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Abstract: Structural health monitoring (SHM) is a research focus involving a 
large category of techniques performing in-situ identification of structural damage, 
stress, external loads, vibration signatures, etc. Among various SHM techniques, 
those able to monitoring structural deformed shapes are considered as an 
important category. A novel method of deformed shape reconstruction for thin-
walled beam structures was recently proposed by Xu et al. [1], which is capable of 
decoupling complex beam deformations subject to the combination of different 
loading cases, including tension/compression, bending and warping torsion, and 
also able to reconstruct the full-field displacement distributions. However, this 
method was demonstrated only under a relatively simple loading coupling cases, 
involving uni-axial bending and warping torsion. The effectiveness of the method 
under more complex loading cases needs to be thoroughly investigated. In this 
study, more complex deformations under the coupling between bi-axial bending 
and warping torsion was decoupled using the method. The set of equations for 
deformation decoupling was established, and the reconstruction algorithm for 
bending and torsion deformation were utilized. The effectiveness and accuracy of 
the method was examined using a thin-walled channel beam, relying on analysis 
results of finite element analysis (FEA). In the analysis, the influence of the 
positions of the measurement of surface strain distributions on the reconstruction 
accuracy was discussed. Moreover, different levels of measurement noise were 
added to the axial strain values based on numerical method, and the noise 
resistance ability of the deformation reconstruction method was investigated 
systematically. According to the FEA results, the effectiveness and precision of 
the method in complex deformation decoupling and reconstruction were 
demonstrated. Moreover, the immunity of the method to measurement noise was 
proven to be considerably strong. 

Keywords: Structural health monitoring; deformation reconstruction; finite 
element analysis; strain measurement; channel section beam 

1 Introduction 
Structural health monitoring (SHM) is generally regarded as a large variety of techniques able of 

performing in-situ identification of structural damage, stress, external loads, vibration signatures, etc. In 
recent decades, intensive research interests have been focused on in-situ damage detection methods, most 
of which were established based on guided wave [2-5] and vibration theories [6-10]. Although structural 
damage, the presence, location and extent of which are considered as three main aspects to be evaluated, 
is with no doubt an important indicator directly associated with the integrity and safety of structures of 
interest, structural states (in terms of mechanical quantities such as strain/stress distribution, deformed 
shapes, external loads), on the other hand, are also important information needing increasing attentions, 
since these mechanical quantities are directly linked with structural operational states, which are vital for 
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the evaluation of structural performance and health situation, remaining service life prediction and even 
design optimization. 

Among different state monitoring techniques, on-line monitoring of structural deformed shapes is of 
paramount significance, capable of giving real-time full-field distributions of displacement, strain and 
stress, as well as valuable feedbacks for active control. Specifically, the value of real time deformed shape 
sensing has been widely proven in fields including lightweight aircraft [11,12], satellites [13,14], robotics 
[15], medical apparatus [16], etc. In application of aerospace engineering, structural deformed shapes are 
usually captured using quantities such as static/dynamic displacements or strains. Displacement signals 
are considered to be directly related with deformed shapes. However, the acquisition of large sets of data 
of structural displacement in a real-time manner involves complex measurement devices (for example 
high-precision cameras), and thus difficult to be practically applied in aerospace application. On-board 
sensor networks measuring surface strain distributions, on the other hand, are more convenient to be 
installed. Thus the method of shape construction based on surface strains are considered promising and 
attract much research interests in recent years. The essential principle of deformed shape reconstruction 
by using strains resides on the establishment of reliable transfer function between the displacement field 
and the distribution of surface strains. When tackling structures with simple geometrics, for example, 
ideal beam, plate or shell structures, the classic geometric relationship linking displacement and surface 
strain can be well utilized and give precise reconstruction results. When facing structures with more 
complex geometries, the transfer function, as well as sensor layout, should be established more 
sophisticatedly, usually involving discrete representation of structural properties as adopted by finite 
element method. Typically, identified structural deformed shapes can be equivalently regarded as three-
dimensional displacement fields of structures. Relying of the displacement fields, strain fields can be 
directly derived using the continuous or discrete geometric relations, and stress filed could be further 
calculated corresponding to the constitutive relations. 

