
Structural Durability & Health Monitoring

DOI:10.32604/sdhm.2019.07025 www.techscience.com/sdhm

Applying Neural Networks for Tire Pressure Monitoring Systems

Alex Kost1, Wael A. Altabey2,3,4, Mohammad Noori1,2,* and Taher Awad4

1Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93405, USA.
2International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing, China.

3Nanjing Zhixing Information Technology Co., Ltd., Nanjing, China.
4Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt.

*Corresponding Author: Mohammad Noori. Email: mnoori@outlook.com.

Abstract: A proof-of-concept indirect tire-pressure monitoring system is
developed using artificial neural networks to identify the tire pressure of a
vehicle tire. A quarter-car model was developed with MATLAB and Simulink to
generate simulated accelerometer output data. Simulation data are used to train
and evaluate a recurrent neural network with long short-term memory blocks
(RNN-LSTM) and a convolutional neural network (CNN) developed in Python
with Tensorflow. Bayesian Optimization via SigOpt was used to optimize
training and model parameters. The predictive accuracy and training speed of the
two models with various parameters are compared. Finally, future work and
improvements are discussed.

Keywords: RNN-LSTM; CNN; artificial neural networks; tire pressure
monitoring systems

1 Introduction
It is difficult to understate how important properly pressurized tires are to the performance and safety

of a vehicle and its operator, respectively. The National Highway Traffic Safety Administration (NHTSA)
estimates that 11,000 tire-related crashes occur annually in the US, with 200 people estimated to be killed
in these crashes [1]. Furthermore, under-inflated tires contribute to the following performance issues
when driving [2]:

(1) Poor fuel economy, wasting an estimated 3.5 million gallons daily and costing drivers as much as
11 cents per gallon in the US.

(2) Longer stopping distances and sluggish/ineffective handling, resulting in more dangerous driving
conditions.

(3) Faster tire wear, reducing the average life of a tire by 4,700 miles.
Tire-pressure monitoring systems (TPMS) became federally mandated in 2000 by the Transportation

Recall Enhancement, Accountability, and Documentation Act, where legislators ruled to require a
warning system in new motor vehicles to indicate to the operator when a tire is significantly under
inflated [3]. More specifically, all motor vehicles must have a system that is capable of detecting when
one or more of the vehicle's tires, up to all four tires, is 25% or more below the manufacturer’s
recommended inflation pressure or a minimum activation pressure specified in the standard, whichever is
higher [4]. Nonetheless, a study performed in April 2009 showed that 45% of TPMS-enabled vehicles
still have under-inflated tires [5]. Therefore, for obvious moral and legal reasons, it is imperative that
drivers know that their tires are inflated properly. It is in the individual's and society’s best interests to
improve safety, performance, and savings while on the road.

248 SDHM, 2019, vol.13, no.3

Extensive work has also been reported in the literature pertaining to the TPMS. For instance, [6]
developing a new algorithm based on extreme value statistics. Gao et al. [7] conducted a variety of
research on TPMS standards and test methods. He also designed the special test device. The Direct
monitoring systems is depend on integrated sensors. Vibration signals usually present different
parameters, including velocity, displacement or acceleration that can be measured by a velocity sensor, a
displacement probe or an accelerometer, respectively [8-12]. Persson et al. [13] presented an indirect
TPMS system using sensor fusion. He introduced the yaw rate to fix the wheel rolling radius. Luo [14]
used the resonant frequency of tires to monitor tire pressure and estimated resonant frequency by
analyzing the frequency spectrum of wheel speed. For wheel speed, when the tire pressure is insufficient,
the rolling radius decreases and the rotational speed increases [15]. Han et al. [16] studied methods of
monitoring tire pressure. of the vehicle when it is in a straight line and turns. The turning radius can be
obtained depending on the vehicle geometry parameters [17]. Changzheng et al. [18] developed a novel
surface-micromachining technology to monolithically integrate piezoresistive pressure sensor and
accelerometer for tire-pressure monitor system (TPMS) applications. Daniel et al. [19] derived a real-time
physical model for strain-based intelligent tires has been. They provide circumferential strains of the tire
inner and conducted experiments on a strain-based intelligent tire. Yu-Jen et al. [20] develop and
analyzed a nonlinear suspended energy harvester (NSEH) that can be mounted on a rotating wheel. Oche
et al. [21] proposed an innovative decision rule-based approach to tyre monitoring. This approach relies
on the Dominance-based Rough Set Approach (DRSA), which is a well-known multicriteria classification
and preference learning method. Raul et al. [22] developed and tested In-wheel sensor system for
pneumatic tires. The System tested using a drum-test machine over a wide range of conditions. They
developed signal processing methods and measures of tire-terrain contact.

The main purpose of engineering structural design is to meet the functional requirements of the
system in the most economical way, and the reliability is the effective control method to meet this
purpose. Reliability theory began in the 1940s. The earliest requirement to use the reliability is the
military needs to improve the reliability of electronic components [23,24]. Menglong, and Dongyuan [25]
proposed a method based on reliability and falsity in order to solve the errors of D-S evidence theory
when there is inconsistent and conflicting among the evidences. Firstly, they calculated the reliability of
each evidence in the system identification framework according to the Lance distance, then, they adopted
the falsity of evidence to measure the degree of conflict between different evidences, combining
reliability and falsity determines corrected coefficient of evidences, and basic probability assignment is
reconfigured, finally they modified the basic probability assignment are fused by D-S combination rule.
Binwen [26] designed Direct-type tire pressure monitoring module based on sensors, and also he designed
the central receiving module using microcontroller. Thus, the real-time monitoring of tire pressure and
temperature is achieved. Cullen et al. [27] employed the new system useing the CAN bus network
technique, as well as a novel method of relaying the tire pressure status off the wheel without using any
power or transmitter system, thus overcoming many of the obstacles faced by systems of the same scope.
Jingui et al. [28] developed On-vehicle triboelectric nanogenerator (V-TENG) as a direct power source
for tire pressure monitoring system. They achieved the high performance of the V-TENG with wide
ranges of temperature, rotation speed and magnetic force, and improved the durability and reliability of
V-TENG for long-term operation. Hongjip et al. [29] proposed an energy harvester for rotating systems
under modulated noise excitations by taking advantage of self-tuning stochastic resonance with particular
application to power smart tires, that compared to existing tire energy harvesters, it has larger power
output and wider bandwidth. They conducted the Numerical simulation to simulate the harvested power
in a passenger car tire at different driving speeds. To validate the simulation results, thy conducted the
experiment model, they show that the experiment results show good agreement with the numerical
simulation, which proves the feasibility of the proposed harvester.

