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Abstract: A proof-of-concept indirect tire-pressure monitoring system is 
developed using artificial neural networks to identify the tire pressure of a 
vehicle tire. A quarter-car model was developed with MATLAB and Simulink to 
generate simulated accelerometer output data. Simulation data are used to train 
and evaluate a recurrent neural network with long short-term memory blocks 
(RNN-LSTM) and a convolutional neural network (CNN) developed in Python 
with Tensorflow. Bayesian Optimization via SigOpt was used to optimize 
training and model parameters. The predictive accuracy and training speed of the 
two models with various parameters are compared. Finally, future work and 
improvements are discussed. 
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1 Introduction 
It is difficult to understate how important properly pressurized tires are to the performance and safety 

of a vehicle and its operator, respectively. The National Highway Traffic Safety Administration (NHTSA) 
estimates that 11,000 tire-related crashes occur annually in the US, with 200 people estimated to be killed 
in these crashes [1]. Furthermore, under-inflated tires contribute to the following performance issues 
when driving [2]: 

(1) Poor fuel economy, wasting an estimated 3.5 million gallons daily and costing drivers as much as     
11 cents per gallon in the US. 

(2) Longer stopping distances and sluggish/ineffective handling, resulting in more dangerous driving  
conditions. 

(3) Faster tire wear, reducing the average life of a tire by 4,700 miles. 
Tire-pressure monitoring systems (TPMS) became federally mandated in 2000 by the Transportation 

Recall Enhancement, Accountability, and Documentation Act, where legislators ruled to require a 
warning system in new motor vehicles to indicate to the operator when a tire is significantly under 
inflated [3]. More specifically, all motor vehicles must have a system that is capable of detecting when 
one or more of the vehicle's tires, up to all four tires, is 25% or more below the manufacturer’s 
recommended inflation pressure or a minimum activation pressure specified in the standard, whichever is 
higher [4]. Nonetheless, a study performed in April 2009 showed that 45% of TPMS-enabled vehicles 
still have under-inflated tires [5]. Therefore, for obvious moral and legal reasons, it is imperative that 
drivers know that their tires are inflated properly. It is in the individual's and society’s best interests to 
improve safety, performance, and savings while on the road. 
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Extensive work has also been reported in the literature pertaining to the TPMS. For instance, [6] 
developing a new algorithm based on extreme value statistics. Gao et al. [7] conducted a variety of 
research on TPMS standards and test methods. He also designed the special test device. The Direct 
monitoring systems is depend on integrated sensors. Vibration signals usually present different 
parameters, including velocity, displacement or acceleration that can be measured by a velocity sensor, a 
displacement probe or an accelerometer, respectively [8-12]. Persson et al. [13] presented an indirect 
TPMS system using sensor fusion. He introduced the yaw rate to fix the wheel rolling radius. Luo [14] 
used the resonant frequency of tires to monitor tire pressure and estimated resonant frequency by 
analyzing the frequency spectrum of wheel speed. For wheel speed, when the tire pressure is insufficient, 
the rolling radius decreases and the rotational speed increases [15]. Han et al. [16] studied methods of 
monitoring tire pressure. of the vehicle when it is in a straight line and turns. The turning radius can be 
obtained depending on the vehicle geometry parameters [17]. Changzheng et al. [18] developed a novel 
surface-micromachining technology to monolithically integrate piezoresistive pressure sensor and 
accelerometer for tire-pressure monitor system (TPMS) applications. Daniel et al. [19] derived a real-time 
physical model for strain-based intelligent tires has been. They provide circumferential strains of the tire 
inner and conducted experiments on a strain-based intelligent tire. Yu-Jen et al. [20] develop and 
analyzed a nonlinear suspended energy harvester (NSEH) that can be mounted on a rotating wheel. Oche 
et al. [21] proposed an innovative decision rule-based approach to tyre monitoring. This approach relies 
on the Dominance-based Rough Set Approach (DRSA), which is a well-known multicriteria classification 
and preference learning method. Raul et al. [22] developed and tested In-wheel sensor system for 
pneumatic tires. The System tested using a drum-test machine over a wide range of conditions. They 
developed signal processing methods and measures of tire-terrain contact. 

