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ABSTRACT

This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced
Concrete (RC) bridge structures commonly adopted in highway and railway networks. An effective three-dimen-
sional FE-based numerical model is developed to analyze the bridge’s structural response under several damage
scenarios, including the effects of moving vehicle loads. In particular, the longitudinal and transversal beams are
modeled through solid finite elements, while horizontal slabs are made of shell elements. Damage phenomena are
also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage
Mechanics (CDM). In such a context, the proposed method utilizes an advanced and efficient computational
strategy for reproducing Vehicle-Bridge Interaction (VBI) effects based on a moving mesh technique consistent
with the Arbitrary Lagrangian-Eulerian (ALE) formulation. The proposed model adopts a moving mesh interface
for tracing the positions of the contact points between the vehicle’s wheels and the bridge slabs. Such modeling
strategy avoids using extremely refined discretization for structural members, thus drastically reducing computa-
tional efforts. Vibrational analyses in terms of damage scenarios are presented to verify how the presence of
damage affects the natural frequencies of the structural system. In addition, a comprehensive investigation regard-
ing the response of the bridge under moving vehicles is developed, also providing results in terms of Dynamic
Amplification Factor (DAFs) for typical design bridge variables.
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Nomenclature
B Width of the bridge
BD Width of the damaged region of the bridge
Iv,x Second moment of area of the vehicle body with respect to the x-axis
Iv,y Second moment of area of the vehicle body with respect to the y-axis
L Length of the bridge
LD Length of the damaged region of the bridge
Lq1 Longitudinal distance between the center of gravity and the front axle of the vehicle
Lq2 Longitudinal distance between the center of gravity and the rear axle of the vehicle
Mv Mass of the vehicle body
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b Width of the pedestrian lane
bL Base of the longitudinal beam section
bT Base of the transverse beam section
bq Transversal distance between the center of gravity and left/right axle of the vehicle
hT Height of the transverse beam section
hL Height of the longitudinal beam section
iL Longitudinal beam spacing
iT Transverse beam spacing
l Longitudinal distance between the slab edge and the axle of the transverse beam
m Number of longitudinal beams
mq1

vaLðRÞ Mass of the front wheel

mq2
vaLðRÞ Mass of the rear wheel

n Number of transverse beams
s Thickness of the slab
ξ Damage factor
fUD; fD; fD�UD Dynamic amplification factors

1 Introduction

Concrete bridges account for the most diffused infrastructure among highway, railway, and urban
transportation networks worldwide [1–3]. In recent years, it is becoming increasingly apparent that
several in-service bridge structures are reaching the end of their original design life. In particular, many
of these are in a state of degradation because of the adverse effect of dangerous natural agents (e.g.,
weathering, earthquakes) and severe human-induced actions (e.g., the transit of over-loaded vehicles) [4,5].

The deterioration of material components is of particular concern. As it is well known, concrete suffers
from a progressive decline of its mechanical properties because of damage phenomena. Damage phenomena
alter the behavior of the bridge, leading to a structure considerably different from that configured during the
design phase. Indeed, many studies have highlighted that damage in primary material components changes
the structure’s modal properties (i.e., natural frequencies) [6–8]. Besides, damage phenomena introduce local
flexibility that negatively impact the response of a bridge under traffic loads because structural deflections
increase significantly [9–11].

During the last decades, there has been an urgent need to assess the health status of existing concrete
bridges mainly for two leading reasons. First, bridges are a key driver of socioeconomic activities.
Unusable or less efficient structures lead to considerable economic losses; second, assessing the
vulnerability is vital to avoid safety hazards induced by potential collapse events [12].

Bridge health monitoring has been traditionally conducted through visual inspections. However, the
large size of bridge structures and the difficulty of visually inspecting load-bearing members limit the
applicability of these methods [13,14]. More refined on-site strategies rely on sensor-based approaches,
which consist of installing several sensors on the bridge structure to collect its dynamic response over a
certain time. The collected bridge response is subsequently analyzed to assess the bridge conditions, thus
detecting the presence, location, and severity of potentially damaged regions [15–18]. In this context,
evaluated modal parameters, such as natural frequencies of vibration, natural modes, and modal damping
factors, are often adopted as indicators of the levels of structural integrity [19–21]. Through the variations
of the modal parameters measured experimentally and using appropriate mathematical models of the
structural system, it is possible to ascertain in a non-destructive manner the presence of the damage, its
position as well as its level of severity.
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However, to be effective, these approaches, usually referred to as “direct methods” of Structural Health
Monitoring (SHM), require a considerable number of sensors to be installed on the bridge. Installing many
sensors on a bridge structure is often costly. Moreover, it is often an unsafe operation, especially when
sensors are placed into critical zones of the structure [22,23].

To overcome the main weaknesses of the direct methods, alternative approaches that identify the bridge
status based on the dynamic response of a passing vehicle have been proposed. Specifically, such approaches,
known as “indirect methods”, can provide the bridge’s status by processing the dynamic response collected
by sensors installed over a vehicle moving on the bridge structure [24–26]. The possibility of identifying the
bridge status from the dynamic response of a passing vehicle makes indirect approaches highly attractive for
several reasons. First of all, the cheapness. Indeed, indirect methods require fewer sensors than direct ones.
Further, the facility of the procedure because dynamic data sampling is straightforward to perform [27,28].

In the framework of indirect methods, numerical models able to reproduce Vehicle-Bridge Interaction
(VBI) dynamics represent an essential tool for improving, advancing, and developing such strategies [29–
32]. Indeed, most of the studies reported in the literature adopt VBI-based numerical simulations to
develop and show the efficiency of the proposed strategies. The main reason relies on the opportunity of
setting different damage scenarios, which can be potentially incurred in real applications. Besides, there is
the possibility of tuning any of the parameters associated with the bridge structures (e.g., material
properties as well as the damage extension and severity) and the moving vehicle.

It should be noted that in order to support the development of SHM, indirect approaches require
increasingly reliable and computationally efficient numerical models for reproducing real cases. On the
one hand, there is a need to include accurate geometric descriptions for the bridge structures (often
formed by articulated geometries) and detailed depictions of damaged regions (i.e., crack patterns). On
the other hand, advanced numerical models allow analyzing the behavior of the bridge structure under
multiple (even random) traveling vehicles, thus reproducing everyday operative situations.

The analysis of the structural response of a bridge structure under the action of moving loads has been
the subject of much research during the last decades [33–35]. In this context, several studies have analyzed
the dynamic response of a moving vehicle over a damaged bridge structure [36–38] or just over a damaged
beam (see, for instance, [39–41]), proposing different strategies for reproducing damage phenomena.
However, many of these studies consist of FE-based numerical investigations (often developed in a two-
dimensional setting), which model the structural members through Euler-Bernoulli beam elements.
Besides, the adopted transit vehicles are simplified mechanical systems, which are considerably different
from real vehicles.

The above simplifications can be justified in view of the computational efforts and complexities
associated with numerical models devoted to reproducing VBI problems. Indeed, classic FE-based
numerical models developed to simulate VBI problems employ special vehicle-beam elements, in which
the degrees of freedom of the vehicle are condensed into those of the beam [42,43]. Such a strategy
requires many finite elements to adequately reproduce the interaction phenomena between the vehicle
system and the supporting beam, thus involving massive computational efforts in the case of large
structures [44]. Besides, the presence of damaged regions in the bridge structure introduces additional
complexity to the problem because of the necessity of including special boundary conditions to reproduce
local flexibility caused by damage.