To date, a considerable amount of investigations relating to structural deformed shape reconstruction 
has been developed. An effective and efficient real-time deformed shape prediction method was 
developed based on Ko’s theory [17-19], where beam-like structures are the main objects under 
investigation. In Ko’s theory, surface strains were measured along the beam axis, and the continuous 
strain distributions were then approximated by using piecewise polynomials. The displacements were 
reconstructed using the strain distribution according to established displacement transfer functions. 
Although Ko’s theory has been effectively applied in beam structures under bending case, large difficulty 
is associated with the task of reconstructing complex deformed shapes under complex loading cases.  
There are indeed satisfactory reconstruction results for the deformation case under the coupling between 
bending and torsion by using Ko’s theory. However, the torsion deformations were actually derived 
indirectly, by using bending deformation data. Such a reconstruction accuracy may be high when treating 
beam structures having sections with large width-to-height ratios, in other words, those beams structures 
alike with plates. Under small width-to-height ratios, challenges in torsion deformation reconstruction 
will become severe. And classic beam torsion theory should be taken into account. Modal transformation 
algorithms were applied in another category of shape reconstruction methods, defined as modal methods 
[20,21]. In these methods, the strains measured on structural surface were linked with structural 
displacements through the transformation relationship between strain and displacement mode shapes. The 
effectiveness of modal methods has also been demonstrated in recent studies. However, some apparent 
obstacles hamper the application of the method in aerospace engineering. For example, the effectiveness 
of the model methods is highly sensitive to the accuracy of physical modeling, which means small 
degrees of uncertainty associated of factors such as material properties will cause large fluctuation of the 
shape reconstruction results. Another category of shape reconstruction method is established partially 
associated with traditional finite element method, defined as inverse finite element method (iFEM) [22-
26]. The iFEM utilize the discrete relation between displacement and strain fields. Instead of the solution 
of the strain energy functional consists of strain and stress fields, the iFEM establish functional using 
theoretical and measured surface strain values, and estimate the displacement field inversely based on a 
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weighted least-squares variational principle. Using iFEM, deformed shapes of structures with complex 
geometries can be accurately constructed. However, a possible challenge of iFEM is that sophisticated 
sensor layout is often required to be consistent with FEM meshes. Moreover, compared with methods 
established on simple theoretical model, for example Ko’s theory, iFEM is more time consuming when 
relatively large amount of computation for matrix solution is involved, which may cause certain time 
delay in real time monitoring. 

Recently, a novel method of complex deformed shape reconstruction for thin-walled beam structures 
was proposed. The method is capable of decoupling complex deformations of thin-walled beam structures 
subject to the combination of different loading cases, including tension/compression, bi-axial bending and 
warping torsion. After deformation coupling, full-field displacement distribution can be constructed 
precisely using the decoupled deformation subject to individual loading cases. However, this method was 
demonstrated only under a relatively simple load coupling case, i.e., the coupling between uni-axial 
bending and warping torsion. The effectiveness of the method under more complex loading cases needs to 
be thoroughly investigated. In this study, more complex deformations under the coupling between bi-axial 
bending and warping torsion was decoupled. The set of equations for deformation decoupling was 
established, and the reconstruction algorithm for bending and torsion deformation were utilized. The 
effectiveness and accuracy of the method was examined using a thin-walled channel beam, relying on 
analysis results of finite element analysis (FEA). In the analysis, the influence of the positions of the 
measurement of surface strain distributions on the reconstruction accuracy was discussed. Moreover, 
different levels of measurement noise were added to the axial strain values based on numerical method, 
and the noise resistance ability of the deformation reconstruction method was investigated systematically. 
According to the FEA results, the effectiveness and precision of the method in complex deformation 
decoupling and reconstruction as was demonstrated. Moreover, the immunity of the method to 
measurement noise was proven to be considerably strong. 