The most commonly used TPMS in vehicles today is a simple pressure sensor mounted within the
tire to directly measure the pressure of the air within the tire. When the integrated battery dies on these
sensors, the sensors must be replaced manually.

SDHM, 2019, vol.13, no.3 249

Time, money, and labor are spent to replace this simple sensor. It would be advantageous if the
TPMS architecture was created such that maintenance and repair were not needed.

As advancements in machine learning and deep learning techniques continue, it is no longer a
question of how or why to apply these techniques, but where to apply them.

In this work, a proof-of-concept TPMS architecture is suggested that uses accelerometer data and
an artificial neural network (ANN) to determine whether the tires on a vehicle are under, over, or
nominally inflated.

2 Background
Background research for this work focused on three fields: representations of suspension systems,

current TPMS architectures, and a high-level overview of ANNs.

2.1 Suspension Representation
A simplified Quarter Car Model representation of a vehicle suspension system is used in this work.

The representation only models vertical movement (1 degree of freedom) and assumes that the vehicle is
rigid; only vibrations transferred from the ground to the tires, axles, and suspension systems are
considered. This representation also does not consider any forces or reactions due to the geometry of the
vehicle; it is only looking at a single wheel on this vehicle. The representation is presented in Fig. 1 [30].

The analytical model utilized in this work is very simple, purposefully. The focus of this research is
on the development of an intelligent algorithm for tire pressure measurement rather than creating and
using a complex dynamic model. There is much work that already exists to properly model passenger cars
for dynamic analysis. For instance, Tan and Wang [31] and Liu [32] works are two examples of more
thorough rigid body analysis applied on passenger motorized vehicles. Where their works end with model
validation, this work will purposefully use a simpler and more practical dynamic model to validate the
algorithm rather than the model.

The unsprung mass mu refers to all masses that are attached to and not supported by the spring, such
as the wheels, axles, or brakes. In this representation, the unsprung mass is the weight of the tire and the
weight of the air of the tire. In an actual vehicle, suspension stiffness and damping values ks and cs are
functions of suspension type, tire geometry, tire pressure, vehicle geometry, and vehicle weight. These
values should be constant in vehicles without active suspension systems, so the only changing parameter
in this model is the unsprung mass’s stiffness ku. Any damping in parallel with ku is negligible with
respect to cu and is thus not included in the representation.

2.2 TPMS Architectures
The NHTSA provides vehicle manufacturers three ways to comply with the law: direct, indirect, and

hybrid TPMS [33]. Direct TPMS consists normally of pressure sensors located inside each wheel to
directly measure the pressure in each tire. Indirect TPMS compares speed data collected from vehicle's
anti-lock braking system wheel speed sensors to compare rotational speeds of tires against one another to
determine the pressure. Direct systems are more accurate and precise, whereas indirect systems are less
hardware-dependent and more robust for each vehicle. The NHTSA leaves the definition of a hybrid
TPMS purposefully vague and suggests such a system would use a combination of direct and indirect
methods to fulfill the regulatory requirements.

As described by Transport & Environment (T&E) [34] indirect TPMS is unable to accurately
measure tire pressure in real-time. Required routine recalibration, requires the vehicle to be moving
linearly to work, and can falsely trigger based on road conditions affecting wheel rotation and vibration.
T&E asserts that indirect TPMS systems generally comply with regulatory requirements but “show very
poor performance” when testing in more realistic conditions. For these reasons, direct TPMS is currently
the more commonly-applied technology in vehicles today. However, their placement in tires requires time,

250 SDHM, 2019, vol.13, no.3

money, and labor in case repairs or replacements must be made.
Research in indirect and hybrid TPMS architectures has grown and continues to grow because of

their perceived advantages over direct TPMS as computing power increases. For example, Persson et al.
[13] presented an indirect TPMS combining vibration and wheel radius analyses that was able to detect
pressure losses larger than 15% in one, two, three, or four tires and identify the under-inflated tire within
1 minute. Wang et al. [35] improved the indirect TPMS algorithms with the inclusion of accurate
pressure identification under steering conditions.

Figure 1: A free-body diagram of the quarter-car model [30]

2.3 Artificial Neural Networks
An artificial neural network (ANN) is a machine learning algorithm used to solve advanced non-

linear problems such as handwriting or speech recognition [36-44]. Neural networks connect
computational nodes together to form a singular network, where each computational node is performing a
calculation on its input and outputting the result to all outgoing connections. The output of a node can be
the input to at least one other node or too many other nodes. Outputs can be scaled and biased by weights
and biases respectively; think the canonical linear function y = mx + b, where y is the original output, m
is the weight, x is the new output, and b is the bias. Often, activation functions are added to the networks;
these further define the output with a linear or non-linear function. As shown by Ramachandran et al. [45]
the most commonly used activation function in deep learning projects is the rectified linear unit (ReLU).
In summary, interconnected computational nodes perform linear and non-linear operations on inputs.

At first, all ANN models do not perform well because the weights and biases are not tuned; that is,
the model is not trained. Neural networks can learn a hierarchical feature representation from raw data
automatically [46]; that is, they \learn or can be trained through example. In this work, we train our
models via supervised learning| that is, with labeled training data-and compare the model's predictions to
the actual labels. By repeatedly minimizing the error between prediction and truth, the model updates the
trainable parameters and its accuracy improves. This updating is based on minimizing a cost (generally
inversely proportional to accuracy) via some optimization strategy. Gradient Descent strategies are often
implemented; in this work, the Adaptive Moment Estimation (Adam) strategy is applied. Adam computes
adaptive learning rates for each parameter and takes advantage of the idea of momentum to more quickly
converge on the global minima with reduced oscillation [47].

Bayesian optimization is a powerful tool for optimizing objective functions which are very costly or
slow to evaluate [48-53]. In particular, we consider problems where the maximum is sought for an
objective function f:

χ∈
=

x
optx maxarg)(xf (1)

SDHM, 2019, vol.13, no.3 251

where χ is some design space of interest; in global optimization within a domain f: χ ⸦ ℝd which is a
bounding box (tensor product of bounded and connected univariate domains). Numerous strategies for
modeling f in the Bayesian optimization setting have been suggested, including the use of Gaussian
processes [50,54], random forests [55]; and tree structured Parzen estimators [56,57].