To overcome the limitations of the classic FE-based VBI models, as shown in previous author’s works
[45,46], an efficient numerical strategy that adopts a moving mesh technique consistent with an Arbitrary
Lagrangian-Eulerian (ALE) Formulation has been developed. Precisely, the proposed model consists of
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moving interfaces that simulate the position of the contact points during the vehicle transit on the bridge
structure; this ensures a proper evaluation of the contact forces that account for vehicle-bridge interaction
effects. The leading aspect of such an advanced modeling strategy relies on the fact that the bridge
structure can be modeled conventionally, thus without the need for special vehicle-beam elements.
Besides, it is computationally cheap because there is no need to use refined numerical meshes for the
entire computational domain, but only around the domain region of the contact points.

The efficacy of the model proposed by the authors was first assessed in [45] through comparisons with
two-dimensional benchmark cases consisting of single-span bridge structures modeled through beam
elements. Afterward, the capabilities have also been applied to analyze more general three-dimensional
settings in [46] for the vehicle and the bridge structure. In particular, numerical results of 3D straight and
curved bridge schemes have been developed, using beam and shell elements for modeling structural
members.

However, both studies mentioned above mainly analyzed undamaged bridge structures. The possibility
of using the proposed modeling approach also for analyzing the behavior of bridge structures with partially
damaged bearing members still needs to be investigated.

This paper proposes an efficient FE numerical model based on the use of ALE formulation for analyzing
three-dimensional VBI problems in damaged bridge structures. In particular, this work, which represents an
extension of the modeling strategy presented by some of the present authors in [45,46], introduces the
following main novelties:

� A refined modeling strategy for the structural members of the bridge structure is adopted by describing
longitudinal and transversal beams forming the supporting structure, through solid finite elements, thus
providing a more realistic schematization of the structural system; To the authors’ knowledge, such a
refined modeling strategy has been scarcely adopted in existing research works available in the
literature. In fact, many works propose numerical investigations into a two-dimensional set, in which
Euler-Bernoulli beam elements are used for structural elements.

� The use of a moving mesh technique based on the Arbitrarily Lagrangian-Eulerian formulation to
accurately trace the position of the contact points between the bridge slab and the vehicle tires,
representing an extended version of that proposed in previous Author’s works.

� The presence of damaged regions in the supporting members of the structure (i.e., longitudinal and
transversal beams, as well as horizontal slabs); specifically, the model accounts for diffuse damage
inside structural elements by a smeared approach consistent with Continuum damage mechanics
theory. The leading benefit of such a modeling strategy relies on the fact that the configuration of the
damaged zone can be accurately defined since damage develops along longitudinal beams and the
afferent portion of the slab, as usually occurs in several practical cases.

Therefore, this paper aims to provide a further contribution to SHM research by proposing an effective
numerical tool for supporting the development of more efficient and reliable indirect approaches.

The rest of the paper is arranged as follows: Section 2 reports details on the modeling approach used in
the present study. In particular, this section describes the modeling of structural members and damage
phenomena, and it provides an overview of the ALE formulation. Section 3 presents the Dynamic
Amplification Factors (DAFs) used to quantify the effects induced by the moving vehicle on the damaged
bridge structure. Section 4 presents numerical results aimed at assessing the ability of the proposed
modeling strategy to simulate the structural response of damaged RC bridge structures. Finally, Section 5
highlights the conclusions of the work also including possible future developments.
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2 On the Modeling Approach

Fig. 1 shows a schematic of a single-span Reinforced Concrete (RC) bridge of length L and width B,
typically adopted in most road networks worldwide to overcome short-span lengths. The bearing structure
consists of m simply supported longitudinal concrete beams, pre-cast or cast-in-place, transversally
connected through n stiffening beams.

The longitudinal beams have a rectangular section (bL � hL) and support a solid slab with a thickness of
s over which traffic and pedestrian lanes (width of l) are arranged. In particular, the traffic lanes are placed at
the center of the structure, while the pedestrian ones are located along the longitudinal boundaries. The
number of traffic lanes depends on the width of the bridge structure. To this end, conventional codes on
bridge structures (see, for instance, Eurocode 1: Actions on structures—Part 2: Traffic loads on bridges)
provide simple design rules to establish the number of traffic lanes and the width.

The dynamic behavior of a single-span bridge structure largely depends on the degree of integrity of
structural members, especially concerning the longitudinal beams. Therefore, reliable predictions of the
structural behavior of such structures require (i) adequate schematization of the component members, (ii)
refined descriptions of traffic-induced actions, and (iii) valuable strategies to reproduce the degradation of
material components. In particular, the latter point represents a leading aspect for reproducing the
behavior of existing bridge structures to assess their overall integrity.

To this end, the present study proposes a reliable and efficient numerical model to reproduce the dynamic
behavior of damaged single-span RC bridge structures under moving vehicle loads. The sections that follow
aim to present the proposed numerical model. In particular, Section 2.1 provides essential information
regarding the modeling of the structure components and moving vehicle. Section 2.2 summarizes the
ALE formulation adopted in the proposed model to trace the positions of contact points between the
bridge’s slab and the vehicle’s tires. These are essential to correctly evaluate the interaction forces defined
in the framework of VBI. Finally, Section 2.3 describes the modeling strategy adopted to reproduce
structural damage.

Figure 1: A schematic view of a single-span Reinforced Concrete (RC) bridge structure
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2.1 Finite Element Model of the Bridge Structure
The proposed numerical model is implemented within the FE-based commercially available software

COMSOL Multiphysics. It consists of three parts: the first is the bridge structure, which includes the
main bearing structural elements; the second is a mechanical system schematizing a moving vehicle;
finally, the third is an auxiliary computational domain devoted to tracing the position of the contact points
between the bridge’s slab and the vehicle’s tires. As introduced previously, the latter component is treated
in detail in Section 2.2, while the rest of this section reports information about the bridge structure and
moving vehicle implementation.

The bridge structure is idealized by combining plates/shells and three-dimensional solid elements within
a three-dimensional setting. In particular, longitudinal and transverse beams are schematized using solid
elements, while the deck slab consists of shell elements. Specific kinematic constraints are used to
reproduce the rigid mutual connection between the upper boundaries of longitudinal beams and the shell
elements schematizing the solid slabs.

The governing equations of the longitudinal and transverse beams of the bridge are the fundamental
equations of solid mechanics describing the dynamic equilibrium equation of an infinitesimal three-
dimensional solid element. On the other hand, for the shell elements schematizing the slab, the governing
equations rely on the thin-plate mechanical model consistent with the Kirchhoff-Love formulation. Both
the governing equations of the solids and plate elements are implemented in the FE numerical software in
a variational weak form, using the related weak formulations. For brevity, the derivation of the variational
forms of solid and shell elements are not reported in the present paper. However, exhaustive details on
the topic are available in [46,47].

The moving vehicle consists of a rigid body with four axle sets, each of them comprising a suspension
system made of a spring-damper device (Fig. 2).

More precisely, the mechanical system of the vehicle comprises an upper sub-system, namely the vehicle
body, and a lower sub-system, characterized by the suspension system and tires [48].

Figure 2: Generalized dynamic vehicle system. (a) Longitudinal view (b) transverse view
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With reference to Fig. 2, the displacement range of the mass of the upper body sub-system includes:

� 2 translational components along the vertical (Z) and transverse (Y) directions, respectively, (Zq
vr, Y

q
vr);

� 2 rotation components, with vector axes perpendicular to the X–Z and Y–Z planes, describing the pitch
(hqvr) and roll (fq

vr) rotations.

In contrast, the displacement field of the i-th mass relative to the lower sub-system comprises only

vertical and transverse displacement components for each suspension axis (Zqi
vaLðRÞ along Z and Yqi

vaLðRÞ
along Y, where subscripts L and R denote the position of the axle on the left and right side of the vehicle,
respectively).

