreased based on certain criterion [Blum and Langley (1997)]. In machine learning 

system the role of the feature selection are as follows; 

▪ to decrease the feature space dimensionality, 

▪ to accelerate a learning algorithm, 

▪ to enhance the predictive accuracy of a classification algorithm and  

▪ to enhance the understandability of the learning results. 

3.2.1 Decision tree (J48 algorithm) 

Decision trees are methodologies used to classify data into discrete forms using tree 

structured algorithms. This technique has found immense applications in medical, 

engineering field, market research statistics, marketing and customer relations. The main 

purpose of the decision tree is to expose the structural information contained in the data. A 

standard tree represented with J48 algorithm, it consists of a root node, a number of leaves, 

number of nodes and number of branches. Each branch of a tree represents a chain of nodes 

from the root to a leaf and each node represents an attribute (or feature). The presence of a 

feature in a tree gives the information about the prominence of the associated feature. The 

procedure for making the decision tree and exploiting the same for feature selection is 

characterized as follows [Gangadhar, Kumar, Narendranath et al. (2014)]. 

▪ The set of features is treated as input for the algorithm and the corresponding 

output is a decision tree. 

▪ It consists of leaf nodes, which indicate class labels and the rest of the nodes 

related to the classes are being classified.  

▪ The branches of the tree exhibit each predictive value of the generated feature 

node. 

▪ Feature vectors are classified using decision tree, starting from the root of the tree 

to the node of the leaf. 

▪ Each decision node in the tree, the most useful feature based on the estimation 
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criteria most useful features can be chosen. The useful feature indemnified based 

on the criteria which invokes the concepts of information gain and entropy 

reduction are explained below. 

3.2.2 Information gain and entropy reduction 

Information Gain is defined as an expected reduction in entropy by making partition the 

samples based on the feature. Entropy is defined as a measure of disorder present in the 

set of instances. By adding information it reduces uncertainty. Information Gain 

compares the entropies of the original system and the system after information is added. 

The Information Gain (S, A) of a feature ‘A’ to a set of examples ‘S’ can be expressed as, 

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣)𝑣∈𝑉𝑎𝑙𝑢𝑒 (𝐴)              (6) 

Where, ‘Values (A)’ is the set of all possible values for attribute ‘A’, ‘Sv’ is the subset of 

‘S’ for which feature ‘A’  has value ‘v’ (i.e. Sv= {s∈ S| A(s)=v}). 

Note, the first term in the equation for Gain is the entropy of the original collection ‘S’ 

and the second term is the expected value of the entropy after ‘S’ is partitioned using 

feature ‘A’. The expected entropy described by the second term is the direct sum of the 

entropies of each subset ‘Sv’ weighted by the fraction of samples |Sv|/|S| that belong to 

‘Sv‘. Gain (S, A) is therefore the expected reduction in entropy caused by knowing the 

value of a feature ‘A’. Entropy is given by, 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  ∑ −𝑃𝑖𝑙𝑜𝑔2𝑃𝑖
𝑐
𝑖−1                                           (7) 

Where, ‘c’ is the number of classes. ‘Pi’ is the proportion of ‘S’ belonging to class ‘i’. 

3.3 Support vector machine classifier 

Support vector machine (SVM) is one of the supervised learning methods used for 

classification. SVM is based on concept of decision planes, that defines decision boundaries 

and it works based on statistical learning method. It classifies the data points such that 

creating a hyper plane or classification plane between the classes. Fig. 6 shows the 

classification of two different classes which represent triangles for positive class and circles 

for negative class. SVM tries to classify these data points (positive and negative classes) by 

creating an optimal separable hyper-plane. The distance between the two dotted lines 

(bounding planes) is called margin. The main objective of SVM is to maximize the margin 

and minimize the generalization error. The data points which are nearer to the bounding 

planes are called support vectors. These support vectors help to define the margin and 

contain all the information about classification [Widodo and Yang (2007)]. 

Consider a training data set {(xi, yi)}; i=1 to L, xi ∈Rn, yi ∈(1, -1) where L indicates total 

number of data points. xi is the input vector and yi is indicator vector. It is required to 

determine the hyper plane, which separates the data points linearly into two classes 

(triangles and circles). yi∈(1, -1) is concerned with the two types of classes namely 

triangles and circles. For the hyper plane f(x)=0 which separates the given data is 

obtained as a solution to the following optimization problem. 
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Figure 6: Classification of two classes using SVM 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      
1

2
 ||𝑤||2 +  𝐶 ∑ 𝜉𝑖

𝐿
𝑖=1                                        (8) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       {
𝑦𝑖 (𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0 ;         𝑖 = 1 𝑡𝑜 𝐿
                              (9) 

Where, ‘ξ’ is a slack variable which measures the distance between the margin and the 

examples xi, ‘b’ is the bias, C>0 is the constant representing penalty parameter and ‘w’ is 

weight vector. 