Furthermore, models hyperparameters can be tuned such that they can more quickly be trained and
perform more optimally. Grid search tuning is a standard method where an exponentially large grid of
possible hyperparameter combinations is systematically searched. Alternatively, Bayesian Optimization
tuning promises a more intelligently search by learning from prior hyperparameter combinations and their
results to intelligently suggest better combinations [58]. Grid searches are exponentially expensive
whereas Bayesian optimization are only linearly expensive, as visualized in Fig. 2. In this work, the
software-as-a-service product SigOpt is applied to perform Bayesian optimization techniques for quick,
intelligent tuning.

The type of input data generally defines the type of ANN to be used; in this case, the models are
interpreting time series data. As defined by Georg [59], a time series is a sequence of vectors depending on
time t such that; and so on. The components of at each time t (referred to as datapoints in this work) are
distinct from one another but are not informative enough to extrapolate meaningful information from the
time series; instead, each datapoint in a time series must be analyzed in relation to the rest of the time series.

(a) (b)

Figure 2: (a) Grid Search vs. (b) Bayesian Optimization techniques for tuning, where each yellow dot
indicates a model evaluation. Notice that grid searches could be searching along a potentially-coarse grid,
whereas Bayesian optimization techniques test any possible combination within the space and
intelligently suggests combinations to reach optimal solutions with fewer evaluations

We discuss two major model types for interpreting time series data in Fig. 3 the recurrent neural
network (RNN) and convolutional neural network (CNN).

Convolutional neural networks (CNNs) interpret clusters of datapoints (e.g., time-series, images,
sentences, sound recordings, so on) together to preserve spatial or temporal relationships. CNNs apply
kernels or filter, i.e., a weight matrice to recognize and extract features or patterns [60-63].

252 SDHM, 2019, vol.13, no.3

Figure 3: A visual representation of a single block in a recurrent neural network (RNN). Taken from
Olah [64]

Recurrent neural networks (RNNs) interpret time-series data successfully by adding feedback loops
to the standard ANN network architecture [65,66]. Some RNNs use more complex computational nodes
known as long short-term memory (LSTM) blocks to mitigate an issue common in RNNs known as the
vanishing gradient problem in Fig. 4 [67].

Figure 4: Visualization of a 5 × 5 filter convolving around an input volume and producing an output.
Taken from Adit [67]

The first few layers of a typical ANN act as feature extractors; that is, they are responsible for
extracting meaningful information from the input data. For example, RNNs build an internal memory and
CNNs use pattern matching. This meaningful information is then fed into a classifier. Classifiers are
generally fully-connected layers (each node is connected to one another; see Fig. 5 with n outputs, where
n is the number of classes in the input data.

ANNs have been applied in the automotive industry for decades. In 1990, Wiggins et al. [68]
presented a neural network that could identify engine faults based on the vehicle's engine controller data.
Neural networks were used to control the air-to-fuel ratio in fuel injection systems as shown by Alippi et
al. [69]. More recently, ANNs have driven advances in automated vehicle control (\self-driving) that can
detect, identify, and respond to objects and pedestrians on the road in real time.

While Tesla, Mercedes-Benz, and BMW were first introduce these features to consumer vehicles, the
technology is becoming increasingly ubiquitous [70]. A NHTSA investigation conducted in January 2017
found crash rates Tesla crash rates have dropped by almost 40% since enabling self-driving capabilities in
2015 [71].

SDHM, 2019, vol.13, no.3 253

Figure 5: Visualization of a fully-connected layer. Taken from Hollemans [72]

3 Research Work
With the desire to explore alternative indirect TPMS frameworks and inspired by deep learning is

seemingly infinite applications, this work explores a deep learning framework that analyzes vehicle
suspension acceleration data to classify the vehicle tires as under-inflated, nominally inflated, or over-
inflated. To validate this idea, work was broken into the following sections:

(1) Collecting Data. The accuracy and capability of the ANN is largely dependent on the size of our
data-ANNs tend to improve when there is more data for training. In this work, data was
simulated by a quarter-car model written in MATLAB and Simulink. The data serves as the
training, validation, and test sets for the ANN.

(2) Creating the Algorithm. Using the data from the prior step, an RNN-LSTM and CNN are developed
in Python with Google’s open-source TensorFlow API. Tuning model and training parameters are
done using Bayesian Optimization via SigOpt (All source code is available on Olah [64]).

3.1 Collecting Data
A MATLAB model for the quarter-car representation as shown in Fig. 1 was run at various tire

pressures and step-sizes to generate simulated examples of a vehicle suspension system experiencing a
step response (in an attempt to be analogous to a pothole or speed bump). The simulation solves the
system of ordinary differential equations for every time step for the position, velocity, and accelerations
of the sprung mass ms and unsprung mass mu. The simulation inputs are presented below in Tab. 1 and
their accompanying derivations are presented in Appendix A.

 Table 1: Simulation input variables

Variable Description Value [Units]

pu

y

ms

mu

ks

cs

ku

g

Tire pressure

Step size

Sprung mass

Unsprung mass

Sprung stiffness

Sprung damping

Unsprung stiffness

Gravity

Varies

Varies

277.25

34.69

557.97

6218.35

Varies

9.81

[psi]

[m]

[kg]

[kg]

[N/m]

[N-sec/m]

[kPa]

[m/sec2]

254 SDHM, 2019, vol.13, no.3

The simulation was performed for pu = 25.5, 26, 26.5, 27,…, 38.5 and for y = 0.10, 0.15, 0.2,..., 2.0,
generating 633 total examples. Every 1.5-second-long run is composed of 1500 data points and labeled
according to the inflation classifications as defined by Tab. 2.

Table 2: Inflation classifications, pressures, and labels

Inflation clarification Pressure Range (psi) Label (int)

Under

Nominal

Over

26-30

30-34

34-38

0

1

2

These classifications are 10% of 32 psi, well within the 25% specification as defined by the TREAD
Act. The label of the simulation and the sprung's mass acceleration are saved in individual .csv files to be
parsed by the algorithm. An example of the generated data is presented below in Tab. 3 (note that the first
row is only shown here for clarification and is not included in the raw output).

Table 3: Example of simulated data: Sim_35.5psi_0.75m.csv

Label sx ,

 t = 0:000 s

sx ,

 t = 0:001 s

..... sx ,

t = 0:420 s

sx ,

t = 0:421 s

2 -0.00073852 -0.00067152 …. -1.3974 -1.2822

Plots were developed of xs vs. time as a quick sanity check is shown in Fig. 6. The plots make intuitive
sense-higher pressure correlates with greater stiffness, which then increases the natural frequency, slows the
settling speed of the mass, and reduces the maximum amplitude. The simulation is sound.