The vertical and horizontal relative displacement between the upper end points of the spring-damper
systems and the mass of the body vehicle assumes the following form:

Vertical Direction:

D
q1
vuL ¼ Zq1

vr � Lq1 � hqvr þ bq1 � fq
vr � Zq1

vaL

D
q1
vuR ¼ Zq1

vr � Lq1 � hqvr � bq1 � fq
vr � Zq1

vaR

D
q2
vuL ¼ Zq2

vr þ Lq2 � hqvr þ bq1 � fq
vr � Zq2

vaL

D
q2
vuR ¼ Zq2

vr þ Lq2 � hqvr þ bq1 � fq
vr � Zq2

vaR

Horizontal Direction:
D
qi
yuL ¼ Yq

vr � Yqi
vaL

D
qi
yuR ¼ Yq

vr � Yqi
vaR

with i ¼ 1; 2

(1)

For the lower sub-system, the relative displacement between the i-th tire’s mass and the road are
expressed as:

Vertical Direction:
D
qi
vlL ¼ Zqi

vaL � Zqi
bLðtÞ � rqiL

D
qi
vlR ¼ Zqi

vaR � Zqi
bRðtÞ � rqiR

Horizontal Direction:
D
qj
ylL ¼ Yqi

vaL � Yqi
bLðtÞ

D
qi
ylR ¼ Yqi

vaR � Yqi
bRðtÞ

with i ¼ 1; 2 (2)

where, Zqi
bLðRÞ and Yqi

bLðRÞ indicate, respectively, the vertical and horizontal displacements of the points of the
bridge slab at the contact points with the i-th suspension of the vehicle. Besides, the function rqjLðRÞ is a
corrective contribution that simulates the presence of irregularities in the road surface.

The dynamic behavior of the vehicle system is described by the laws of motion derived through
Lagrange’s equations of motion as a function of the displacement components and according to the
following expression:

d

dt
K; _h

h i
þ�;h þD; _h ¼ 0 with h ¼ Zq

vr; h
q
vr; Y

q
vr; f

q
vr; Z

q1
vaL; Z

q1
vaR; Z

q2
vaL; Z

q2
vaR; Y

q1
vaL; Y

q1
vaR; Y

q2
vaL; Y

q2
vaR

h i
(3)

in which the terms K, D and Π are the kinetic energy, dissipation potential function, and strain energy of the
mechanical system, respectively, equal to:

K ¼ 1

2

X2
i¼1

_Zq
vr þ _Yq

vr

� �2
Mv þ

X2
i¼1

_hqvr

� �2
Iv;y

Xn
i¼1

_fq
vr

� �2
Iv;x þ

X2
i¼1

_Zqi
vaLðRÞ þ _Yqi

vaLðRÞ
� �2

mqi
vaLðRÞ

" #
(4)

D ¼ 1

2

X2
i¼1

_Dqi
vuLðRÞ

� �2
Cqi
vuLðRÞ þ _Dqi

yuLðRÞ
� �2

Cqi
yuLðRÞ þ _Dqi

vlLðRÞ
� �2

Cqi
vlLðRÞ þ _Dqi

ylLðRÞ
� �2

Cqi
ylLðRÞ

� �
(5)

� ¼ 1

2

X2
i¼1

D
qi
vuLðRÞ

� �2
Kqi
vuLðRÞ þ D

qi
yuLðRÞ

� �2
Kqi
yuLðRÞ þ D

qi
vlLðRÞ

� �2
Kqi
vlLðRÞ þ D

qi
ylLðRÞ

� �2
Kqi
ylLðRÞ

� �
(6)
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By substituting the Eqs. (4)–(6) into Eq. (3), the following system of dynamic equilibrium equations is
derived in matrix form:

Mv €Uv þDv _Uv þ KvUv ¼ fv þ fv;C (7)

where, ½Mv; Dv; Kv� represent the mass, dissipation, and stiffness matrices of the dynamic system. Besides,
Uv is the vector collecting all the Lagrangian parameters of the mechanical system (described above) and
½fv; fv;C� are two vectors containing the components of the vehicle weight ðfvÞ and the contact forces
ðfv;CÞ. The latter contributions depend on the horizontal and vertical displacements of the bridge structure
and the mechanical properties of the vehicle’s dampers.

2.2 Fundamentals of the Arbitrary Lagrangian-Eulerian (ALE) Formulation
The ALE formulation is an effective numerical strategy usually adopted to modify the position of the

nodes of a two-dimensional computational mesh with great facility while avoiding excessive distortions
for the finite elements (see, for instance, [49,50]). The proposed model uses the ALE formulation to
move the nodes of computational mesh corresponding to the contact points between the vehicle’s tires
and the bridge’s slab. More precisely, the mesh nodes move along the vehicle’s trajectory during the
numerical simulation at a constant velocity (c).

To reduce the computational efforts, the proposed model combines two computational domains: the first
is that of the bridge structure, in which the solid and shell finite elements are meshed conventionally; the
second comprises two parallel lines schematizing the vehicle trajectory on the bridge. This expedient
separates the computational meshes so that during the calculation phase, the processed model updates the
mesh of the vehicle’s trajectory, without modifying the mesh of the structural elements. The vehicle and
bridge domains are linked reciprocally through proper projector functions.

Using the ALE formulation requires the definition of two sets of coordinate systems. The first is the
Referential system (�R) that accounts for the initial position of the mesh nodes of the vehicle’s trajectory
domain. The second one is the Moving coordinate system (�M ) that describes the positions occupied by
the contact points during the vehicle’s movement. In particular, the positions of the mesh nodes at the
reference configuration and subsequent varied positions are described by the material position vectors XR

and XM , respectively. The link between the Referential configuration and the Moved configuration, and
thus implicitly the link between the position vectors XR and XM , is made by means of a mapping
function Φ: �R ! �M , with Φ ¼ ½�1 �2 �, which per time instant ensures:

XM ¼ Φ XR; tð Þ XR ¼ Φ�1 XM ; tð Þ (8)

where, XMð ÞT¼ ½XM
1 XM

2 � and XRð ÞT¼ ½XR
1 XR

2 �.
In order to satisfy the previous relations, the mapping function � must be continuous and bi-univocal.

Thus, the corresponding Jacobian matrix of the transformation J� must be characterized by the following
property:

detðJ�Þ. 0 with J� ¼ @Φ

@XR
(9)

Fig. 3 shows a representation of the ALE formulation with reference to the case under consideration. The
figure depicts the bridge structure and the vehicle crossing with constant speed c, along a travel lane located
at a distance ev from the longitudinal centroid axis of the deck. Fig. 3 also shows the contact points between
the vehicle and deck in the reference configuration (orange) and in the current configuration (red).
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Since the reference configuration must be defined at the initial time of the analysis, the structural model
of the bridge is enriched by two additional elements schematizing the portions of the ground immediately
before and after the deck, with an extension equal to LG.

The two additional portions are implemented as two plates with infinite stiffness, embedded in the
ground and disconnected from the bridge slab.

Consequently, their contribution to the numerical calculation model is irrelevant. Their function is
exclusively to “house” the vehicle in the initial and final phases of the analysis.