After training, for any new set of features prediction of its class is possible using the 

decision function. The decision function is a function of ‘w’ and ‘γ’, which is given below. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (𝑤𝑇𝑥 − 𝛾)                                                     (10) 

If the value of f(x) is positive, then a new set of features belongs to class triangles; 

otherwise it belongs to class circles [Saimurugan, Ramachandran, Sugumaran et al. 

(2011)]. C-SVC and ν-SVC models [Vernekar, Kumar and Gangadharan (2015)] of SVM 

are used for fault diagnosis of the face milling tool. 

4 Results and discussion 

In this study, 50 vibration signal samples were acquired for each condition of the milling 

tool. Discrete wavelet features were extracted from the signal using DWT technique and 

all features were fed to the decision tree technique. C-SVC and ν-SVC models of SVM 

with four kernels have been used for classification of milling tool conditions. 

Optimal separable 
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4.1 Features extraction 

From vibration signals, eight discrete wavelet features (V1, V2… V8) were extracted for 

each class of the tool. Tab. 2 shows the discrete wavelet features using the DWT, out of 

50 samples only two samples relating to each condition of the tool are tabulated. These 

features were treated as an input to the decision tree for the selection of the salient 

features which provide best classification accuracy. 

Table 2: Discrete wavelet features of vibration signals 

Face milling 

tool condition 

Sample 

No. 

Wavelet coefficient 

V1 V2 V3 V4 V5 V6 V7 V8 

Healthy  
1 6.1

2 

27.

8 

30.

3 

17.1 13.

7 

5.5

2 

2.14 1.2

4 2 6.3

4 

29.

0 

31.

7 

19.0 13.

7 

5.9

6 

2.67 1.3

5 
Flank wear 

1 4.5

8 

21.

6 

26.

5 

20.4 13.

0 

5.6

7 

2.44 1.3

6 2 4.4

7 

20.

8 

25.

1 

20.2 12.

7 

6.0

3 

1.81 1.3

6 
Breakage  

1 2.6

3 

12.

0 

18.

7 

21.7 15.

1 

5.5

2 

2.49 1.3

1 2 2.6

7 

12.

4 

19.

7 

22.4 13.

2 

5.6

7 

2.80 1.4

6 
Chipping  

1 2.2

6 

10.

6 

16.

8 

20.5 12.

6 

5.4

8 

2.17 1.3

7 2 2.2

0 

10.

2 

17.

0 

19.4 11.

9 

5.3

7 

2.71 1.2

7 

4.2 Feature selection 

For feature selection the J48 algorithm was used, all extracted wavelet features pertaining 

to four classes were fed to the algorithm and formed decision tree is depicted in Fig. 7. 

The rectangular blocks indicate classes (condition of the tool). Within the parenthesis, 

there are two numbers separated by a slash in rectangular blocks. The first number (in 

case of two numbers) or only the number represents the number of data points (samples) 

which helps in making the decision. 

 

Figure 7: Decision tree 

As seen from the Fig. 7, V2 feature is a root node of the tree, based on this feature (V2) 

the tree structure was carried out. When V2 value is greater than 21.6, it is classified as a 
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healthy condition, while the V2 value is greater than 12.7 and less than or equal to 21.6, it 

classified as a flank wear and so on. The five features such as V1, V2, V3, V5 and V6 

were selected out of eight wavelet features from the decision tree. The detailed accuracy 

classification is discussed in the following section. 

4.3 Classification using SVM 

The selected wavelet features were treated as an input and fed to the SVM models. 

Results obtained from the models were compared using different kernel functions such as 

linear, radial basis function (RBF), polynomial and sigmoid of SVM as shown in Tab. 3.  