Figure 6: Sprung mass vs. time for pu = 26, 32, 38 psi for step size y = 2 m

SDHM, 2019, vol.13, no.3 255

3.2 Building the Algorithm
TensorFlow was used to build, train, and evaluate a RNN and a CNN. Development of each neural

network followed the same specifications as listed below.
(1) Import the simulated data into the Python environment.
a. The input data shall be shuffled randomly.
b. The input data shall be split into a training set (60%), validation set (20%), and test set (20%). Use

of a validation and test set reduced the chance of overfitting and follows the commonly-used 3:1:1
ratio suggested by machine learning experts [73].

(2) Build the model of the neural network.
a. The model shall be fed labeled input data and output predicted labels.
b. The input data should be fed in batches to minimize computational load between parameter updates.

Generally, the recommended starting batch size is 32 [74].
c. The model shall prevent overfitting by applying dropout to the outputs of at least one fully-

connected layer [75].
d. Batch normalization shall be applied after various layers to reduce the internal covariate shift within

the model [76].
e. Model logits shall be converted to classification predictions using the softmax activation function.
(3) Evaluate the predictive capabilities and training speed of the model.
a. The cost shall be calculated using the cross-entropy function between the input data labels and

model predictions [77].
b. The accuracy shall be calculated by comparing the model’s predicted labels to the input data labels.
c. The training speed shall be minimized by tuning the model hyperparameters.
(4) Train the model parameters.
a. The training shall end after a predefined number of epochs and not be stopped early to observe any

overfitting in the model.
b. The training method shall minimize the batch’s average cross-entropy loss using Adam

Optimization strategy [47].
c. The learning rate shall be static or exponentially decaying.

3.3 Development
The RNN-LSTM and CNN models are self-contained in RNNModel and CNNModel respectively as

shown in Fig. 7. Both models are similar except for the feature extraction near the input layer of the model.
A DataProcessor class was written to provide methods to scan a directory for all files and perform

various preprocessing operations. In this work, DataProcessor scans the simulated data directory;
generates lists of all files found across all labels; shuffles and splits the filenames across test, validation,
and training sets; and loads the feature data and label data found in each files from each set into member
variables to be used for training. The training class TrainModel is the entry point to train the model.
Instantiating TrainModel builds the desired model with a provided learning rate learning rate and dropout
rate dropout rate. Calling train model trains the model for a desired number of epochs n epochs using
feature and label data inherited from DataProcessor. Every

checksn _
1 , the model’s accuracy and cost are

evaluated across the entire training and validation datasets and reported to TensorBoard for visualization.
The test set accuracy is evaluated before and after training.

256 SDHM, 2019, vol.13, no.3

(a)

(b)

Figure 7: (a) RNN-LSTM and (b) CNN model visual graphs as created by TensorBoard

3.4 Tuning
The model parameters were tuned via SigOpt to identify optimal values for various model

SDHM, 2019, vol.13, no.3 257

hyperparameters. Tuning classes GridSearchTune and SigOptTune were developed to perform a grid
search or connect to SigOpt to perform a Bayesian search respectively. It was estimated that a grid search
over the entire model space would take over two weeks of computations per model, whereas SigOpt’s
more-intelligent Bayesian search strategy would take days instead. Thus, only SigOptTune was used in
this work.

Two SigOpt experiments were run for each model to optimize the training speed and accuracy
respectively. The parameters under investigation are listed below in Tab. 4.

Table 4: Parameters optimized via SigOpt Bayesian optimization. *denotes that the parameter is related to
Adam optimization strategy

Name Description RNN-LSTM CNN

dropout rate Dropout rate X X

learning rate* Learning rate X X

beta1* 1st moment estimates exponential decay rate X X

beta2* 2nd moment estimates exponential decay
rate

X X

epsilon* Numerical stability constant X X

Num_filt _1 Number of filters in convolutional layer X

Kernel_size Kernel size in convolutional layer X

Num_fc_1 Number of neurons in first fully-connected
layer

X X

n_layers Number of hidden layers in model X

n_hidden Number of features per hidden layer in
LSTM

X

4 Results and Discussion
4.1 Initial Results

Tuning the Adam-specific hyperparameters gave insight in a recurring issue with the LSTM-RNN:
The model would not improve in performance after 200 steps (40 epochs with batch size = 128). Fig. 8
shows multiple training curves with various values for learning_rate, beta _1, beta_2, and epsilon. Where
the cross-validation accuracy would remain at 33.3%, or the same accuracy as randomly guessing.

These results can be from the RNN-LSTM’s inability to identify any meaningful features after 40
epochs of the 633 training examples. The same results were seen when the model was trained for 200
epochs: The RNN-LSTM underfit the simulated data every time. Therefore, all model hyperparameters
were increased. The resulting models successfully fit the input data and achieved significantly better
accuracy when classifying the test set data. Further hyperparameter tuning showed that increasing the
number of layers to be greater than 1 result in the model fitting the data appropriately. After 100
observations, Sigopt reported the RNN achieved 96.2% accuracy.

The CNN did not require much hyperparameter tuning. The CNN achieved near state-of-the-art
success (accuracy > 95%) on the first try. The CNN achieved 100% accuracy after 15 optimization
evaluations with SigOpt.

The final model hyperparameters were based on the first evaluation that classified the test set with 100%
accuracy. These values are shown in Tab. 5. Similarly, the final performances are shown below in Fig. 9.

258 SDHM, 2019, vol.13, no.3

Table 5: Final hyperparameters chosen for both models

Name RNN-LSTM CNN

dropout rate 0.672 0.309

learning rate* 0.00001 0.033

beta1* 0.9 0.684

beta2* 0.999 0.845

epsilon* 1e-08 0.282

Num_filt _1 - 16

Kernel_size - 4

Num_fc_1 31 6

n_layers 4 -

n_hidden 22 -

Figure 8: RNN-LSTM: Training classification accuracy for various Adam optimization strategy
optimization parameters learning_rate, beta _1, beta_2, and epsilon

4.2 Final Results and Discussion
Overall, both CNN and RNN models achieved above 90% accuracy on the validation and test

dataset given sufficient time. Fig. 9 depicts the accuracy curves during training across the training and
validation datasets.

Different training parameters and hyperparameters were defined for each model to achieve these
results. The training parameters of both models saw a change in the batch size batch size and number of
epochs n_epochs. The batch size was increased from 32 to 256 so each model update would better
represent the dataset. The models were ran until a validation dataset accuracy above 90% was observed,
hence the final value n_epochs = 1000.