The ALE formulation introduces additional equations to be solved in parallel to those of the structural
problem and the vehicle (i.e., Eq. (7)). These are the governing equations of the moving mesh problem and
consists of the mesh regularization procedure, based on the solution of the Laplace problem with reference to
the displacement of the computational nodes, i.e.:

d2XM

dX2
R

¼ 0 (10)

The Laplace problem is solved by imposing as boundary conditions that the displacements of the
computational nodes perpendicular to the traveling direction (nC) and at the end of the moving mesh
domain are zero. Furthermore, the speed of the contact points is required to be constant and equal to the
speed of the vehicle. By introducing the following nodal mesh displacement function:

�X ¼ XM � XR (11)

The boundary conditions are expressed as follows:

�X ¼ 0 at XR
1 ¼ �LG and XR

1 ¼ Lþ LG

Φ XC;i
R

� �
� nC ¼ XC;i

R þ c t with i ¼ 1; . . . ; NC

(12)

where, XC;i
R is the position vector of the i-th contact point in the reference configuration, NC is the number of

contact points, c is the vehicle speed, XR
1 is horizontal spatial coordinate, and t is the time. Given the position

of the contact points through Eq. (10), it is possible to derive the vertical Zqi
bLðRÞ tð Þ ¼ Zqi

bLðRÞ Xi
M

� �
and

horizontal Yqi
bLðRÞ tð Þ ¼ Yqi

bLðRÞ Xi
M

� �
displacements of the deck to be included in the Eq. (2).

Figure 3: A representation of the use of ALE formulation by the proposed model
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2.3 Modelling of Damage Phenomena
The process of material damage involves the formation and subsequent propagation of a series of defects

(such as micro-cracks), which progressively degrade the mechanical characteristics of the material. In
existing concrete bridge structures, damage phenomena concentrate inside the most stressed structural
regions, thus leading to vulnerable zones where material defects are widespread.

The present investigation adopts an approach consistent with Continuum Damage Mechanics to
reproduce the effect of diffuse damage inside circumscribed portions of a structural component.
Therefore, the presence of damage is taken into account at the constitutive level by assuming a reduced
value of Young’s modulus of the degraded material. In particular, the greater the severity of the damage,
the smaller the Young’s Modulus.

The elastic modulus of the material is reduced by a damage factor ξ, which varies from 0 to 1 and defined
as follows:

n ¼ 1� ED

E
(13)

where, ED is the extent of the elastic modulus in the damaged region of the solid (or plate). According to the
definition expressed through Eq. (13), the case in which n ¼ 0 implies that, so ED ¼ E the solid is completely
undamaged. In contrast, n ¼ 1 implies that ED ¼ 0, which corresponds to the case of completely damaged
material.

3 Dynamic Amplification Factors

The structural behavior of a bridge under the action of moving loads is typically analyzed in terms of
Dynamic Amplification Factors (DAFs). The most common definition of DAF (f) for a given effect X
relative to the structural response, is that defined by the ratio between the value of the effect evaluated
through a dynamic analysis (X dyn) and that obtained from a static analysis (X stat):

f Xð Þ ¼ X dyn

X stat
(14)

From Eq. (14), it emerges that f Xð Þ represents a dimensionless parameter aimed at quantifying the
effects evaluated in the dynamic field with respect to the corresponding values obtained in the static field.

DAFs are typically calculated for intact structures, therefore, without considering the presence of
damaged regions inside structural members. Using amplification factors for partially damaged bridge
structures requires some preliminary considerations. Indeed, a partially damaged structure’s response
differs considerably from an intact one’s. To clarify this concept, Fig. 4 compares the time histories of the
mid-span vertical displacement of an undamaged and damaged single-span bridge subject to permanent
(structural and non-structural) and moving vehicle loads. In particular, the damage is assumed to occur
around the mid-span region.

Twofold observations can be outlined. First, the presence of the damage affects the configuration of the
structure already under the action of permanent loads. In fact, a greater initial deflection (VD

0 ) is observed
with respect to the undamaged value (VUD

0 ) (see the black and red dashed lines). Second, observing the
dynamic responses because of a moving vehicle load, one can note that the damaged structure suffers a
more significant increment in vertical deflection than the undamaged one (i.e., DVD;dyn.DVUD;dyn).
These effects occur because the damage decreases the bending stiffness of the midspan region, thus
increasing the initial deflection of the mid-span point. In such a condition, the vehicle-induced effects
increase as well.
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From the abovementioned considerations, two sets of DAFs should be used to comprehensively describe
the dynamic behavior of a damaged bridge structure under moving vehicle loads. One DAF should quantify
the amplification of the effects concerning the undamaged configuration. The other serves to quantify the
amplification effects induced in the damaged structure by the moving vehicle loads. Therefore, the
following DAFs are utilized in the present study:

Figure 4: Time history of vertical displacement of the midspan of a single-span bridge subject to moving
loads: comparison of damaged and undamaged structure

• fD�UD Effects induced in the structure by the passage of the moving load compared to the static
response obtained with reference to an undamaged configuration:

fD�UD ¼ DX dyn

DX stat
¼ XD;dyn

max � XD
0

XUD;stat
max � XUD

0

(15)

in which, XD;dyn
max represents the maximum effect produced by the passage of the vehicle over the

damaged structure, XD
0 is the value of the effect relative to the initial configuration of the

damaged structure (i.e., produced by the action of the permanent structural and non-
structural loads). XUD;stat

max represents the value observed in relation to the passage of the
vehicle over the undamaged structure under quasi-static conditions, while XUD

0 is the value
of the effect evaluated in the initial configuration of the undamaged structure.

• fD Dynamic effects induced in the structure by the passage of the moving load compared to the
static response obtained with reference to a damaged configuration:

fD ¼ XD;dyn
max � XD

0

XD;stat
max � XD

0

(16)

in which, XD;stat
max represents the maximum effect evaluated with reference to the damaged

structure under quasi-static conditions.

SDHM, 2023, vol.17, no.6 467



For the sake of completeness, the DAF for the intact structure (i.e., fUD) assumes the following
expression, analogous to that used for fD:

fUD ¼ XUD;dyn
max � XUD

0

XUD;stat
max � XUD

0

(17)

4 Numerical Results

This section reports comprehensive results to show the proposed model’s efficiency and flexibility in
simulating the behavior of damaged Reinforced Concrete (RC) bridge structures. More precisely, the
results concern a numerical investigation developed regarding a typical single-span bridge scheme
adopted in most of the main roadways of the Calabria Region (Italy). To this end, Section 4.1 describes
the geometry of the examined bridge structure, the damage scenarios considered, and the moving vehicle
selected to reproduce the traffic-induced actions. In addition, this sub-section describes the mesh
discretization adopted in the numerical model. Afterward, numerical results are reported. In particular, the
proposed study comprises two numerical investigations. The first, reported in Section 4.2, analyzes the
bridge structure’s behavior affected by damaged regions presence without considering the effects of
moving vehicle loads. Specifically, such an analysis aims to examine the variations of the modal
characteristics of the structural system (i.e., natural vibration frequencies and corresponding mode shapes)
caused by the damage phenomena, thus assessing the efficacy of the modeling strategy presented in
Section 2.3 to account for the damage presence inside structural elements.

The second, reported in Section 4.3, focuses on the bridge’s structural response because of the
simultaneous presence of damage and a moving vehicle. The primary aim is to show the ability of the
proposed VBI modeling strategy based on the ALE formulation to simulate the dynamic response of
damaged bridge structures. However, a detailed validation was developed in previous author’s works [43].

4.1 The Case of Study: The Geometry, the Loads, and the Damage Scenarios
To properly configure a realistic scheme of an existing single-span RC bridge, a preliminary

investigation has been conducted by analyzing over 20 existing bridge structures of variable span lengths
built in the Region of Calabria in the last few decades. The primary aim is to collect sufficient data to
define acceptable ranges of values for the dimensions of the bearing elements of the structure.

Table 1 reports the results of such a preliminary analysis. As one can see, the data are arranged in three
groups, which differ reciprocally according to the span length. In particular, Group 1 summarizes the ranges
of values for existing bridge structures with a span length from 30 to 35 m, whereas Groups 2 and 3 represent
bridge structures with span lengths ranging between [25 ÷ 29] meters and [20 ÷ 24] meters, respectively.