2 Theory 
2.1 Deformation Decoupling for Thin-Walled Beam Structure Under Complex Loading Cases 

As introduced in [27,28], the axial strain on the surface of a thin-walled beam structures can be 
interpreted to be associated with the contributions from combined loading cases including axial 
tension/compression, bi-axial bending and warping torsion. The expression for the axial strain is 
expressed as 

( )
2 2 2

2 2 2

d
dx

du d v d wy z s
dx dx dx x

ϕε ω= − ⋅ − ⋅ − ⋅
                                                                                                          

(1) 

where x corresponds to the direction of beam length; u, v, w is the displacement along x, y and z axis, as 
shown in Fig. 1(a). ϕ  is the rotation angle of the cross section; the s coordinate coincides with the center 
line of the thin wall, and ( )sω  is the sectorial coordinate. For an open section beam for example, the 
sectorial coordinate is defined as 

( ) ( )∫=
s

sshs
0

dω
                                                                                                                                           

(2) 

The integral in Eq. (3b) represents twice the area swept out by a generator rotating about the shear 
(rotation) center ( )scsc zy , of the cross-section from the point of zero warping, and h(s) is the 
perpendicular distance from ( )scsc zy ,  to the tangent at any point s in the mid-plane of the cross-section, 
as illustrated in Fig. 1(b). 

Depending on ( )sω , the relationship between the warping displacement and rotation angle of the 
cross section can be established as 

( ) d
d

wu s
x
ϕω= −

                                                                                                                                            
(3) 
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(a) 

 
 (b) 

Figure 1: Diagrams of (a) a thin-walled beam structure and its (b) cross section with an arbitrary shape, 
with strain measurement lines installed on the beam surface along the beam length [1] 

It can be seen from Eq. (1) that the derivatives of the generalized displacements, i.e., u, v, w and φ  
are all included in the equation. Thus by applying proper strain measurement strategies, the derivatives 
terms associated with different loading cases can be decoupled. A typical way is to assign four strain 
measurement line on the beam surface and along the beam axis, as shown in Fig. 1(a). So there will be 
four points on an arbitrarily selected cross section where axial strain values are known. The points are 
actually the projections of the four measurement lines onto the cross section, and thus were defined as 
“projections” in the following text. It can be realized that on an arbitrary cross section, a set of equations 
can be built according to Eq. (1), of being  

( ) iiii s
x

z
dx

wdy
dx

vd
dx
du εωφ

=⋅−⋅−⋅− 2

2

2

2

2

2

d
d      (i=1,2,3 and 4)                                                                         (4) 

When the geometry of the section and the positions of the projections are known, the values of yi, zi 
and ( )isω  can be readily known. So the four derivative terms, i.e., du/dx, d2v/dx2, d2w/dx2 and 22 d/d xφ , 
are the four unknowns to be solved from the equation set. Eq. (4) corresponds to the situation where all 
loading cases are included. In practical application, the number of strain measurement lines can be 
actually arranged to be equal to the number of coupled loading case. For example, for pure torsion, Eq. (4) 
degenerates into 

( ) iis
x

εωφ
=⋅− 2

2

d
d

    
(i=1),                                                                                                                              (5) 

in which only a single strain measurement line is needed. In the presented study, loading cases involving 
bi-axial bending and torsion was studied, so the equation set can be established as 
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where three lines of strain measurement are required. 