The main purpose of engineering structural design is to meet the functional requirements of the 
system in the most economical way, and the reliability is the effective control method to meet this 
purpose. Reliability theory began in the 1940s. The earliest requirement to use the reliability is the 
military needs to improve the reliability of electronic components [23,24]. Menglong, and Dongyuan [25] 
proposed a method based on reliability and falsity in order to solve the errors of D-S evidence theory 
when there is inconsistent and conflicting among the evidences. Firstly, they calculated the reliability of 
each evidence in the system identification framework according to the Lance distance, then, they adopted 
the falsity of evidence to measure the degree of conflict between different evidences, combining 
reliability and falsity determines corrected coefficient of evidences, and basic probability assignment is 
reconfigured, finally they modified the basic probability assignment are fused by D-S combination rule. 
Binwen [26] designed Direct-type tire pressure monitoring module based on sensors, and also he designed 
the central receiving module using microcontroller. Thus, the real-time monitoring of tire pressure and 
temperature is achieved. Cullen et al. [27] employed the new system useing the CAN bus network 
technique, as well as a novel method of relaying the tire pressure status off the wheel without using any 
power or transmitter system, thus overcoming many of the obstacles faced by systems of the same scope. 
Jingui et al. [28] developed On-vehicle triboelectric nanogenerator (V-TENG) as a direct power source 
for tire pressure monitoring system. They achieved the high performance of the V-TENG with wide 
ranges of temperature, rotation speed and magnetic force, and improved the durability and reliability of 
V-TENG for long-term operation. Hongjip et al. [29] proposed an energy harvester for rotating systems 
under modulated noise excitations by taking advantage of self-tuning stochastic resonance with particular 
application to power smart tires, that compared to existing tire energy harvesters, it has larger power 
output and wider bandwidth. They conducted the Numerical simulation to simulate the harvested power 
in a passenger car tire at different driving speeds. To validate the simulation results, thy conducted the 
experiment model, they show that the experiment results show good agreement with the numerical 
simulation, which proves the feasibility of the proposed harvester. 

The most commonly used TPMS in vehicles today is a simple pressure sensor mounted within the 
tire to directly measure the pressure of the air within the tire. When the integrated battery dies on these 
sensors, the sensors must be replaced manually. 
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Time, money, and labor are spent to replace this simple sensor. It would be advantageous if the 
TPMS architecture was created such that maintenance and repair were not needed. 

As advancements in machine learning and deep learning techniques continue, it is no longer a 
question of how or why to apply these techniques, but where to apply them. 

In this work, a proof-of-concept TPMS architecture is suggested that uses accelerometer data and 
an artificial neural network (ANN) to determine whether the tires on a vehicle are under, over, or 
nominally inflated. 

2 Background 
Background research for this work focused on three fields: representations of suspension systems, 

current TPMS architectures, and a high-level overview of ANNs.  

2.1 Suspension Representation 
A simplified Quarter Car Model representation of a vehicle suspension system is used in this work. 

The representation only models vertical movement (1 degree of freedom) and assumes that the vehicle is 
rigid; only vibrations transferred from the ground to the tires, axles, and suspension systems are 
considered. This representation also does not consider any forces or reactions due to the geometry of the 
vehicle; it is only looking at a single wheel on this vehicle. The representation is presented in Fig. 1 [30].  

The analytical model utilized in this work is very simple, purposefully. The focus of this research is 
on the development of an intelligent algorithm for tire pressure measurement rather than creating and 
using a complex dynamic model. There is much work that already exists to properly model passenger cars 
for dynamic analysis. For instance, Tan and Wang [31] and Liu [32] works are two examples of more 
thorough rigid body analysis applied on passenger motorized vehicles. Where their works end with model 
validation, this work will purposefully use a simpler and more practical dynamic model to validate the 
algorithm rather than the model. 