Table 1: Range of geometric dimensions of structural elements of existing single-span bridges built in the
region of Calabria (Italy) in the last few decades

L (m) B (m) b (m) bL (cm) hL (cm) bT (cm) hT (cm) s (cm)

Group 1 Min 30 9 0.5 30 150 20 130 20

Max 35 11 1 50 230 30 210 30

Group 2 Min 25 9 0.5 25 125 20 105 20

Max 29 11 1 40 200 30 180 30

Group 3 Min 20 9 0.5 20 100 20 80 20

Max 24 11 1 35 170 30 150 30
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The bridge structure adopted in the present investigation belongs to the Group 1 of Table 1. More
precisely, the structure’s geometry consists of four longitudinal beams of length L = 35 m connected
transversally through four stiffening beams, equally spaced from each other of iT = 11.50 m. The cross-
sections of the longitudinal and transverse beams have a rectangular section, with dimensions equal to bL
= 35 cm, hL = 210 cm and bT = 25 cm, hT = 180 cm, respectively.

The longitudinal and transverse stiffening beams support a slab of length L = 35 m, width B = 10.5 m,
and thickness s = 25 cm. The slab includes several vehicle lanes and two outer cantilevered pedestrian
passages of width b = 1 m. In particular, the distance between the longitudinal axes of the two end beams
is equal to 8.5 m. Table 2 summarizes the bridge dimensions.

The longitudinal and transversal beams, and the slabs are made of concrete, whose Young’s Modulus,
Poisson’s ratio and mass density are equal to E = 30 GPa, ν = 0.3, and ρ = 2500 kg/m3, respectively.

The bridge is subjected to the actions induced by the self-weight of the structural elements and additional
permanent loads. In particular, the permanent load consists of a layer of 7 cm asphalt (ρa = 1300 kg/m3),
considered in terms of both additional weight and mass.

Concerning the accidental loads, it is assumed that one vehicle crosses the bridge at constant speed along
a single roadway eccentrically placed regarding the longitudinal axes of the deck at a distance of 2.8 m (i.e.,
y = −2.8, see Fig. 1). Table 3 summarizes the geometric and mechanical properties of the considered vehicle,
which are identical to that reported in [48].

Fig. 5 shows the numerical model used in numerical simulations. As one can see, it comprises (i) the
bridge structure, (ii) two moving interface edges (marked in red), and (iii) two additional side regions
(colored in light blue) placed at the beginning and the end of the structure, which serve as auxiliary areas
to account for the entry and exit of the vehicle along the bridge. Therefore, they are not connected to the
bridge and are modeled as a rigid material. The geometry of the bridge structure is discretized using a
fine regular-type mesh.

Noting that a preliminary analysis was developed to identify the optimal size of the finite elements for
defining an acceptable compromise between computational efforts and the accuracy of numerical results.
From such a preliminary mesh sensitivity analysis, it results that a suitable discretization for the geometry
domain of the structure is that made of linear parallelepipeds (8 nodes) with a maximum side length of
20 cm for the beams (39,096 elements) and linear quad elements (4 nodes) of side 40 cm for the shells
corresponding to the slab (2,340 elements). In contrast, the plates corresponding to the side regions are

Table 2: Geometric characteristics of the bridge structure used for the numerical investigations

L (m) B (m) l (m) b (m) m n bL (cm) hL (cm) bT (cm) hT (cm) s (cm)

35 10.5 0.2 1 4 4 45 210 25 180 25

Table 3: Geometric and mechanical characteristics of the moving vehicle

Lq1 (m) Lq2 (m) bq (m) Mv (kg) Iv;y (kgm
2) Iv;x (kgm

2) mq1
vaLðRÞ (kg) mq2

vaLðRÞ (kg)

2.9 5 1 4,500 5,483 1,352 800 800

Kq1
vuLðRÞ (kN/m) Kq2

vuLðRÞ (kN/m) Kq1
vlLðRÞ (kN/m) Kq2

vlLðRÞ (kN/m) Cq1
vuLðRÞ (Ns/m) Cq2

vuLðRÞ (Ns/m) Cq1
vlLðRÞ (Ns/m) Cq2

vlLðRÞ (Ns/m)

400 400 350 350 20,000 20,000 1,000 1,000

Kq1
yuLðRÞ (kN/m) Kq2

yuLðRÞ (kN/m) Kq1
ylLðRÞ (kN/m) Kq2

ylLðRÞ (kN/m) Cq1
yuLðRÞ (Ns/m) Cq2

yuLðRÞ (Ns/m) Cq1
ylLðRÞ (Ns/m) Cq2

ylLðRÞ (Ns/m)

300 300 120 120 20,000 20,000 1,000 1,000
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discretized through a coarse mesh made of rectangular elements with a maximum size of 1.2 m
(36 elements). Unlike the geometry of the bridge structure, the mesh of moving interfaces is quite fine
near the contact points between the bridge’s slabs and vehicle wheels and relatively coarser elsewhere.
This choice is motivated because the ALE formulation does not require fine discretization for the entire
domain, but only in the zone of particular interest. Besides, the mesh of moving interfaces moves
consistently with the vehicle speed.

The present investigation examines several damage scenarios, for which the damage mainly affects the
structure’s center region. Specifically, the assumed damage scenarios differ reciprocally depending on
the damage level and extension at the bridge’s mid-span region (Fig. 6). In particular, it is assumed that
the damage region extends along the longitudinal direction according to the dimensionless length LD/L. In
contrast, in the transverse direction, the damage extension is measured by the dimensionless length BD/B,
and it involves an increasing number of longitudinal beams (comprising the afferent portion of the slab)
(see Fig. 6). Besides, within the damaged regions, the severity of damage is constant and expressed
through the parameter n, previously defined through Eq. (13). The following four damage scenarios are
assumed, in which transversal beams were considered undamaged:

� Damage scenario 1 (DS1): a single damaged longitudinal beam and the afferent portion of the slab,
considering the entire cantilevered portion (BD/B = 0.25);

� Damage scenario 2 (DS2): two damaged longitudinal beams and the afferent portion of the slab,
considering the entire cantilevered portion (BD/B = 0.50);

� Damage scenario 3 (DS3): three damaged longitudinal beams and the afferent portion of the slab,
considering the entire cantilevered portion (BD/B = 0.75);

� Damage scenario 4 (DS4): diffuse damage in all longitudinal beams, including the entire slab
(BD/B = 1.00).

It is worth noting that the influence of damage in transversal beams was investigated with a specific
analysis, referred, for the sake of brevity, only to the damage scenario DS3.

4.2 Influence of Damage Effects on the Modal Characteristics of the Structure
At first, the investigation examines the variations of the modal characteristics of the structure caused by

the damage phenomena. Therefore, the effects induced by moving vehicles are not considered.

Figure 5: Computational mesh adopted in numerical simulations
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Fig. 7 compares the natural frequencies and the corresponding mode shapes evaluated for the intact
structure (i.e., undamaged, referred to as UD) and a bridge configuration affected by a DS2-type damage
scenario (D) (i.e., BD/B = 0.5). In particular, the damage scenario involves two longitudinal beams and the
afferent portion of the slab for an extension LD/L = 0.5 and a damage severity of ξ = 0.5. Note that the
analysis focuses only on the frequencies corresponding to vertical bending (symmetrical and anti-
symmetrical) and the torsional natural mode shapes. This choice is motivated by the fact that these
natural mode shapes typically dominate the dynamic response of three-dimensional simply supported
structures. Therefore, they are the most efficacy in highlighting the effects of the assumed damage scenario.