The CNN requires significantly less time to train than the RNN-LSTM. This can be explained by
looking at the mathematics behind the architectures. At each time step t, a RNN-LSTM must perform the
following computations:

SDHM, 2019, vol.13, no.3 259

()
()
()
()

()














Θ=

Θ+Θ=

++=
++=
++=
++=

−

−

−

−

−

t
o

t

cu
t

f
t

ct
c

t
cc

ot
o

t
oo

ft
f

t
ff

ut
u

t
uu

mgh

ggmgm

bxIhWg
bxIhWg
bxIhWg
bxIhWg

tanh

tanh

1

1

1

1

1

σ
σ
σ

 (2)

where σ is the logistic sigmoid function, Θ represents elementwise multiplication, uW , fW , oW , cW
are recurrent weight matrices, uI , fI , oI , cI are projection matrices, b is the bias vector, and h and m
are hidden and memory vectors responsible for controlling state updates and outputs [78]. On the other
hand, the input to some unit l

ix in layer l is the sum of the previous layer's cells contributions multiplied
by a filter ω with size m [79]. More clearly,

i

m

a

l
aia

l
i byx ∑

=

−
−=

0

1ω (3)

Compared directly against the fundamental equations behind a 1D convolution layer, one can see a
stark contrast in complexity. Even if the filter or the number of previous-layer inputs are large in size, the
CNN model is significantly simpler than the RNN-LSTM model and thus is easier and faster to train.

Figure 9: Classification Accuracy during Training

The CNN also outperformed the RNN-LSTM model in classification capability. The RNN-LSTM
model feeds the hidden layer from the previous layer from the previous step into the next step to provide
information for tasks requiring long-range contextual information, but the input data here is based on
short, simulated step responses. The additional computations are not needed for classifying the data in this
work; in fact, the RNN-LSTM is incorrectly biased on the built-up memory. The CNN is looking for
specific patterns within windows of time within the time-series data. The clean, short simulated data does
not vary in sequence length and has repeatable patterns within the data so the CNN is able to quickly train
and accurately classify input data.

Disadvantages of the CNN in the application of tire-pressure monitoring are the same as any time-
based series applications. The performance of CNN is dependent on the quality and size of the dataset; in
this work, the dataset is small and clean. The patterns within each time series are occurring at the same
time across all of the samples. CNNs also generally suffer from overfitting and poor random initialization

260 SDHM, 2019, vol.13, no.3

issues, but in this work, neither issue was observed. More work must be done using a more complex
dataset to further understand the weaknesses of the CNN.

4.3 Future Work
This work laid down a foundation to explore an ANN-based TPMS, but much more work needs to be

done before this technology can be applied. Future work should attempt to address the following aspects
not covered here:

(1) Improve the simulated data. In this work, all data was generated from a quarter-car model
simulation. Many assumptions were considered in the simulation and thus, the simulation
presented herein is not a good representative of a real car model. A better simulation can be
made by using a half-car or full-car model instead of a quarter-car model or considering more
degrees of freedom. Tan or Liu’s research for more-accurate vehicle modeling may be a useful
starting point.

(2) Collect experimental data. Even better than simulated data is real experimental data. Collecting
and analyzing real data can result in a better, more generalized classifier with no issues arising
from training on simulated data. Furthermore, the data should be generalized away from a step
function profile to the acceleration profile of general driving such that the TPMS can identify
under pressurized tires at all times.

(3) Develop the hardware. Instead of assuming the computational and electrical power required for
the system exists, a more-thorough investigation should be performed to determine the validity
of the claim. A theoretical system with the properly specified requirements would bring this
work one step closer to reality.

(4) Improve the algorithm. Further fine-tuning of the training parameters and hyperparameters as
well as adding and removing layers and features from the model architecture may result in more
efficient and effective models. Fawaz et al. [80] comparison of deep learning models for time
series classification may be a valuable starting point for identifying better models, especially
with regard to improving the CNN architecture performance.

5 Conclusion
Considering the various limitations of the work, an ANN-based TPMS is far away from being

applied across the automotive industry. Nonetheless, this work showed that both a CNN and RNN-LSTM
model can be developed and trained on simulated training data to accurately classify unseen simulation
data. This proves the algorithm's ability to identify unique patterns across each class and sort accordingly,
all without any explicit instruction on the mechanical principles behind the data. With better data and
appropriate hardware, vehicles may one day be equipped with ANN-based TPMS.

Acknowledgement: This research project was made possible in part due to a release time funding from
Donald E. Bently Center for Engineering Innovation, Mechanical Engineering, Cal Poly. Herein this
support is acknowledged.

References
1. NHTSA (2016). Tires URL. https://www.nhtsa.gov/equipment/tires.
2. Tire Wise (2016). Tire Maintenance URL. https://www.safercar.gov/tires/pages/tires_maintenance.
3. United States Senate and House of Representatives (2000). Transportation Recall Enhancement,

Accountability, and Documentation (TREAD) Act. https://www.congress.gov/106/plaws/publ414/PLAW-
106publ414.pdf.

4. NHTSA (2005). Docket No. NHTSA 2205-20586.
https://one.nhtsa.gov/cars/rules/rulings/tpmsfinalrule.6/tpmsfinalrule.6.html.

SDHM, 2019, vol.13, no.3 261

5. NHTSA (2009). Tire Pressure Maintenance-A Statistical Investigation.
https://www.congress.gov/106/plaws/publ414/PLAW-106publ414.pdf.

6. Kan, Y. (2015). Research on algorithm of indirect TPMS based on statistics of wheel speed extremum.
Yanshan University, Qinhuangdao.

7. Gao, M., Xu, Z., Zhao, B. (2008). Analysis and study on test methods of tire pressure monitoring system.
Automotive Technology, 44-47.

8. Zhao, Y., Noori, M., Altabey, W. A., Zhishen, W. (2018a). Fatigue Damage Identification for Composite
Pipeline Systems Using Electrical Capacitance Sensors. Smart Materials and Structures, 27 (8), 0850.

9. Altabey, W. A., Noori, M. (2017a). Detection of fatigue crack in basalt FRP laminate composite pipe using
electrical potential change method. Journal of Physics: Conference Series, 842, 012079.

10. Altabey, W. A. (2017a). Delamination evaluation on basalt FRP composite pipe by electrical potential change.
Advances in Aircraft and Spacecraft Science, 4(5), 515-528.

11. Altabey, W. A. (2017b). EPC method for delamination assessment of basalt FRP pipe: electrodes number
effect. Structural Monitoring and Maintenance, 4(1), 69-84.