The unsprung mass mu refers to all masses that are attached to and not supported by the spring, such 
as the wheels, axles, or brakes. In this representation, the unsprung mass is the weight of the tire and the 
weight of the air of the tire. In an actual vehicle, suspension stiffness and damping values ks and cs are 
functions of suspension type, tire geometry, tire pressure, vehicle geometry, and vehicle weight. These 
values should be constant in vehicles without active suspension systems, so the only changing parameter 
in this model is the unsprung mass’s stiffness ku. Any damping in parallel with ku is negligible with 
respect to cu and is thus not included in the representation. 

2.2 TPMS Architectures 
The NHTSA provides vehicle manufacturers three ways to comply with the law: direct, indirect, and 

hybrid TPMS [33]. Direct TPMS consists normally of pressure sensors located inside each wheel to 
directly measure the pressure in each tire. Indirect TPMS compares speed data collected from vehicle's 
anti-lock braking system wheel speed sensors to compare rotational speeds of tires against one another to 
determine the pressure. Direct systems are more accurate and precise, whereas indirect systems are less 
hardware-dependent and more robust for each vehicle. The NHTSA leaves the definition of a hybrid 
TPMS purposefully vague and suggests such a system would use a combination of direct and indirect 
methods to fulfill the regulatory requirements. 

As described by Transport & Environment (T&E) [34] indirect TPMS is unable to accurately 
measure tire pressure in real-time.  Required routine recalibration, requires the vehicle to be moving 
linearly to work, and can falsely trigger based on road conditions affecting wheel rotation and vibration. 
T&E asserts that indirect TPMS systems generally comply with regulatory requirements but “show very 
poor performance” when testing in more realistic conditions. For these reasons, direct TPMS is currently 
the more commonly-applied technology in vehicles today. However, their placement in tires requires time, 
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money, and labor in case repairs or replacements must be made. 
Research in indirect and hybrid TPMS architectures has grown and continues to grow because of 

their perceived advantages over direct TPMS as computing power increases. For example, Persson et al. 
[13] presented an indirect TPMS combining vibration and wheel radius analyses that was able to detect 
pressure losses larger than 15% in one, two, three, or four tires and identify the under-inflated tire within 
1 minute.  Wang et al. [35] improved the indirect TPMS algorithms with the inclusion of accurate 
pressure identification under steering conditions. 

 

Figure 1: A free-body diagram of the quarter-car model [30] 

2.3 Artificial Neural Networks 
An artificial neural network (ANN) is a machine learning algorithm used to solve advanced non-

linear problems such as handwriting or speech recognition [36-44]. Neural networks connect 
computational nodes together to form a singular network, where each computational node is performing a 
calculation on its input and outputting the result to all outgoing connections. The output of a node can be 
the input to at least one other node or too many other nodes. Outputs can be scaled and biased by weights 
and biases respectively; think the canonical linear function y = mx + b, where y is the original output, m 
is the weight, x is the new output, and b is the bias. Often, activation functions are added to the networks; 
these further define the output with a linear or non-linear function. As shown by Ramachandran et al. [45] 
the most commonly used activation function in deep learning projects is the rectified linear unit (ReLU). 
In summary, interconnected computational nodes perform linear and non-linear operations on inputs. 

At first, all ANN models do not perform well because the weights and biases are not tuned; that is, 
the model is not trained. Neural networks can learn a hierarchical feature representation from raw data 
automatically [46]; that is, they \learn or can be trained through example. In this work, we train our 
models via supervised learning| that is, with labeled training data-and compare the model's predictions to 
the actual labels. By repeatedly minimizing the error between prediction and truth, the model updates the 
trainable parameters and its accuracy improves. This updating is based on minimizing a cost (generally 
inversely proportional to accuracy) via some optimization strategy. Gradient Descent strategies are often 
implemented; in this work, the Adaptive Moment Estimation (Adam) strategy is applied. Adam computes 
adaptive learning rates for each parameter and takes advantage of the idea of momentum to more quickly 
converge on the global minima with reduced oscillation [47]. 

Bayesian optimization is a powerful tool for optimizing objective functions which are very costly or 
slow to evaluate [48-53]. In particular, we consider problems where the maximum is sought for an 
objective function f: 

χ∈
=

x
optx maxarg )(xf   (1) 
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where χ  is some design space of interest; in global optimization within a domain f: χ ⸦ ℝd which is a 
bounding box (tensor product of bounded and connected univariate domains). Numerous strategies for 
modeling f in the Bayesian optimization setting have been suggested, including the use of Gaussian 
processes [50,54], random forests [55]; and tree structured Parzen estimators [56,57]. 