The results show that the presence of damage inside a limited portion of the mid-span region of the
bridge structure does not significantly alter the natural modal shapes. Indeed, no significant differences
exist between the natural mode shapes corresponding to the undamaged and damaged structures. Such a
result allows for easy identification of similar mode shapes. In contrast, one observes that the frequencies
of the damaged bridge are lower than that of the intact structure. In particular, the reduction is about

Figure 6: Representation of a damage scenario for the examined bridge structure

Figure 7: The vertical bending (symmetrical and anti-symmetrical) and the torsional mode shapes for the
examined bridge structure: A comparison between the intact structure (UD) and a bridge configuration
affected by a damage scenario involving two longitudinal beams and the afferent portion of slab for LD/L
= 0.5 and BD/B = 0.5, and a damage severity of ξ = 0.5
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23.57%, 15.34%, and 11.64%, for the symmetrical vertical, anti-symmetrical vertical, and torsional mode
shapes, respectively. Such results are in line with the outcomes reported in [51–53] which examined the
variations of the modal characteristic of damaged RC beams because of flexural cracking (i.e., generated
by four-point or three-point bending tests). In particular, these studies report that the main frequencies of
the beam (i.e., those associated with the symmetrical and anti-symmetrical vertical bending mode shapes)
drastically reduce as the damage increases both in terms of extension and severity. For example, Hamad
et al. [52] have investigated the vibration properties of many RC beams damaged through four-point
bending tests experimentally and numerically. In particular, they have conducted several analyses
considering various levels of damage inside the beam, each caused by increasing values of the applied
static forces. Their results show that the maximum reduction of the natural frequency corresponding to
the first four mode shapes reaches a value of about 12% (a value associated with the complete failure of
the beam). Casas et al. [53] performed damage-identification analyses on RC beams with different, well-
defined damage patterns.

In particular, the results achieved for the beams with damage located at the mid-span have revealed that
the frequency reduction of the symmetrical vertical bending mode shape ranges between 18% and 21%,
depending on the damage’s extension and severity.

A detailed study is now conducted to analyze further the bridge structure’s behavior for different damage
configurations. More precisely, the investigation comprises three parametric analyses for which the variations
of the natural frequencies corresponding to the vertical bending (symmetrical and anti-symmetrical) and
torsional mode shapes are evaluated by varying the severity, the longitudinal (LD/L) and transversal
(BD/B) extensions of the damaged region (i.e., for all damage scenario considered). To effectively
quantify the variation, the following dimensionless frequency variation variable is introduced.

Df ¼ f D

f UD
(18)

where, f D and f UD are the natural frequencies, associated with comparable mode shapes, evaluated
concerning the damaged and undamaged bridge structure.

Figs. 8a–8c show the variation of Df for all damage scenarios (i.e., DS1, DS2, DS3, and DS4) affecting
the bridge structure. In particular, Fig. 8a reports the variability of Df for increasing values of the damage
severity (expressed through the parameter ξ) acting on a pre-established damage region involving two
longitudinal beams (i.e., BD/B = 0.5) for a longitudinal extension LD/L = 0.5.

Fig. 8b presents the results aimed at highlighting the influence of the longitudinal extension of the
damaged region (i.e., for increasing values of LD/L) on the behavior of the structure. In particular, the
damage affects two longitudinal beams only with a severity equal to ξ = 0.5. Finally, Fig. 8c focuses
attention on the effect caused by the transversal extension of the damaged region (i.e., by varying BD/B).
Such a figure illustrates the trend of Df because of an extension of the damaged region involving an
increasing number of longitudinal beams (including the afferent portion of the slab), but by fixing LD/L =
0.5 and ξ = 0.5.

The results denote that all the examined natural frequencies manifest a reduction trend as the damage
inside the structure increases (both in terms of damage severity and extension). In such a context, Fig. 8a
clearly denotes that the damage severity (i.e., ξ) considerably affects the response of the bridge. Indeed,
the maximum reductions for Δf occur for increasing values of ξ. In particular, the maximum reduction of
the natural frequencies corresponding to the symmetrical vertical bending, torsional and anti-symmetrical
vertical bending modes shapes are equal to 37%, 18%, and 25%, respectively. As expected, the frequency
corresponding to the symmetrical vertical bending mode shape suffers from the maximum reductions
because the damage affects the mid-span of the bridge, thus significantly influencing the overall behavior
of the structure, especially concerning the bending stiffness of longitudinal beams.
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Twofold observations can be outlined regarding the influence of the extension of the damaged region
inside the bridge structure. The longitudinal extension (investigated by varying the dimensionless length
LD/L) produces a limited reduction of Δf for the examined frequencies (see Fig. 8b). However, by
observing the zoomed view of Fig. 8b, one observes a non-linear decrement of Δf corresponding to the
anti-symmetrical vertical bending mode shape. In particular, Δf considerably decreases for values of LD/L
larger than 0.3. This result can be motivated by the fact that as the damage zone extends longitudinally,
the side portion of the bridge (i.e., the zones at x = L/4 and x = 3/4L) suffers from progressively stiffness
losses, which inevitably affect the values of vertical anti-symmetrical frequency. Like the longitudinal
extension, the transversal increment of the damage region slightly affects the response of the bridge (see
Fig. 8c). However, the reduction of Δf associated with the torsional mode shape manifests a notable non-
linear trend (see the zoomed view), for which a more significant decrement manifest once the damage
transversally involves all the longitudinal beams (i.e., BD/B = 1–DS4). This condition is likely to produce
a considerable reduction of the overall torsional stiffness of the bridge, thereby affecting the values of the
associated natural frequency.

It is worth noting that the previous parametric investigation assumes that the transversal stiffening beams
are perfectly intact. Then, additional detailed analyses are performed to analyze the influence of damaged
transversal beams on the bridge’s structural response.

The analysis refers to damage scenario 3 (DS3) and focuses only on the frequency associated with the
torsional mode because the transversal beams mainly influence the torsional stiffness of the structure. Fig. 9
compares the variations of frequency for the torsional mode for different extensions of the damaged region
(LD/L) and increasing values of the damage severity (ξ). In particular, for the same bridge structure, the figure
compares the results associated with undamaged (case 1) and damaged (case 2) transversal beams to better
highlight the effect induced on the structural response by the presence of the damage also in the transversal
beams.

Figure 8: Variation of normalized reduction of the natural frequencies (Δf) of the bridge structure associated
with the vertical bending (symmetrical and anti-symmetrical) and torsional mode shapes for different damage
scenarios: (a) Evolutions for increasing values of the damage severity considering damage scenario with
LD/L = 0.5 and BD/B = 0.5. (b) Variability as a function of the longitudinal extension (LD/L) of the damage
in two longitudinal beams (DS2-type damage scenario, BD/B = 0.5), assuming ξ = 0.5. (c) Effect of the
transversal extension of the damaged region fixing LD/L = 0.5 and ξ = 0.5
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The results show that the damage in the transverse beams does not significantly produce frequency
variations. Indeed, the curves report comparable values of frequency variations for any value of LD/L and
ξ considered. Consequently, it can be assumed that the most significant structural frequency variations
occur because of damaged longitudinal beams and the afferent portion of slab.

4.3 Analysis of Structural Response of the Damaged Bridge Structure under the Action of Moving Loads
This section aims to examine the structural response of the bridge structure affected by damage

phenomena under the actions induced by a two-axle vehicle, whose properties are summarized in Table 3.
Although road roughness may represent an important factor in the interaction response between the
bridge and the vehicle (as demonstrated in [54,55]), in the present study the analysis has been conducted
under the simplified hypothesis of smooth conditions for the road pavement of the bridge, since the main
attention is devoted to investigate the effects of the damage on the bridge dynamical behavior under
moving loads.