12. Altabey, W. A., Noori, M. (2018). Monitoring the water absorption in GFRE pipes via an electrical
capacitance sensors. Advances in Aircraft and Spacecraft Science, 5(4), 411-434.

13. Persson, N., Fredrik, G., Markus, D. (2002). Indirect Tire Pressure Monitoring Using Sensor Fusion. SAE 2002
World Congress & Exhibition, SAE Technical Paper 2002-01-1250.

14. Luo, Q. (2014). The research of indirect tire pressure monitor system based on the frequency method. Wuhan
University of Technology, Wuhan.

15. Han, Z., Song, J., Su, D. (2008). The design of a tire pressure monitoring and alarming system for vehicles
based on tire rolling radius method. Automotive Engineering.

16. Han, Z., Liu, Q., Wang, L. (2010). Study on tire pressure monitoring and alarming system of automobile based
on the comparison among standard pulse numbers. China Mechanical Engineering.

17. Liang, L., Gang, J., Xu, R., Jian, S., Kaihui, W. (2014). A variable structure extended kalman filter for vehicle
sideslip angle estimation on low friction road. Vehicle System Dynamics, 52(2), 280-308.

18. Changzheng, W., Wei, Z., Quan, W., Xiaoyuan, X., Xinxin, L. (2012). TPMS (tire-pressure monitoring system)
sensors: monolithic integration of surface-micromachined piezoresistive pressure sensor and self-testable
accelerometer. Microelectronic Engineering, 91, 167-173.

19. Daniel, G., Oluremi, O., Salvatore, S., Mario, T. (2019). A real-time physical model for strain-based intelligent
tires. Sensors and Actuators A: Physical, 288, 1-9.

20. Yu-Jen, W., Chung-De, C., Chung-Chih, L., Jui-Hsin, Y. (2015). A nonlinear suspended energy harvester for a
tire pressure monitoring system. Micromachines, 6, 312-327.

21. Oche, A. E., Salem, C., David, B. (2019). An innovative decision rule approach to tyre pressure monitoring.
Expert Systems with Applications, 124, 252-270.

22. Raul, G. L., Robert, B., Andrew, S. (2019). An in-wheel sensor for monitoring tire-terrain interaction:
development and laboratory testing. Terramechanics, 82, 43-52.

23. Zhao, Y., Noori, M., Altabey, W. A., Naiwei, L. (2017). Reliability evaluation of a laminate composite plate
under distributed pressure using a hybrid response surface method. International Journal of Reliability,
Quality and Safety Engineering, 24(3), 1750013.

24. Altabey, W. A. (2018). High performance estimations of natural frequency of basalt FRP laminated plates with
intermediate elastic support using response surfaces method. Vibroengineering. 20(2), 1099-1107.

25. Menglong, C., Dongyuan, Y. (2018). An improved D-S evidence theory in tire pressure monitoring system.
IOP Conference. Series: Materials Science and Engineering, 394, 032112.

26. Binwen, H. (2013). Design of direct-type tire-pressure monitoring system based on SP37 sensor. Sensors &
Transducers, 160(12), 74-79.

27. Cullen, J. D., Arvanitis, N., Lucas, J., Al-Shamma’a, A. I. (2002). In-field trials of a tyre pressure monitoring
system based on segmented capacitance rings. Measurement, 32(3), 181-192.

28. Jingui, Q., Dong-Su, K., Dong-Weon, L. (2019). On-vehicle triboelectric nanogenerator enabled self-powered
sensor for tire pressure monitoring. Nano Energy, 49, 126-136.

262 SDHM, 2019, vol.13, no.3

29. Hongjip, K., Wei Che, T., Jason, P., Lei, Z. (2019). Self-tuning stochastic resonance energy harvesting for
rotating systems under modulated noise and its application to smart tires. Mechanical Systems and Signal
Processing, 122, 769-785.

30. Jazar, R. (2014). Vehicle dynamics: theory and application, 2nd ed. Springer-Verlag New York.
31. Tan, D., Wang, Q. (2016). Modeling and simulation of the vibration characteristics of the in-wheel motor

driving vehicle based on bond graph. Shock and Vibration. https://doi.org/10.1155/2016/1982390.
32. Liu, Y. (2008). Constructing equations of motion for a vehicle rigid body model. SAE International Journal of

Passenger Cars-Mechanical Systems, 1. https://doi.org/10.4271/2008-01-2751.
33. NHTSA. (2016). IV. Tire pressure monitoring systems URL.

https://one.nhtsa.gov/cars/rules/rulings/tirepresfinal/tireprmonsys.html.
34. Transport & Environment. (2016). Failure of indirect tyre pressure monitoring systems puts drivers and road

users at risk.
https://www.transportenvironment.org/sites/te/files/publications/2016_11_TPMS_report_final.pdf.

35. Wang, L., Zhang, Z., Yao, Y., Han, Z., Bin, W. (2017). Monitoring method of indirect TPMS under steering
situation. DEStech Transactions on Engineering and Technology Research,
https://doi.org/10.12783/dtetr/mime2016/10229.

36. Altabey, W. A., Noori, M. (2017b). Fatigue life prediction for carbon fibre/epoxy laminate composites under
spectrum loading using two different neural network architectures. Sustainable Materials and Structural
Systems, 3(1), 53-78.

37. Altabey, W. A. (2017c). Prediction of natural frequency of basalt fiber reinforced polymer (FRP) laminated
variable thickness plates with intermediate elastic support using artificial neural networks (ANNs) method.
Vibroengineering, 19(5), 3668-3678.

38. Altabey, W. A. (2016a). FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion.
Structural Monitoring and Maintenance, 3(3), 297-314.

39. Altabey, W. A. (2016b). Detecting and predicting the crude oil type inside composite pipes using ECS and
ANN. Structural Monitoring and Maintenance, 3(4), 377-393.

40. Altabey, W. A. (2016c). The thermal effect on electrical capacitance sensor for two-phase flow monitoring.
Structural Monitoring and Maintenance, 3(4), 335-347.

41. Zhao, Y., Noori, M., Altabey, W. A., Awad, T. (2019). A comparison of three different methods for the
identification of hysterically degrading structures using bwbn model. Front. Built Environ, 4(80),
http://dx.doi.org/10.3389/fbuil.2018.00080.

42. Zhao, Y., Noori, M., Seyed, B. B., and Altabey, W. A. (2017). Mode shape based damage identification for a
reinforced concrete beam using wavelet coefficient differences and multi-resolution analysis. Structural
Control and Health Monitoring, 25(3), 1-41.