Furthermore, models hyperparameters can be tuned such that they can more quickly be trained and 
perform more optimally. Grid search tuning is a standard method where an exponentially large grid of 
possible hyperparameter combinations is systematically searched. Alternatively, Bayesian Optimization 
tuning promises a more intelligently search by learning from prior hyperparameter combinations and their 
results to intelligently suggest better combinations [58]. Grid searches are exponentially expensive 
whereas Bayesian optimization are only linearly expensive, as visualized in Fig. 2. In this work, the 
software-as-a-service product SigOpt is applied to perform Bayesian optimization techniques for quick, 
intelligent tuning. 

The type of input data generally defines the type of ANN to be used; in this case, the models are 
interpreting time series data. As defined by Georg [59], a time series is a sequence of vectors depending on 
time t such that; and so on. The components of at each time t (referred to as datapoints in this work) are 
distinct from one another but are not informative enough to extrapolate meaningful information from the 
time series; instead, each datapoint in a time series must be analyzed in relation to the rest of the time series. 

 
(a)                                                                                (b) 

Figure 2: (a) Grid Search vs. (b) Bayesian Optimization techniques for tuning, where each yellow dot 
indicates a model evaluation. Notice that grid searches could be searching along a potentially-coarse grid, 
whereas Bayesian optimization techniques test any possible combination within the space and 
intelligently suggests combinations to reach optimal solutions with fewer evaluations 

We discuss two major model types for interpreting time series data in Fig. 3 the recurrent neural 
network (RNN) and convolutional neural network (CNN). 

Convolutional neural networks (CNNs) interpret clusters of datapoints (e.g., time-series, images, 
sentences, sound recordings, so on) together to preserve spatial or temporal relationships. CNNs apply 
kernels or filter, i.e., a weight matrice to recognize and extract features or patterns [60-63]. 
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Figure 3: A visual representation of a single block in a recurrent neural network (RNN). Taken from 
Olah [64] 

Recurrent neural networks (RNNs) interpret time-series data successfully by adding feedback loops 
to the standard ANN network architecture [65,66]. Some RNNs use more complex computational nodes 
known as long short-term memory (LSTM) blocks to mitigate an issue common in RNNs known as the 
vanishing gradient problem in Fig. 4 [67]. 

 
Figure 4: Visualization of a 5 × 5 filter convolving around an input volume and producing an output. 
Taken from Adit [67] 

The first few layers of a typical ANN act as feature extractors; that is, they are responsible for 
extracting meaningful information from the input data. For example, RNNs build an internal memory and 
CNNs use pattern matching. This meaningful information is then fed into a classifier. Classifiers are 
generally fully-connected layers (each node is connected to one another; see Fig. 5 with n outputs, where 
n is the number of classes in the input data. 

ANNs have been applied in the automotive industry for decades. In 1990, Wiggins et al. [68] 
presented a neural network that could identify engine faults based on the vehicle's engine controller data. 
Neural networks were used to control the air-to-fuel ratio in fuel injection systems as shown by Alippi et 
al. [69]. More recently, ANNs have driven advances in automated vehicle control (\self-driving) that can 
detect, identify, and respond to objects and pedestrians on the road in real time.  

While Tesla, Mercedes-Benz, and BMW were first introduce these features to consumer vehicles, the 
technology is becoming increasingly ubiquitous [70]. A NHTSA investigation conducted in January 2017 
found crash rates Tesla crash rates have dropped by almost 40% since enabling self-driving capabilities in 
2015 [71]. 
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Figure 5: Visualization of a fully-connected layer. Taken from Hollemans [72] 

3 Research Work  
With the desire to explore alternative indirect TPMS frameworks and inspired by deep learning is 

seemingly infinite applications, this work explores a deep learning framework that analyzes vehicle 
suspension acceleration data to classify the vehicle tires as under-inflated, nominally inflated, or over-
inflated. To validate this idea, work was broken into the following sections: 

(1)  Collecting Data. The accuracy and capability of the ANN is largely dependent on the size of our 
data-ANNs tend to improve when there is more data for training. In this work, data was 
simulated by a quarter-car model written in MATLAB and Simulink. The data serves as the 
training, validation, and test sets for the ANN. 