2.2 Deformed Shape Reconstruction Under Individual Loading Cases 
After obtaining the derivative terms of the generalized displacements, the distributions of the 

displacements can be further calculated along the beam axis. Assuming there are n+1 strain measurement 
points along each measurement line. The adjacent distance between measurement points is assumed to be 
uniform to be ∆ . Thus n+1 sets of equations can be established corresponding to n+1 cross sections, by 
solving which the distributions of the derivative terms along the beam axis can be obtained. Assuming xi-1 
and xi are the coordinate values of the adjacent measurement points, i-1 and i, along the beam axis.  
Within the region ii xxx <<−1 , the distribution the derivative terms is assumed to be linear, expressed as 

( ) ( ) 1
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− − −

−
= − − < <

∆
,                                                                                        (7a) 

In Eq. (7a), λ  is defined as the generalized derivative term, which means λ  can be regarded as 
du/dx, d2v/dx2, d2w/dx2 or 22 d/d xφ . The generalized displacements were then calculated based on piece-
wise integration formulation relying on Eq. (7a), provided the boundary conditions of the beam are 
known. Specifically, the first and second-order integrations of λ  at measurement point i were derived as 
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where I
0λ  and II

0λ  are boundary values at x0. For a cantilever beam clamped at x0 in particular, I II
0 0 0λ λ= = . 

For beams subject to other types of boundary conditions, the forms of Eqs. (7b) and (7c) can be easily 
adjusted. For example, to calculate bending deflection of a simply supported beam, boundary conditions 
of deflections at the two ends of the beam can be used in adjusted equations. As clearly seen, the first-
order integration algorithm, i.e., Eq. (7b), is used to calculate the distribution of the first-order integration 
of the derivative terms, that are u, dv/dx, dw/dx and d / dxϕ , where u is the tension/compression 
displacements; dv/dx and dw/dx are related to the bending angles of the beam; and d / dxϕ  is related to 
the warping displacement, uw, as expressed in Eq. (3a). Furthermore, the second-order integration 
algorithm, i.e., Eq. (7c), can be used to calculate the distributions of v, w and ϕ .  

The specific expressions of Eqs. (7b) and (7c) for uni-axial bending was given in Ko et al. [17], as 
1
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where θ  and y represent bending angle and deflection, respectively. 
And the specific expressions for warping torsion was developed in [1], written as 
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where ( )msω  is the sectorial coordinate of the projections of measurement lines; ( )sω is the sectorial 
coordinate of the projections of any arbitrary line along the beam axis. 

2.3 Full-Field Deformed Shape Reconstruction 
Depending on Eqs. (7b)-(7c), the distributions of the generalized displacements subject to individual 

loading cases, i.e., u, v, w and φ , can be calculated. Next, the actually full-field deformed shapes of the 
thin-walled beam can be constructed, according to 
( ) ( ) ( ) ( ) ( ),,, xuxyxzxuzyxu w

zyx +−+= θθ                                                                       

( ) ( ) ( ), , ,yv x y z v x z xϕ= −                                                                                                                       (10) 

( ) ( ) ( ), , .zw x y z w x y xϕ= +                                                                                        
 where ( ), ,xu x y z  , ( ), ,xv x y z  and ( ), ,xw x y z  are the full-field displacements of the beam under 

complex loading cases; zβ  and yβ  are the rotation angles referring to z and y axis on the cross section, 

respectively. The values of zβ  and yβ  can be calculated by using the relationships of tan d / dz v xβ =  

and tan d / dy w xβ = , respectively. 

3 Deformation Reconstruction Under Warping Torsion 
Deformed shape reconstruction of an aluminum isotropic Euler-Bernoulli cantilever beam with thin-

walled channel section was carried out based on finite element analysis (FEA). The beam is shown in Fig. 
2(a). The length of the hat section beam is 1000 mm, and the detailed section dimension is shown in Fig. 
2(b). Fig. 2(c) provides the distribution of sectorial coordinate, ( )sω , along the mid-plane of the channel 
section. Strain measurement lines were arranged on the beam surface along the direction of beam axis. 
Along each measurment line, there are 101 measurement points, distributing with an uniform adjacent 
distance to be 10 mm. The FE model of the beam was built by using commercial FEA software (ANSYS®) 
using three-dimensional block elements. The values of axial strains were extracted at every measurement 
point from the FEA results.  
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(a) 