At first, the behavior of the structure is investigated concerning a DS2-type (i.e., BD/B = 0.5) damage
scenario (described in Section 4.1) based on a longitudinal extension for the damaged region at bridge
mid-span of LD/L = 0.5 and a damage severity equal to ξ = 0.55. Fig. 10 compares the evolution of the
dimensionless mid-span vertical displacement (v=L) of the longitudinal beam placed at y = −4.475 m
between the intact (UD) and damaged (D) bridge structure as a function of the position occupied by the
vehicle (ct/L).

In particular, the figure reports the results for the traveling speeds of the vehicle of 40, 80, and 120 km/h,
which can be considered representative of the ranges of low, medium, and high transit speeds. From the
results, it transpires that the considered damage scenario (i.e., DS2-type) produces a considerable
increment of the vertical deflection of the structure, already under the action of permanent loads only. As
one can see, the increment of the vertical deflection because of damage is about 47% (see the dashed
lines at v=L = 3.4e−4 and v=L = 5.1e−4).

The action induced by the vehicle produces additional increments of the vertical displacement. In this
framework, the transit speeds considered generate almost comparable deflections. In particular, by
referring to the results corresponding to the transit speed of 80 km/h (marked by the red line), the
increment of deflection produced by the moving vehicle and associated with the damaged structure (vDml)

Figure 9: Influence of the damaged transverse beams on the variation of the modal characteristics of the
structure. (a) Comparison of damage cases relative to damage scenario 3. (b) Variation of the natural
frequency relative to the torsional mode shape for different values of LD/L and ξ
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is higher by 50% than that of the intact one (vUDml ). Besides, note that the damaged structure suffers from more
significant vibrations than the intact one because of the vehicle transit. Indeed, the curves of the damaged
structure have higher oscillations amplitudes than that of the intact one.

To better highlight the effects induced into the structure by the moving vehicle, the results achieved for
the transit speeds of 40, 80, and 120 km/h are further investigated by examining the dimensionless deflection
increment Dv=L defined as follows:

Dv

L
¼ vpþv � vp

L
(19)

in which, vp+v and vp represent the deflection produced by the simultaneous action of permanent and moving
loads and permanent loads only, respectively.

Figs. 11a–11c show the time-histories of Dv=L and the corresponding frequency content (evaluated
through the Fast Fourier Transform-FFT analysis) for the traveling speeds of 40, 80, and 120 km/h,
respectively. Besides, the figures compare the results gained for the intact (UD) and damaged (D) bridge
structures.

Table 4 reports the values of natural frequencies corresponding to the first vertical bending (symmetrical
and anti-symmetrical) and torsional mode shapes concerning the intact structure and the DS2-type damage
scenario (i.e., BD/B = 0.5) considered.

The results denote that the vehicle-induced vibrations are relatively small for moderate transit speeds
(i.e., c = 40 km/h). Such a condition is confirmed by the results expressed in the frequency domain, where
one observes that the frequency content diverges from the natural frequencies for both the intact and
damaged bridge structures.

Nevertheless, even though the vibrations are globally small, it is worth noting that the presence of
damage along the mid-span of the bridge causes a remarkable increment of the oscillation amplitudes,
precisely about 70%.

Figure 10: Time histories of the vertical displacement of the mid-span point of the longitudinal beam placed
at y = −4.475 m for different vehicle transit speeds. A comparison between the response of the intact structure
(UD) and a damaged configuration of the bridge consistent with a DS2-type damage scenario, developing
along the mid-span of the bridge for an extension of LD/L = 0.5 and characterized by a damage severity of
ξ = 0.55

SDHM, 2023, vol.17, no.6 475



Next, by referring to the results for the vehicle transit speed of 80 km/h (reported in Fig. 11b), the results
show that the intact and damaged structures suffer from relevant dynamic amplification effects. Such
behavior is likely to be relayed to the occurrence of resonance conditions affecting both undamaged and
damaged bridge structures. Indeed, the results reported in the second of Fig. 11b reveal that the frequency

Figure 11: Time history and frequency content of Dv=L evaluated with reference to the intact (UD) and
damaged (D) bridge structure. The results refer to the vehicle transit speed of (a) 40 km/h, (b) 80 km/h,
and (c) 120 km/h

Table 4: Natural frequencies of the first vertical bending (symmetrical and anti-symmetrical) and torsional
mode shapes concerning the intact structure and the DS2-type damage scenario considered based on a
damaged region characterized by LD/L = 0.5 and ξ = 0.55

Natural frequencies

First symmetrical vertical bending First torsional First anti-symmetrical vertical bending

UD 3.3144 4.369 10.822

D 2.7294 3.7571 9.7546
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content of vehicle-induced displacements matches the natural frequency corresponding to the first
symmetrical vertical bending mode shape for both intact and damaged bridge structures. In addition, what
is interesting about the data in this figure is that the presence of the damage causes a considerable
increment of vibrations, which can negatively affect the structure’s integrity. The results achieved by
assuming a traveling speed of 120 km/h (Fig. 11c) reveal that the vehicle’s passage does not induce
relevant vibrations into the structure. Such a condition finds confirmation in the results expressed in the
frequency domain, which highlights that the peaks of frequency contents do not match the values of
natural frequencies corresponding to the intact and damaged bridge structures. However, dynamic
amplification effects manifest in the form of a global increment of the maximum deflection. In particular,
a comparison between the traveling speeds of 40 and 120 km/h indicates an increment of the maximum
deflection of about 4%.

Further results are proposed concerning the response of the moving vehicle, thus providing additional
insights into damage-induced effects on the behavior of the mechanical system and, in turn, on the travelers’
comfort. Figs. 12a–12c show the vertical accelerations of the vehicle for transit speeds of 40, 80, and
120 km/h, respectively. Besides, each figure compares the results achieved for the intact and the damaged
structure. As expected, the resonance condition occurring for c = 80 km/h affects considerably also the
vehicle’s response because the gained vertical accelerations are generally higher than that achieved for
40 km/h. In particular, regarding the intact structure, the maximum acceleration value for c = 80 km/h is
higher than that obtained for c = 40 km/h by 150%. Surprisingly, the vehicle reaches significant
acceleration values for the transit speed of 120 km/h, even though the bridge structure is unaffected by
significant vibrations (as observed previously in Fig. 11c). The results reveal that the damage also
negatively affects the overall response of the vehicle, increasing the entity of the vertical acceleration.
Such a trend is quite evident in the results achieved at the transit speeds of 80 and 120 km/h, where the
increment of the absolute acceleration values is about 28% and 26%, respectively.

Finally, the behavior of the structure is analyzed in terms of Dynamic Amplification Factors (DAFs), as
introduced in Section 3. In particular, a comprehensive investigation is performed, providing the variation of
the DAFs for different traveling speeds of the vehicle and all damage scenarios considered (i.e., DS1, DS2,
DS3, and DS4). Figs. 13a–13c show the evolution of DAFs (i.e., fUD, fD, and fD�UD) for increasing vehicle
speeds and different damage scenario for the bridge structure.

Figure 12: A comparison in terms of vertical acceleration of the moving vehicle on the undamaged (UD)
and damaged (D) bridge structures. Vehicle speeds of (a) 40 km/h; (b) 80 km/h; (c) 120 km/h
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In particular, Fig. 13a shows the evolution of fD and fD�UD for increasing values of the damage’s
severity (described through the parameter ξ) concerning a DS2-type damage scenario (i.e., BD/D = 0.5)
characterized by an extension of the damaged region along the mid-span of the bridge of LD/L = 0.5.
Fig. 13b analyzes the evolution of fD and fD�UD because of the longitudinal extension of the damaged
region (i.e., LD/L), assuming a DS2-type damage scenario with severity ξ = 0.55. Finally, Fig. 13c focuses
on the impact of the damage scenario, i.e., assesses the influence of the transversal extension of the
damaged region of the bridge, expressed through the dimensionless transversal extension BD/B. In
particular, it is assumed that a damage severity of ξ = 0.55 and a longitudinal extension of LD/L =
0.5 characterizes each examined damage scenario.