43. Zhao, Y., Noori, M., Altabey, W. A. (2017). Damage detection for a beam under transient excitation via three
different algorithms. Structural Engineering and Mechanics, 63(6), 803-817.

44. Noori, M., Haifegn, W., Altabey, W. A., Ahmad, I. H. S. (2018). A modified wavelet energy rate based
damage identification method for steel bridges. International Journal of Science & Technology. Scientia
Iranica, 25(6), 3210-3230.

45. Ramachandran, P., Zoph, B., Quoc, V. L. (2017). Searching for activation functions. Cornell University
Library, Preprint, 1710. 05941. http://arxiv.org/abs/1710.05941.

46. Yi, Z., Qi, L., Enhong, C., Yong, G., Zhao, J. L. (2014). Time series classification using multi-channels deep
convolutional neural networks web-age information management. 15th International Conference on Web-Age
Information Management. WAIM 2014. Lecture Notes in Computer Science, 8485, Springer, Cham.
https://doi.org/10.1007/978-3-319-08010-9_33.

47. Diederik, P. K., Jimmy, B. (2014). Adam: a method for stochastic optimization. Cornell University Library,
Preprint, 1412.6980, http://arxiv.org/abs/1412.6980.

48. Martinez-Cantin, R., de Freitas, N., Doucet, A., Castellanos, J. A. (2007). Active policy learning for robot
planning and exploration under uncertainty. Robotics: Science and Systems, 321-328.

49. Brochu, E., Brochu, T., de Freitas, N. (2010). A bayesian interactive optimization approach to procedural

https://doi.org/10.1155/2016/1982390
https://doi.org/10.4271/2008-01-2751
https://one.nhtsa.gov/cars/rules/rulings/tirepresfinal/tireprmonsys.html
https://www.transportenvironment.org/sites/te/files/publications/2016_11_TPMS_report_final.pdf
https://doi.org/10.12783/dtetr/mime2016/10229
http://dx.doi.org/10.3389/fbuil.2018.00080
http://arxiv.org/abs/1710.05941
https://doi.org/10.1007/978-3-319-08010-9_33
http://arxiv.org/abs/1412.6980

SDHM, 2019, vol.13, no.3 263

animation design. Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, Eurographics Association, 103-112.

50. Snoek, J., Larochelle, H., Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms.
Advances in Neural Information Processing Systems, 2951-2959.

51. Altabey, W. A. (2017d). An exact solution for mechanical behavior of BFRP nano-thin films embedded in
NEMS, Advances in Nano Research, 5(4), 337-357.

52. Altabey, W. A. (2017e). A study on thermo-mechanical behavior of MCD through bulge test analysis.
Advances in Computational Design, 2(2), 107-119.

53. Altabey, W. A. (2017f). Free vibration of basalt fiber reinforced polymer (FRP) laminated variable thickness
plates with intermediate elastic support using finite strip transition matrix (FSTM) method. Vibroengineering,
19(4), 2873-2885.

54. Martinez-Cantin, R. (2014). Bayesopt: a bayesian optimization library for nonlinear optimization,
experimental design and bandits. Machine Learning Research, 15 (1), 3735-3739.

55. Hutter, F., Hoos, H. H., Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm
configuration. Learning and Intelligent Optimization, 507-523.

56. Bergstra, J., Bardenet, R., Bengio, Y., K´egl, B. (2011). Algorithms for hyper-parameter optimization.
Advances in Neural Information Processing Systems, 2546-2554.

57. Bergstra, J., Yamins, D., Cox, D. (2013). Making a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. Proceedings of the 30th International Conference on Machine
Learning, 115-123.

58. Ian, D., Michael, M., Scott, C., Patrick, H., Alexandra, J. et al. (2016). A stratified analysis of bayesian
optimization methods. Cornell University Library, Preprint, 1603.09441. http://arxiv.org/abs/1603.09441.

59. Georg, D. (1996). Neural networks for time series processing, neural network world.
 http://dx.doi.org/10.1.1.45.5697.

60. Karn, U. (2016). An intuitive explanation of convolutional neural networks.
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/.

61. Zhao, Y., Noori, M., Altabey, W. A., Ghiasi, R., Wu, Z. (2018b). Deep learning-based damage, load and
support identification for a composite pipeline by extracting modal macro strains from dynamic excitations.
Applied Sciences, 8(12), 2564.

62. Wang, T., Noori, M., Altabey, W. A., Zhao, Y. (2019). Identification of cracks in an euler-bernoulli beam using
bayesian inference and closed-form solution of vibration modes, under review. Smart Materials and Structures.

63. Ghannadi, P., Kourehli, S. S., Noori, M., Altabey, W. A. (2019). Structural damage detection and severity
identification using mode shape expansion and grey wolf optimizer. Under Review, Inverse Problems.

64. Olah, C. (2015). Understanding lstm networks. http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
65. Zachary, C. L., John, B., Charles, E. (2015). A critical review of recurrent neural networks for sequence

learning. Cornell University Library, Preprint, 1506.00019. http://arxiv.org/abs/1506.00019.
66. John, C., Borges, G. (2017). Deep learning for time-series analysis. Cornell University Library, Preprint,

1701.01887. http://arxiv.org/abs/1701.01887.
67. Adit, D. (2015). A beginners guide to understanding convolutional neural networks. A Beginners Guide to

Understanding Convolutional Neural Networks-Adit Deshpande-CS Undergrad at UCLA (19).
 https://adeshpande3.github.io/A-Beginner's-Guide-To-UnderstandingConvolutional-Neural-Networks/.

68. Wiggins, V., Engquist, S., Looper, L. (1992). Neural network applications: a literature review. Tech. rep. Air
Force. http://www.dtic.mil/dtic/tr/fulltext/u2/a258148.pdf.

69. Alippi, C., de Russis, C., Piuri, V. (2003). A neural-network based control solution to air-fuel ratio control for
automotive fuel-injection systems. IEEE Transactions on Systems, 259-268.

70. Jiang, T., Petrovic, S., Ayyer, U., Tolani, A., Husain, S. (2015). Self-driving cars: disruptive or incremental.
Applied Innovation Review, 1. http://cet.berkeley.edu/wp-content/uploads/Self-Driving-Cars.pdf.