 
(b)    

 
 (c) 

Figure 2: (a) Three-dimensional view and (b) the cross section of a thin-walled channel section beam, 
and (c) the distribution of the sectorial coordinate across the mid-plane of the cross section 
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To construct pure torsion deformation, only a single measurement line is needed as stated previously. 
A measurement line was arranged on the beam surface, with projections denoted as p1 as shown in Fig. 
2(b). Since warping displacements were considered with less importance in engineering applications 
compared to rotation angles. Only rotation angles were reconstructed and analyzed.  

Direct FEA was performed under counterclockwise torques, which were applied using two 
concentrated forces, f1 and f2, at the free end, shown in Fig. 2(b). The forces are symmetric with the 
symmetrical axis of the beam section. The rotation angles of the beam were reconstructed under different 
torque levels of 0.22, 0.44, 0.66 and 0.88 Nm, respectively, as presented in Figs. 3(a)-3(d). The exact values 
of the rotation angles were calculated using the nodal displacements of the FEA results for comparison. 

It is observed from Fig. 3 that significant agreement can be seen between the reconstructed and FEA 
results, implying a significantly high accuracy of rotation angle reconstruction. Moreover, it is apparent that 
the reconstruction accuracy decreases along with enlarged torsion deformation. From Figs. 3(a)-3(d), the 
relative reconstruction error at the free end of the beam are 0.14%, 0.58%, 1.77% and 3.39%, respectively. 

The reconstruction accuracy associated with another position of the measurement line, denoted as p3 
shown in Fig. 2(b), was examined subsequently. The reconstructed and FEA-based rotation angles subject 
to different torque levels are shown in Figs. 4(a)-4(d). Satisfactory reconstruction accuracy can be seen. 
The relative reconstruction errors at the free end are 3.2%, 2.9%, 3.5% and 4.6%, respectively. By 
comparing Figs. 3-4, it is certain that the variation of measurement positions will influence the accuracy 
of deformation reconstruction. And in the presented case, reconstruction accuracy associated with 
position p1 is higher than that associated with p3. 

 
      (a)                                                           (b) 

 
        (c)                                                            (d) 

Figure 3: Reconstructed and FEA-based rotation angles subject to torque levels of (a) 0.22 (b) 0.44 (c) 
0.66 and (d) 0.88 Nm. The reconstructed rotation angles were based on strain measured along p1 shown in 
Fig. 2(b) 
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     (a)                                                            (b) 

 
      (c)                                                             (d) 

Figure 4: Reconstructed and FEA-based rotation angles subject to torque levels of (a) (b) (c) and (d). The 
reconstructed rotation angles were based on strain measured along p3 shown in Fig. 2(b) 

In practical measurement, the influence of measurement noise is regarded as a vital factor that may 
largely limit the accuracy of deformed shape reconstruction accuracy in this study. Thus measurement 
noise was introduced numerically into the strains extracted from the FEA to simulate actually 
measurement condition. The noise was introduced in terms of 

noisy exact
i iε ε ε= ∆                                                                                                                                          (11) 

where noisy
iε  and exact

iε  are the noise-free strain obtained at measurement point i from simulation and its 
corresponding noise-polluted counterpart; ε∆  is a Gaussian random real number related to the magnitude 
of exact

iε . The mean of ε∆  is one, and the standard deviation of ε∆  is deemed as the level of 
measurement noise (referred to as noise level) in the following studies. 

Figs. 5(a)-5(d) show the strain distributions along p1 (in Fig. 2(b)) under torque of 0.88 Nm, with 
noise levels of being 5%, 10%, 20% and 30%, respectively. The exact strain distributions from the FEA 
were also plotted for comparison. It is observed that the strain signals were increasingly disturbed along 
with increased noise levels. And under noise level of 20% and 30%, the noise influence on the exact 
strains was observed to be highly severe. 