Table 3: Classification accuracy of SVM with different kernels 

SVM kernel SVM Model Classification accuracy Support vectors 

Linear 
C-SVC 93.5% 92 

ν-SVC 93% 165 

RBF 
C-SVC 92.5% 176 

ν-SVC 93% 165 

Polynomial 
C-SVC 94.5% 114 

ν-SVC 94% 162 

Sigmoid 
C-SVC 93% 165 

ν-SVC 93% 162 

Tab. 3 shows the classification accuracy of SVM using different kernels with support 

vectors. An SVM classifier yielded classification accuracy minimum of 92.5% of all 

kernels tested. Fig. 8 illustrated the comparison of C-SVC and ν-SVC models with 

different kernel functions of SVM. When comparing the classification accuracy, C-SVC 

model with polynomial kernel function is better than ν-SVC model with any kernel 

function for classification of a face milling tool. A confusion matrix of C-SVC model 

with polynomial kernel function is as shown in Tab. 4 which illustrates the classification 

of the face milling tool. 

Table 4: C-SVC confusion matrix 

a b c d  

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 45 5 c-Breakage 

0 0 6 44 d- Chipping  
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Figure 8: Comparison of C-SVC and ν-SVC for face milling tool 

Table 5: SVM parameters for DWT features 

Test Parameter Values 

Test mode 10-fold cross validation 

Total number of instances 200 

Correctly classified instances 189 (94.5%) 

Incorrectly classified 

instances 
11 (5.5%) 

Kernel function Polynomial degree 3 

Minimum error found 0.055 

Tab. 4 shows the confusion matrix based on C-SVC model with polynomial kernel of 

SVM, diagonal elements represent the correctly classified instances. Here, 50 instances 

which belong to ‘healthy’ condition were correctly classified by the model as shown in 

the first element of the diagonal in the matrix. In the similar manner, all instances 

pertaining to ‘flank wear’ condition were classified correctly (second diagonal element). 

But in a third row, third column 45 instances indicate correctly classified as ‘breakage’, 

while third row, fourth column element indicates the condition of ‘breakage’ 

misclassified 5 instances as ‘chipping’. Also in fourth row, third column 6 instances of 

‘chipping’ condition were misclassified as ‘breakage’. Tab. 5 shows the SVM parameters 

used with DWT features for classification of a face milling tool. 

 

 

 



 

 

 
Use of Discrete Wavelet Features and Support Vector Machine                                    125 

Table 6: Detailed accuracy classification of C-SVC 

TP Rate FP Rate Precision Recall F-Measure Class 

25% 0% 100% 100% 1 Healthy 

25% 0% 100% 100% 1 Flank wear 

22.5% 3% 88.24% 90% 0.8911 Breakage 

22% 2.5% 89.80% 88% 0.8889 Chipping 

Tab. 6 shows the detailed accuracy of the C-SVC model by class, in that true positive rate 

(TP rate) and false positive rate (FP rate) indicate the significance in judging the quality 

of the model. For good classification accuracy TP rate has to achieve 25% for each class, 

while the FP rate has to achieve 0%. For the given vibrational signals TP rate and the FP 

rate for healthy condition are about 25% and 0% respectively, which indicate all 50 

instances are correctly classified. For breakage condition, TP rate is about 22.5% 

(correctly classification of 45 instances) and FP rate is about 3% (misclassification of 6 

instances) and so on. SVM provides an excellent performance with high classification 

accuracy in fault diagnosis and machine condition monitoring [Widodo and Yang (2007)]. 

Here, out of 200 instances, 11 instances were misclassified by C-SVC model of SVM 

with classification accuracy about 94.5% of the given vibration signals. 

5 Conclusions 

In this paper, fault diagnosis of the face milling tool under healthy and fault (flank wear, 

chipping and breakage) conditions has been carried out using vibration signals. A set of 

discrete wavelet features was extracted from the vibration signals using the DWT 

technique. Salient features were selected among all extracted features using the decision 

tree technique. C-SVC and ν-SVC models of SVM have been used to classify the 

different tool conditions using different kernel functions. Classification accuracies 

corresponding to different kernel functions have been compared. Based on the results 

obtained, C-SVC model with polynomial kernel of SVM provided a good classification 

accuracy of about 94.5% for the given experimental condition and workpiece of special 

steel alloy 42CrMo4. Hence, the combination of DWT features and C-SVC model of 

SVM can be recommended for the applications of fault diagnosis of face milling tool in 

the TCM system of machining processes. 

DWT takes less computational time to extract features which are exist in the signal, but it 

decomposes only low frequency component of the signal. Decomposition at higher 

frequencies may provide useful information about the condition of the milling tool or any 

other system. Hence, further analysis can be carried out by considering the decomposition 

of high frequency component of the signal to improve the performance of the process or 

TCM system. 
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