71. Habib, K. (2017). Automatic vehicle control systems. PE 16-007 Tech. rep. NHTSA URL.
https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.pdf.

http://arxiv.org/abs/1603.09441
http://dx.doi.org/10.1.1.45.5697
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1701.01887
http://www.dtic.mil/dtic/tr/fulltext/u2/a258148.pdf
http://cet.berkeley.edu/wp-content/uploads/Self-Driving-Cars.pdf
https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.pdf

264 SDHM, 2019, vol.13, no.3

72. Hollemans, M. (2016). Convolutional neural networks on the iphone with vggnet.
 http://machinethink.net/blog/convolutional-neural-networks-on-the-iphone-with-vggnet/.

73. Ng, A. (2019). Model selection and train/validation/test sets, coursera: machine learning. lecture notes.
https://www.coursera.org/learn/machine-learning/supplement/XHQqO/model-selection-and-train-
validation-test-sets.

74. Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures, Cornell
University Library, Preprint, 1206.5533.

75. Phaisangittisagul, E. (2016). An analysis of the regularization between L2 and dropout in single hidden layer
neural network. 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS),
Bangkok, Thailand, 174. http://dx.doi.org/10.1109/ISMS.2016.14.

76. Ioffe, S., Christian, S. (2015). Batch normalization: accelerating deep network training by reducing internal
covariate shift. Cornell University Library, Preprint, 1502.03167. http://arxiv.org/abs/1502.03167.

77. James, D. M. (2013). Why you should use cross-entropy error instead of classification error or mean squared
error for neural network classifier training.
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-
classification-error-or-mean-squared-error-for.

78. Karim, F., Majumdar, S., Darabi, H., Chen, S. (2018). LSTM fully convolutional networks for time series
classification. digital object identifier. IEEE Access, 6, 1662-1669.

79. Andrew, G. (2014). Math [Code], Bringing HPC Techniques to Deep Learning.
http://andrew.gibiansky.com/blog/machinelearning/convolutional-neural-networks/.

80. Fawaz, H., Germain, F., Jonathan, W., Lhassan, I., Pierre-Alain, M. (2018). Deep learning for time series
classification: a review. Cornell University Library, Preprint, 1809.04356.
 https://arxiv.org/abs/1809.04356v4.

81. Daniel III, W. V., Daniel W. V. (2012). Individual vehicle data search service Tech. rep. 4N6XPRT Systems
La Mesa CA 91942.
http://www.4n6xprt.com/Crash-Test-4/ARC-CSI_2012_Conference-Rio_&_Yaris_data_packet_data.pdf.

82. Overton, J., Mills, B., Ashley, C. (1969). The vertical response characteristics of the non-rolling tyre.
Proceedings of the Institution of Mechanical Engineers, Automobile Division 1947-1970, 184 (1), 25-40.

83. Dixon, J. (2007). The Shock Absorber Handbook. Wiley-PEPublishing Series (John Wiley & Sons).
84. Giaraffa, M. (2017). Tech Tip: Springs & Dampers, Part Three, Revenge of the Damping Ratio.

http://www.optimumg.com/technical/technical-papers/.

http://machinethink.net/blog/convolutional-neural-networks-on-the-iphone-with-vggnet/
https://www.coursera.org/learn/machine-learning/supplement/XHQqO/model-selection-and-train-validation-test-sets
https://www.coursera.org/learn/machine-learning/supplement/XHQqO/model-selection-and-train-validation-test-sets
http://dx.doi.org/10.1109/ISMS.2016.14
http://arxiv.org/abs/1502.03167
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for
http://andrew.gibiansky.com/blog/machinelearning/convolutional-neural-networks/
https://arxiv.org/abs/1809.04356v4
http://www.4n6xprt.com/Crash-Test-4/ARC-CSI_2012_Conference-Rio_&_Yaris_data_packet_data.pdf
http://www.optimumg.com/technical/technical-papers/

SDHM, 2019, vol.13, no.3 265

Appendix A. Derivations of Simulation Input Parameters

All constants used as simulation input variables are derived as follows. Except for identifying, all of
these calculations are performed in MATLAB.

sm is simply taken from Daniel III and Daniel [81] and divided by 4 to account for the quarter-car
model.

kgkgms 25.2774/1109 == (A1)
Assuming that the tire in use across all vehicles is a radial-ply 165×13 tire (a very common tire size

found on most passenger vehicles), a linear model for static stiffness based on tire inflation pressure can
be used [82].

The model is graphically presented in Fig. A1 and expressed by Eq. (A2). The model is only accurate
above 15 psi-an acceptable limitation as 15 psi is well below the threshold for “under-pressurized”.

375.4630185 += puks (A2)

Figure A1: Static stiffness vs. inflation pressure for a radial-ply car tire [82]

Utilizing the average quarter-car ratio of the sprung to unsprung masses and the one can identify the
expected value for mu [Jazar (2014)]:

kgkgm
m

m
m s

u
u

s 69.34
8
25.2778 ===⇒==

ε
ε (A3)

It should be noted that mu should vary with tire pressure due to the additional air inside the tires.
However, the mass of the air is insignificant relative to the rest of the unsprung mass (< 0.1%).
Nonetheless, the mass of the air is calculated and included in the unsprung mass for these simulations.
The calculations are performed in MATLAB.

To identify the suspension’s stiffness and damping coefficients, assume that the suspension is tuned
for a properly-inflated tire. With psipu 32= , Eqs. (A2) and (A3) give the kPaku 53.6979= and

kgmu 69.34= respectively. With these values, one can find the natural frequency of the unsprung
mass uω :

266 SDHM, 2019, vol.13, no.3

sec
612.448

69.34

53.6979 rad
kg

m
N

m
k

u

u
u ===ω (A4)

The average quarter-car ratio for sprung and unsprung natural frequencies is used to identify the
sprung mass’s natural frequency sω .

()
sec

86.44
sec

612.4481.01.0 radrad
us

u

s =





==⇒== αωω

ω
ωα (A5)

We already know that kgms 25.277= , so identifying sk is trivial.

()
m
Nkgradmk

m
k

sss
s

s
s 97.55725.277

sec
86.44

2
2 =






==⇒= ωω (A6)

To calculate sc , we can use the relationship between sω and the damping ratio
c
cs=ζ where c is

the critical damping coefficient. Numerous sources suggest the proper damping ratio in passenger
vehicles to be between 0.2 and 0.3 [83,84]. For this work, we define ζ = 0.25.

()()
m

Nradkgmc
m
c

sss
ss

s sec8.6218
sec

86.4425.27725.022
2

−
=






==⇒= ωζ

ω
ζ (A7)

	Alex Kost1, Wael A. Altabey2,3,4, Mohammad Noori1,2,* and Taher Awad4
	5 Conclusion
	References
	Appendix A. Derivations of Simulation Input Parameters