The results reveal that the intact structure suffers from dynamic amplification of the vertical mid-span
displacement, whose maximum value (i.e., fUD = 1.06) occurs at traveling speeds between 80 and
100 km/h. According to the results of Fig. 11, these results are likely to be related to resonance
conditions that affect the examined bridge structure for medium traveling speeds.

Figure 13: Evolution of the dynamic amplification factors fUD (black lines), fD (red lines), and fD�UD

(blue lines) for increasing vehicle speeds and different damage scenario for the bridge structure. (a)
Influence of the damage’s severity ξ. (b) Influence of the longitudinal extension of the damaged region
along the mid-span of the bridge (LD/L). (c) Influence of the damage scenario (i.e., the transversal
extension of the damaged region (BD/B))
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The damage phenomena inside the structure produce an overall increment of dynamic amplification
effects. Starting from the results gained for fD, the graphs of Fig. 13 show that values of such a DAF are
higher than that related to the intact structure for most of the considered traveling speeds and investigated
damage scenarios. In particular, the trends of fD are somewhat similar to that of fUD in the case of
minor/moderate damage severity (i.e., for values of ξ up to 0.55) and limited transversal extension of the
damage region inside the bridge structure (i.e., for BD/B = 0.25 and BD/B = 0.50). In such a condition, the
maximum value of fD is equal to 1.11 (5% larger than that corresponding to fUD), which occurs at a
traveling speed of 80 km/h (probably because of resonance conditions as well). With a vast extension of
the damaged region inside the bridge structure, one observes different variations of fD with the traveling
speed. In particular, Fig. 13a denote that fD progressively increases with traveling speed increments
following a nonlinear trend, reaching a value of 1.12 for c = 120 km/h. The results of Fig. 13c highlight a
similar trend of fD for the results achieved for BD/B = 1 (i.e., damage scenario DS4), even though the
maximum value is equal to 1.06 (for c = 120 km/h). In contrast, for BD/B = 0.75, fD increases almost
linearly up to 80 km/h, reaching a value of 1.09. Then it keeps constant up to c = 100 km/h, and finally, it
undergoes a slight decrement at c = 120 km/h, attaining a value of 1.08. The different evolving trends of
fD associated with bridge configurations affected by severe damage conditions can be explained by the
fact that the damage changes considerably the mechanical properties of the bridge structure and, then, the
modal characteristics as observed by the results presented in Section 4.2 and confirmed by several
research works reported in the literature.

Because of such variations in the mechanical properties of the materials of the structure, it is probable
that resonance conditions do not occur, thus avoiding peaks of values of fD for medium traveling speeds.
The results of Fig. 13b denote that the longitudinal extension of the damaged region inside the structure
has a marginal influence on the dynamic amplification effects because the curves of fD associated with
the different extensions present similar evolving trends.

By observing the curve associated with the factor fD�UD in Fig. 13, it is quite evident that the values of
the curve for the amplification factor fD�UD are higher than those of the factor fD for all damage scenarios
examined. Such a result denotes that the amplification effects of the mid-span vertical displacement of the
damaged structure subjected to the moving vehicle consist of two contributions: the first is because of
the damage itself, and it accounts for the more significant contribution. Indeed, the initial deflection of the
damaged structure is considerably higher than that of the intact one. The second is generated by the
dynamic interaction effects between the bridge structure and the moving vehicle. It provides an additional
contribution of a minor entity compared to the first. Such observation is in line with the results reported
in Fig. 10, in which the vehicle-induced effects do not significantly affect the overall deflection of the
bridge structure. However, they generate different amounts of structural vibrations.

This observation reflects the evolution of fD�UD for increasing traveling speed. As one can see, fD�UD

is scarcely affected by the vehicle’s traveling speed since, for each damage scenario examined, fD�UD has an
almost constant value. In contrast, the value of fD�UD is directly influenced by the intensity of the damage
inside the structure. Indeed, fD�UD increases as the damage conditions of the structure make worse. In this
framework, it is worth noting that damage severity (i.e., ξ) represents a key parameter that plays a significant
role in the response of the damaged structure. As a matter of fact, by referring to Fig. 13a, it can be deduced
that fD�UD rises according to a nonlinear trend as ξ increases.

5 Conclusions

This work has presented an effective FE numerical model capable of accurately reproducing the
behavior of damaged Reinforced Concrete (RC) bridge structures under vehicle moving loads. The
proposed numerical model is developed in a three-dimensional setting, thus allowing reliable
representations of the structural geometry. Besides, it adopts a moving mesh technique, consistent with
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the Arbitrary Lagrangian-Eulerian (ALE) formulation, to trace accurately the positions of the contact points
between the vehicle’s tires and the bridge’s slab during the simulation. The study has analyzed the response
of a conventional RC single-span bridge structure, performing two sets of numerical results.

The first set is focused on the behavior of the bridge structure because of the effects induced by the
damage phenomena only, thus without considering the actions of moving vehicles. In particular, such a
study aimed to evaluate the variation of the modal characteristic of the bridge structure (i.e., natural
frequencies and corresponding mode shapes) caused by the damage. The results have revealed that
damage phenomena mainly alter the values of the structure’s natural frequency. In particular, all the
investigated natural frequencies reduce strictly depending on the severity of the damage and the extension
of the damaged region inside the bridge structure. In such a context, the results have shown that the
damage severity represents a leading factor in the response of the damaged bridge. Indeed, the maximum
decrements of natural frequencies of the structure were associated with the maximum entities of the
damage’s severity.

The second set of results is devoted to analyze the dynamic response of the damaged bridge structure
under moving vehicle loads. The results have shown that damage negatively affects the structural
behavior of the bridge also in presence of permanent loads only, leading to initial deflections much
greater than that related to the undamaged structure. This behavior occurs since the damage causes local
reduction of the stiffness in the longitudinal beams. Starting from the initial deflections of the structure, a
moving vehicle induces dynamic vibrations, whose amplitude varies according to the traveling speed. In
particular, for medium traveling speeds, resonance phenomena affect the response of the investigated
bridge structure, both for undamaged and damaged configurations. However, the damaged structure
suffers higher amplification under resonance conditions than the intact case. Finally, the analysis of the
structure in terms of Dynamic Amplification Factors (DAFs) has indicated that damage phenomena
produce an overall increment of amplification effects for any traveling speed of the investigated vehicle.
In particular, the DAFs assume significant values (larger than those associated with the intact structure)
for increasing values of the damage severity.

In conclusion, due to its accuracy and completeness, the proposed model can be adopted as suitable tool
for the development of indirect methods in the framework of Structural Health Monitoring (SHM)
approaches.

As a possible direction for future investigations, it would be interesting to improve the capability of the
proposed model by implementing more refined schematization for the damaged zone inside the structure and
to analyze the influence of road conditions on the response of damaged bridge structures. More precisely, the
damage could be reproduced more reliably using advanced modeling strategies developed in the framework
of fracture mechanics, such as those consistent with the recent diffuse cohesive interface approaches (see, for
instance, [56]) or the phase field method [57–59]. Moreover, road roughness may play a significant role in the
interaction behavior between the vehicle and the bridge, as shown for instance in [54–55,60].
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