Based on the noise contaminated strains as shown in Figs. 5(a)-5(d), the rotation angles of the beam 
were reconstructed and compared with the FEM-based results. The reconstructed and FEM-based rotation 
angles are shown in Figs. 6(a)-6(d), subject to noise level of 5%, 10%, 20% and 30%, respectively. It is 
impressive to observe that despite of severe noise interference in the strain distribution, up to noise level 
of 30%, as shown in Fig. 5. Significantly accuracy of reconstruction can be well preserved. In Figs. 6(a)-
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6(d), the averaged relative reconstruction errors at the free end of the beam are 4.0%, 4.8%, 5.4% and 
7.4%, respectively. It should be noted that for all subsequent analysis related to noise influence, the 
relative reconstruction errors at the free end were evaluated by perform 50 times of average of the 
absolute values of the relative errors of individual simulations. The averaged results can be deemed as the 
standard deviations of the relative reconstruction errors.  

A detailed presentation of the averaged relative reconstruction errors at the free end of the beam, 
subject to different torques and noise levels, is given in Tab. 1. It can be clearly seen from the table that 
the reconstruction error increase with the increases of both torque and noise levels. The maxim error 
reaches 7.44%, corresponding to torque of 0.88 Nm and noise level of 30%. 

 
    (a)                                                              (b) 

 
       (c)                                                              (d) 

Figure 5: Distributions of strains with and without noise influence subject to torque of 0.88Nm. The 
noise levels contained in the strain signals are (a) 5%, (b) 10%, (c) 20% and (d) 30%, respectively 
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    (a)                                                            (b) 

 
      (c)                                                             (d) 

Figure 6: Reconstructed and FEA-based rotation angles subject to torque of 0.88Nm, and noise levels of 
(a) 5%, (b) 10%, (c) 20% and (d) 30%, respectively 

Table 1: Averaged relative reconstruction errors in rotation angles at the free end of the beam subject to 
different levels of torques and noise levels 

Noise level Torque [Nm] Averaged relative reconstruction error [%] 

Without noise 

0.22 0.14 
0.44 0.58 
0.66 1.77 
0.88 3.39 

5% 

0.22 0.52 
0.44 1.11 
0.66 1.81 
0.88 3.99 

10% 

0.22 1.11 
0.44 1.92 
0.66 2.89 
0.88 4.75 
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20% 

0.22 2.25 
0.44 2.89 
0.66 3.49 
0.88 5.35 

30% 

0.22 4.36 
0.44 3.87 
0.66 4.82 
0.88 7.44 

4 Deformation Reconstruction Under the Coupling Between Bi-Axial Bending and Warping 
Torsion 

Deformation coupling between bi-axial bending and warping torsion was applied by adding two 
concentrated forces, i.e., f1 and f3, simultaneously at the free end of the channel section beam. The 
location of the concentrated forces is presented in Fig. 2(b). It should be noted that because of the 
asymmetric geometric property of the channel cross section, a single concentrated force alone, e.g., f3, is 
sufficient to induce deformation coupling between bi-axial bending and torsion. However, to prevent too 
small deformation along y axis, f2 was added in the horizontal direction. The magnitudes of f1 and f3, were 
settled to be the same. Four levels of loadings were applied in the following cases, i.e., f1 = f3 =20, 40, 60 
and 80 N. To evaluate the accuracy of the reconstruction of deformed shapes, the displacements of the 
beam in y and z direction and the rotation angles were calculated based on the nodal displacements of the 
FEA results for comparison. Strains along three measurement lines, i.e., p1, p2 and p3 in Fig. 2(b), were 
used to reconstruct the deformed shapes. The reconstructed displacement distributions along y axis, v(x), 
across the beam length are shown in Figs. 7(a)-7(d). It can be seen that for bending deformation 
reconstruction, the accuracy of deformed shape reconstruction is relatively stable subject to the given four 
loading cases. The relative reconstruction errors at the free end are around 1.8%. The distributions of 
displacement along z axis, w(x), across the beam length under the four loading levels are presented in Fig. 
8(a)-8(d). As predicted, the accuracy of reconstruction presented in the four figures are basically the same, 
with relative errors of being around 2.6%. The reconstructed and FEA-based rotation angles are presented 
in Figs. 9(a)-9(d). The relative errors at the free end are around 1%, 0.6%, 3% and 8%, respectively. The 
reconstructed and the FEA-based curve intersected during the increase of the loading level, as shown 
from Figs. 9(a)-9(c). Thus the relative error in Fig. 9(b) is even smaller than in (a). In general, the 
reconstruction accuracy decreases along with enlarged loading levels. The observation is the similar with 
that in pure torsion case in Section 3. 
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      (a)                                                   (b) 