(2)  Creating the Algorithm. Using the data from the prior step, an RNN-LSTM and CNN are developed 
in Python with Google’s open-source TensorFlow API. Tuning model and training parameters are 
done using Bayesian Optimization via SigOpt (All source code is available on Olah [64]). 

3.1 Collecting Data 
A MATLAB model for the quarter-car representation as shown in Fig. 1 was run at various tire 

pressures and step-sizes to generate simulated examples of a vehicle suspension system experiencing a 
step response (in an attempt to be analogous to a pothole or speed bump). The simulation solves the 
system of ordinary differential equations for every time step for the position, velocity, and accelerations 
of the sprung mass ms and unsprung mass mu. The simulation inputs are presented below in Tab. 1 and 
their accompanying derivations are presented in Appendix A. 

 Table 1: Simulation input variables  

Variable Description Value [Units] 

pu 

y 

ms 

mu 

ks 

cs 

ku 

g 

Tire pressure 

Step size 

Sprung mass 

Unsprung mass 

Sprung stiffness 

Sprung damping 

Unsprung stiffness 

Gravity 

Varies 

Varies 

277.25 

34.69 

557.97 

6218.35 

Varies 

9.81 

[psi] 

[m] 

[kg] 

[kg] 

[N/m] 

[N-sec/m] 

[kPa] 

[m/sec2] 
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The simulation was performed for pu = 25.5, 26, 26.5, 27,…, 38.5 and for y = 0.10, 0.15, 0.2,..., 2.0, 
generating 633 total examples. Every 1.5-second-long run is composed of 1500 data points and labeled 
according to the inflation classifications as defined by Tab. 2. 

Table 2: Inflation classifications, pressures, and labels 

Inflation clarification Pressure Range (psi) Label (int) 

Under 

Nominal 

Over 

26-30 

30-34 

34-38 

0 

1 

2 

These classifications are 10% of 32 psi, well within the 25% specification as defined by the TREAD 
Act. The label of the simulation and the sprung's mass acceleration are saved in individual .csv files to be 
parsed by the algorithm. An example of the generated data is presented below in Tab. 3 (note that the first 
row is only shown here for clarification and is not included in the raw output). 

Table 3: Example of simulated data: Sim_35.5psi_0.75m.csv 

Label sx ,              

 t = 0:000 s 

sx ,              

 t = 0:001 s 

..... sx ,  

t = 0:420 s 

sx ,  

t = 0:421 s 

2 -0.00073852 -0.00067152 …. -1.3974 -1.2822 

Plots were developed of xs vs. time as a quick sanity check is shown in Fig. 6. The plots make intuitive 
sense-higher pressure correlates with greater stiffness, which then increases the natural frequency, slows the 
settling speed of the mass, and reduces the maximum amplitude. The simulation is sound. 

 
Figure 6: Sprung mass vs. time for pu = 26, 32, 38 psi for step size y = 2 m 
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3.2 Building the Algorithm 
TensorFlow was used to build, train, and evaluate a RNN and a CNN. Development of each neural 

network followed the same specifications as listed below. 
(1) Import the simulated data into the Python environment. 
a. The input data shall be shuffled randomly. 
b. The input data shall be split into a training set (60%), validation set (20%), and test set (20%). Use 

of a validation and test set reduced the chance of overfitting and follows the commonly-used 3:1:1 
ratio suggested by machine learning experts [73]. 

(2) Build the model of the neural network. 
a. The model shall be fed labeled input data and output predicted labels. 
b. The input data should be fed in batches to minimize computational load between parameter updates. 

