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ABSTRACT

The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring
throughout their service life. To this end, distributed optical fiber sensors utilizing back Rayleigh scattering have
been extensively deployed in structural health monitoring due to their advantages, such as lightweight and ease of
embedding. However, identifying the precise location of damage from the optical fiber signals remains a critical
challenge. In this paper, a novel approach which namely Modified Sliding Window Principal Component Analysis
(MSWPCA) was proposed to facilitate automatic damage identification and localization via distributed optical
fiber sensors. The proposed method is able to extract signal characteristics interfered by measurement noise to
improve the accuracy of damage detection. Specifically, we applied the MSWPCA method to monitor and analyze
the debonding propagation process in honeycomb sandwich panel structures. Our findings demonstrate that the
training model exhibits high precision in detecting the location and size of honeycomb debonding, thereby facil-
itating reliable and efficient online assessment of the structural health state.
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P Principal component matrix
R Covariance matrix
T2 Hotelling statistic
X Strain monitoring data
Λ Diagonal matrix
E Mathematical expectations
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μ Mean value
σ Standard deviation
a Debonding size

1 Introduction

Structural safety and integrity are central requirements for various aerospace structures. However, the
harsh service environment can cause degradation of structural performance due to the accumulation of
damage such as cracks, delamination, and interfacial debonding. Therefore, it is vital to develop structural
health monitoring technologies for online awareness of structural damage state [1]. Various strain sensor
networks have been widely used for structural health monitoring. Traditional strain monitoring techniques
normally rely on discrete sensing elements such as strain gauges, fiber brag gratings (FBG) [2,3], etc.
However, these sensor networks suffer from drawbacks including restricted structural coverage and low
damage sensitivity due to the low density of measurement locations [4]. Distributed optical fiber sensors,
on the other hand, offer several notable benefits such as lightweight, immunity to electromagnetic
interference, and ease of embedding [5,6]. Moreover, this sensor can perform high-density, continuous
measurements of strain and temperature. In recent years, distributed optical fiber sensing techniques
utilizing back Rayleigh scattering have undergone remarkable development, showing demonstrated
capabilities in detecting small structural damage that are crucial in aerospace applications [7–9].

Conventional approaches in damage identification, relying on strain measurement data for example,
largely rely on manual identification of damage features from sensor signals. The process can be complex
and laborious, requiring significant human resources and time expenditures. In the context of distributed
optical fiber data processing, in particular, several challenges arise due to the large amount of data,
significant noise interference, and intricate data complexity. Therefore, it is crucial to develop an
automated damage identification methodology that utilizes distributed optical fiber monitoring data to
extract quantitative damage features from complex strain information.

Recent advances in machine learning techniques have led to the increased use of various approaches and
technologies, such as Bayesian methods [10], genetic algorithms [11], and artificial neural networks [12], in
the field of structural health monitoring. With the continued improvement of computing capabilities, deep
learning methods have rapidly gained popularity. Convolutional neural networks (CNNs) are among the
most widely used deep learning models, and have been applied to structural damage identification using
dynamic data [13–17]. However, CNNs have certain limitations in the field of damage identification. For
example, building a robust CNN model for identifying structural damage requires a large amount of
training data. As a supervised learning method, CNN relies on fully labeled datasets, which can be
prohibitively expensive to acquire for structural damage-related samples [18]. Moreover, overfitting risks
may readily arise in instances of limited data volumes.

The principal component analysis (PCA) is a widely employed technique within the realm of
multivariate statistical process control (MSPC), primarily utilized for process monitoring. This method is
extensively applied in the field of structural health monitoring [19–22]. Rather than relying on an
extensive modeling of anomalies, it employs the distinguishing features of data samples in normal
conditions as a reference benchmark to ensure recognition accuracy. The major advantage of PCA lies in
its ability to reduce a vast number of data variables into a small set of principal components (i.e.,
comprehensive variables or indicators). These reduced-dimensional comprehensive indices are formulated
as linear combinations of the original data. In essence, the PCA integrates the underlying features of the
data with similar characteristics in order to derive a dimensionality reduction index [23]. Thus, in dealing
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with voluminous and intricate strain data obtained from distributed optical fibers, adoption of PCAmodel can
offer significant benefits. Furthermore, when compared to conventional statistical error interval model, the
PCA is also advantageous in several aspects. For example, the Hotelling statistic T2 serves as a principal
component anomaly indicator, which mathematically represents the Markov distance of the principal
component points to the new coordinate system [24]. This approach reflects changes in the distribution
trend of the data, rather than indicating alterations in individual variables that may appear abnormally. In
the context of big data analysis, the integration of appropriate algorithms can mitigate erroneous
outcomes that arise due to noise. While conventional PCA allow for detection of anomalous data points,
they are insufficient in terms of precision and localization of such deviations. This impedes their
effectiveness in quantifying structural damage information.