  
     (c)                                                   (d) 

Figure 7: Reconstructed and FEA-based v(x) subject to f1 = f3 = (a) 20, (b) 40, (c) 60 and (d) 80 N, 
respectively 

 
       (a)                                                   (b) 
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        (c)                                                   (d) 

Figure 8: Reconstructed and FEA-based w(x) subject to f1 = f3 = (a) 20, (b) 40, (c) 60 and (d) 80 N, 
respectively 

 
      (a)                                                                    (b) 

 
      (c)                                                                     (d) 

Figure 9: Reconstructed and FEA-based rotation angles subject to f1 = f3 = (a) 20, (b) 40, (c) 60 and (d) 80 
N, respectively 

The influence of measurement noise was then considered for the reconstruction of deformed shapes. 
Measurement noise with different levels were added in the strains along all the three measurement lines, 
i.e., p1, p2 and p3, according to the algorithm shown in Eq. (10). Similar with the pure torsion case, the 
noise levels were set to be 5%, 10%, 20% and 30%. Figs. 10(a)-10(d) show the reconstructed v(x) along 
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the beam length under the four noise levels. It can be seen that the accuracy of reconstruction can be well 
preserved under quite large noise levels. Under noise level of 30%, the accuracy decreases largely. The 
averaged relative reconstruction errors at the free end in Figs. 10(a)-10(d) are 2.4%, 2.9%, 4.4% and 4.8%, 
respectively. Figs. 11(a)-11(d) present the reconstructed w(x). The same trend of reconstruction accuracy 
along with increased noise levels can be observed. The averaged relative reconstruction errors at the free 
end in Figs. 11(a)-11(d) are 3.3%, 4.0%, 5.7% and 7.2.%, respectively. The reconstructed and FEA-based 
rotation angles under different noise levels are presented in Figs. 12(a)-12(d). It is seen that the noise 
immunity of torsion deformation is still acceptable. The averaged relative reconstruction errors of rotation 
angels at the free end are 4.9%, 5.7%, 8.5% and 9.7%, respectively, where Fig. 12(d) is considered to be 
largely influenced by measurement noise. 

 

 
     (a)                                                                      (b) 

 
        (c)                                                                         (d) 

Figure 10: Reconstructed and FEA-based v(x) subject to f1 = f3 = 60 N, and noise levels of (a) 5%, (b) 
10%, (c) 20% and (d) 30%, respectively 
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    (a)                                                                        (b) 

 
        (c)                                                                           (d) 

Figure 11: Reconstructed and FEA-based w(x) subject to f1 = f3 = 60 N, and noise levels of (a) 5%, (b) 
10%, (c) 20% and (d) 30%, respectively 

 
   (a)                                                                        (b) 
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(c)                                                                       (d) 

 
Figure 12: Reconstructed and FEA-based rotation angles subject to f1 = f3 = 60 N, and noise levels of (a) 
5%, (b) 10%, (c) 20% and (d) 30%, respectively 

More detailed presentation of the reconstruction accuracy under different loading levels and noise 
levels are given in Tabs. 2-4. It can be seen that most of the averaged relative reconstruction errors are 
kept within an acceptable range (e.g., within 10%). A general trend is demonstrated with certainty that the 
reconstruction accuracy decreases with enlarged loading levels and increased degree of noise interference. 
The noise immunity of rotation angle reconstruction is inferior to that of bending deflection 
reconstruction. The largest relative error of rotation angle reconstruction can be found to be 16.52%, 
associated with loading level of f1 = f3 = 80 N and noise level of 30%. 