Generally, the recommended starting batch size is 32 [74]. 
c. The model shall prevent overfitting by applying dropout to the outputs of at least one fully-

connected layer [75]. 
d. Batch normalization shall be applied after various layers to reduce the internal covariate shift within 

the model [76]. 
e. Model logits shall be converted to classification predictions using the softmax activation function. 
(3) Evaluate the predictive capabilities and training speed of the model. 
a. The cost shall be calculated using the cross-entropy function between the input data labels and 

model predictions [77]. 
b. The accuracy shall be calculated by comparing the model’s predicted labels to the input data labels. 
c. The training speed shall be minimized by tuning the model hyperparameters. 
(4) Train the model parameters. 
a. The training shall end after a predefined number of epochs and not be stopped early to observe any 

overfitting in the model. 
b. The training method shall minimize the batch’s average cross-entropy loss using Adam 

Optimization strategy [47]. 
c. The learning rate shall be static or exponentially decaying. 

3.3 Development 
The RNN-LSTM and CNN models are self-contained in RNNModel and CNNModel respectively as 

shown in Fig. 7. Both models are similar except for the feature extraction near the input layer of the model. 
A DataProcessor class was written to provide methods to scan a directory for all files and perform 

various preprocessing operations. In this work, DataProcessor scans the simulated data directory; 
generates lists of all files found across all labels; shuffles and splits the filenames across test, validation, 
and training sets; and loads the feature data and label data found in each files from each set into member 
variables to be used for training. The training class TrainModel is the entry point to train the model. 
Instantiating TrainModel builds the desired model with a provided learning rate learning rate and dropout 
rate dropout rate. Calling train model trains the model for a desired number of epochs n epochs using 
feature and label data inherited from DataProcessor. Every 

checksn _
1 , the model’s accuracy and cost are 

evaluated across the entire training and validation datasets and reported to TensorBoard for visualization. 
The test set accuracy is evaluated before and after training. 
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(a) 

 
(b) 

Figure 7: (a) RNN-LSTM and (b) CNN model visual graphs as created by TensorBoard 

3.4 Tuning 
The model parameters were tuned via SigOpt to identify optimal values for various model 
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hyperparameters. Tuning classes GridSearchTune and SigOptTune were developed to perform a grid 
search or connect to SigOpt to perform a Bayesian search respectively. It was estimated that a grid search 
over the entire model space would take over two weeks of computations per model, whereas SigOpt’s 
more-intelligent Bayesian search strategy would take days instead. Thus, only SigOptTune was used in 
this work. 

Two SigOpt experiments were run for each model to optimize the training speed and accuracy 
respectively. The parameters under investigation are listed below in Tab. 4. 

Table 4: Parameters optimized via SigOpt Bayesian optimization. *denotes that the parameter is related to 
Adam optimization strategy 

Name Description RNN-LSTM CNN 

dropout rate Dropout rate X X 

learning rate* Learning rate X X 

beta1* 1st moment estimates exponential decay rate X X 

beta2* 2nd moment estimates exponential decay 
rate 

X X 

epsilon* Numerical stability constant X X 

Num_filt _1 Number of filters in convolutional layer  X 

Kernel_size Kernel size in convolutional layer  X 

Num_fc_1 Number of neurons in first fully-connected 
layer 

X X 

n_layers Number of hidden layers in model X  

n_hidden Number of features per hidden layer in 
LSTM 

X  

4 Results and Discussion 
4.1 Initial Results 

Tuning the Adam-specific hyperparameters gave insight in a recurring issue with the LSTM-RNN: 
The model would not improve in performance after 200 steps (40 epochs with batch size = 128). Fig. 8 
shows multiple training curves with various values for learning_rate, beta _1, beta_2, and epsilon. Where 
the cross-validation accuracy would remain at 33.3%, or the same accuracy as randomly guessing. 

These results can be from the RNN-LSTM’s inability to identify any meaningful features after 40 
epochs of the 633 training examples. The same results were seen when the model was trained for 200 
epochs: The RNN-LSTM underfit the simulated data every time. Therefore, all model hyperparameters 
were increased. The resulting models successfully fit the input data and achieved significantly better 
accuracy when classifying the test set data. Further hyperparameter tuning showed that increasing the 
number of layers to be greater than 1 result in the model fitting the data appropriately. After 100 
observations, Sigopt reported the RNN achieved 96.2% accuracy. 

The CNN did not require much hyperparameter tuning. The CNN achieved near state-of-the-art 
success (accuracy > 95%) on the first try. The CNN achieved 100% accuracy after 15 optimization 
evaluations with SigOpt. 

The final model hyperparameters were based on the first evaluation that classified the test set with 100% 
accuracy. These values are shown in Tab. 5. Similarly, the final performances are shown below in Fig. 9. 
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Table 5: Final hyperparameters chosen for both models 

Name RNN-LSTM CNN 

dropout rate 0.672 0.309 

learning rate* 0.00001 0.033 

beta1* 0.9 0.684 

beta2* 0.999 0.845 

epsilon* 1e-08 0.282 

Num_filt _1 - 16 

Kernel_size - 4 

Num_fc_1 31 6 

n_layers 4 - 

n_hidden 22 - 

 
Figure 8: RNN-LSTM: Training classification accuracy for various Adam optimization strategy 
optimization parameters learning_rate, beta _1, beta_2, and epsilon 

4.2 Final Results and Discussion 
Overall, both CNN and RNN models achieved above 90% accuracy on the validation and test 

dataset given sufficient time. Fig. 9 depicts the accuracy curves during training across the training and 
validation datasets. 

Different training parameters and hyperparameters were defined for each model to achieve these 
results. The training parameters of both models saw a change in the batch size batch size and number of 
epochs n_epochs. The batch size was increased from 32 to 256 so each model update would better 
represent the dataset. The models were ran until a validation dataset accuracy above 90% was observed, 
hence the final value n_epochs = 1000. 

The CNN requires significantly less time to train than the RNN-LSTM. This can be explained by 
looking at the mathematics behind the architectures. At each time step t, a RNN-LSTM must perform the 
following computations: 
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where σ  is the logistic sigmoid function, Θ  represents elementwise multiplication, uW , fW , oW , cW  
are recurrent weight matrices, uI , fI , oI , cI  are projection matrices, b  is the bias vector, and h and m 
are hidden and memory vectors responsible for controlling state updates and outputs [78]. On the other 
hand, the input to some unit l

ix in layer l  is the sum of the previous layer's cells contributions  multiplied 
by a filter ω  with size m  [79]. More clearly, 

i

m

a

l
aia

l
i byx ∑

=

−
−=

0

1ω    (3) 

Compared directly against the fundamental equations behind a 1D convolution layer, one can see a 
stark contrast in complexity. Even if the filter or the number of previous-layer inputs are large in size, the 
CNN model is significantly simpler than the RNN-LSTM model and thus is easier and faster to train. 

 
Figure 9: Classification Accuracy during Training 

The CNN also outperformed the RNN-LSTM model in classification capability. The RNN-LSTM 
model feeds the hidden layer from the previous layer from the previous step into the next step to provide 
information for tasks requiring long-range contextual information, but the input data here is based on 
short, simulated step responses. The additional computations are not needed for classifying the data in this 
work; in fact, the RNN-LSTM is incorrectly biased on the built-up memory. The CNN is looking for 
specific patterns within windows of time within the time-series data. The clean, short simulated data does 
not vary in sequence length and has repeatable patterns within the data so the CNN is able to quickly train 
and accurately classify input data. 

Disadvantages of the CNN in the application of tire-pressure monitoring are the same as any time-
based series applications. The performance of CNN is dependent on the quality and size of the dataset; in 
this work, the dataset is small and clean. The patterns within each time series are occurring at the same 
time across all of the samples. CNNs also generally suffer from overfitting and poor random initialization 
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issues, but in this work, neither issue was observed. More work must be done using a more complex 
dataset to further understand the weaknesses of the CNN. 

4.3 Future Work 
This work laid down a foundation to explore an ANN-based TPMS, but much more work needs to be 

done before this technology can be applied. Future work should attempt to address the following aspects 
not covered here: 

(1)   Improve the simulated data. In this work, all data was generated from a quarter-car model 
simulation.  Many assumptions were considered in the simulation and thus, the simulation 
presented herein is not a good representative of a real car model. A better simulation can be 
made by using a half-car or full-car model instead of a quarter-car model or considering more 
degrees of freedom. Tan or Liu’s research for more-accurate vehicle modeling may be a useful 
starting point. 