Table 2: Averaged relative reconstruction errors in v(x) at the free end of the beam subject to different 
magnitudes of concentrated forces and noise levels 

Noise level Force magnitude [N] Averaged relative reconstruction error [%] 

Without noise 

20 1.84 
40 1.84 
60 1.84 
80 1.84 

5% 

20 2.27 
40 2.39 
60 2.35 
80 2.34 

10% 

20 3.01 
40 2.82 
60 2.86 
80 2.97 

20% 

20 4.20 
40 3.70 
60 4.35 
80 3.32 
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30% 

20 4.87 
40 5.65 
60 4.82 
80 4.90 

Table 3: Averaged relative reconstruction errors in w(x) at the free end of the beam subject to different 
magnitudes of concentrated forces and noise levels 

Noise level Force magnitude [N] Averaged relative reconstruction error [%] 

Without noise 

20 2.63 
40 2.63 
60 2.63 
80 2.63 

5% 

20 3.24 
40 3.35 
60 3.26 
80 3.35 

10% 

20 4.15 
40 3.98 
60 4.02 
80 4.08 

20% 

20 6.03 
40 5.00 
60 5.73 
80 4.61 

30% 

20 7.17 
40 7.51 
60 7.17 
80 6.89 

Table 4: Averaged relative reconstruction errors in rotation angles at the free end of the beam subject to 
different magnitudes of concentrated forces and noise levels 

Noise level Force magnitude [N] Averaged relative reconstruction error [%] 

Without noise 

20 0.95 
40 0.59 
60 3.37 
80 7.84 

5% 

20 2.33 
40 1.78 
60 4.93 
80 9.11 



SDHM, 2019, vol.13, no.3                                                                                                                         285 

10% 

20 4.47 
40 3.23 
60 5.72 
80 10.28 

20% 

20 6.00 
40 5.93 
60 8.52 
80 12.13 

30% 

20 9.52 
40 9.01 
60 9.74 
80 16.52 

5 Conclusion 
In this study, the effectiveness of a recently proposed deformation reconstruction method was 

demonstrated using a channel section thin-walled beam under the coupling among complex loading cases, 
i.e., the combination between bi-axial bending and warping torsion. Using the developed set of equations 
for deformation decoupling, the displacements along the y axis, the z axis and the rotation angles were 
decoupled. And the distributions of the deformed shapes along the beam length were then constructed. The 
effectiveness and accuracy of the method was examined relying on analysis results of finite element 
analysis (FEA). In the analysis, the influence of the positions of the measurement of surface strain 
distributions on the reconstruction accuracy was discussed. Moreover, different levels of measurement 
noise were added to the axial strain values based on numerical method, and the noise resistance ability of 
the deformation reconstruction method was investigated systematically. According to the FEA results, the 
effectiveness and precision of the method in complex deformation decoupling and reconstruction as was 
demonstrated. It is observed that under the given loading situations, reconstruction accuracy of rotation 
angles is more vulnerable to enlarged loading levels than that of bending deformations. On the other hand, 
the reconstruction accuracy decreases with increased noise levels. The noise immunity of rotation angle 
reconstruction is inferior to that of bending deflection reconstruction. To conclude, the noise immunity of 
the deformed shape reconstruction method for complex loading involving coupling between bi-axial 
bending and warping torsion is proven to be strong up to considerably large noise level of being 30%.  
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