(2)   Collect experimental data. Even better than simulated data is real experimental data. Collecting 
and analyzing real data can result in a better, more generalized classifier with no issues arising 
from training on simulated data. Furthermore, the data should be generalized away from a step 
function profile to the acceleration profile of general driving such that the TPMS can identify 
under pressurized tires at all times. 

(3)   Develop the hardware. Instead of assuming the computational and electrical power required for 
the system exists, a more-thorough investigation should be performed to determine the validity 
of the claim. A theoretical system with the properly specified requirements would bring this 
work one step closer to reality. 

(4)   Improve the algorithm. Further fine-tuning of the training parameters and hyperparameters as 
well as adding and removing layers and features from the model architecture may result in more 
efficient and effective models. Fawaz et al. [80] comparison of deep learning models for time 
series classification may be a valuable starting point for identifying better models, especially 
with regard to improving the CNN architecture performance. 

5 Conclusion 
Considering the various limitations of the work, an ANN-based TPMS is far away from being 

applied across the automotive industry. Nonetheless, this work showed that both a CNN and RNN-LSTM 
model can be developed and trained on simulated training data to accurately classify unseen simulation 
data. This proves the algorithm's ability to identify unique patterns across each class and sort accordingly, 
all without any explicit instruction on the mechanical principles behind the data. With better data and 
appropriate hardware, vehicles may one day be equipped with ANN-based TPMS. 
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Appendix A. Derivations of Simulation Input Parameters 

All constants used as simulation input variables are derived as follows. Except for identifying, all of 
these calculations are performed in MATLAB. 

sm is simply taken from Daniel III and Daniel [81] and divided by 4 to account for the quarter-car 
model. 

kgkgms 25.2774/1109 ==    (A1) 
Assuming that the tire in use across all vehicles is a radial-ply 165×13 tire (a very common tire size 

found on most passenger vehicles), a linear model for static stiffness based on tire inflation pressure can 
be used [82]. 

The model is graphically presented in Fig. A1 and expressed by Eq. (A2). The model is only accurate 
above 15 psi-an acceptable limitation as 15 psi is well below the threshold for “under-pressurized”. 

375.4630185 += puks   (A2) 

 
Figure A1: Static stiffness vs. inflation pressure for a radial-ply car tire [82] 

Utilizing the average quarter-car ratio of the sprung to unsprung masses and the one can identify the 
expected value for mu [Jazar (2014)]: 

kgkgm
m

m
m s

u
u

s 69.34
8
25.2778 ===⇒==

ε
ε    (A3) 

It should be noted that mu should vary with tire pressure due to the additional air inside the tires. 
However, the mass of the air is insignificant relative to the rest of the unsprung mass (< 0.1%). 
Nonetheless, the mass of the air is calculated and included in the unsprung mass for these simulations. 
The calculations are performed in MATLAB. 

To identify the suspension’s stiffness and damping coefficients, assume that the suspension is tuned 
for a properly-inflated tire. With psipu 32= , Eqs. (A2) and (A3) give the kPaku 53.6979= and 

kgmu 69.34=  respectively. With these values, one can find the natural frequency of the unsprung 
mass uω : 
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sec
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53.6979 rad
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u ===ω    (A4) 

The average quarter-car ratio for sprung and unsprung natural frequencies is used to identify the 
sprung mass’s natural frequency sω . 
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We already know that kgms 25.277= , so identifying sk  is trivial. 
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To calculate sc , we can use the relationship between sω  and the damping ratio 
c
cs=ζ  where c  is 

the critical damping coefficient. Numerous sources suggest the proper damping ratio in passenger 
vehicles to be between 0.2 and 0.3 [83,84]. For this work, we define ζ  = 0.25. 

( )( )
m

Nradkgmc
m
c

sss
ss

s sec8.6218
sec

86.4425.27725.022
2

−
=






==⇒= ωζ

ω
ζ  (A7) 

 
 
 
 


	Alex Kost1, Wael A. Altabey2,3,4, Mohammad Noori1,2,* and Taher Awad4
	5 Conclusion
	References
	Appendix A. Derivations of Simulation Input Parameters