This paper presented a new approach for identifying and locating damage using distributed optical fiber
sensors with high-density strain measurement points. The proposed technique, named Modified Sliding
Window Principal Component Analysis (MSWPCA), uses a local measurement point component PCA
model to accurately detect anomalous data points. Moreover, by integrating Hotelling statistical
thresholds, the proposed method automatically identifies and localizes damage, improving precision and
reducing false positives. To demonstrate the robustness of the proposed approach, MSWPCA method was
employed to track debonding propagation in honeycomb sandwich panel structures, specifically in an
asymmetric double cantilever beam (ADCB) tensile experiment. The embedded distributed optical fiber
sensing data from the structural interface is a valuable source of model data that can be utilized to
enhance the accuracy of PCA and damage identification.

2 Principle and Method

2.1 Principal Component Analysis
Let X 2 Rm denote the vector of data samples acquired by the sensor, comprising of the monitoring

sample vector obtained through N repeated acquisitions, that is, X ¼ fx1; fx2; :::; fxN
� � 2 Rm�N .

Supposing that the monitoring data is standardized to have a mean value of zero, PCA is modeled by
employing the following eigenvalue decomposition approach [25,26]:

R ¼ EðXXTÞ ¼ P�PT (1)

where R represents the covariance matrix, Λ represents the diagonal matrix composed of m eigenvalues [λ1,
λ2,..., λn]. P = [p1, p2,… pn] represents a standard orthogonal matrix composed of m eigenvectors.

Consider the following linear transformation

t ¼ PTX (2)

where t is the principal component after the coordinate transformation of the original data.

For the purpose of monitoring data X in multivariable statistical process control, the Hotelling statistic
T2 can be used in PCA monitoring models to assess whether the monitoring data is anomalous [27]. The
Hotelling statistic T2 is expressed as

T2 ¼ tT��1t (3)

To ascertain the abnormality of the monitored system, it is imperative to establish an appropriate
safety threshold T2

lim that accurately represents the statistical control limit of T2 [28]. Upon exceeding this
threshold, it can be inferred that the monitored data has veered off its normal trajectory, signifying
anomalous behavior.
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2.2 Calculation of Safety Threshold T2

Assuming a normal distribution for the model error sample E � Nðl0; r2Þ, and considering a confidence
level of 1-α, different levels of significance can be associated with specific α/2 quantiles denoted by Zα/2,
which in turn determine the upper and lower control limits or thresholds. For instance, the 3-Sigma
principle [29] entails selecting a significance level of α = 0.27% and a corresponding Zα/2 = 3, i.e., the
probability of the sample error falling within 3σ is:

P
�E � l0
r=

ffiffiffi
n

p
����

���� < 3

� �
¼ 99:73% (4)

According to Eq. (4), it can be observed that the probability of surpassing the 3-Sigma confidence
interval is a statistically minute event, with only a 0.27% likelihood. Consequently, if the error sample
mean from an unknown service state sample surpasses this range, it is deemed to be abnormal and
indicative of damage. As such, the quantile Z of a normal distribution α/2 can be utilized to establish an
appropriate safety threshold.

In certain instances, data may deviate from a strictly normal distribution and its underlying distribution
may be unknown.When simulating such data using a normal distribution, deviations will arise. In such cases,
it is necessary to ascertain the data distribution function and subsequently derive the α quantile value. Kernel
density estimation interpolation can be used to estimate the data distribution function. The structural safety

threshold, denoted as ~T
2
lim, can be derived via an interpolation process utilizing statistical parameters such as

the Hotelling statistic T2 and its component ðTjÞ2. These parameters are obtained from the data through
application of kernel density estimation.

Nevertheless, it should be noted that although PCA can effectively determine the presence of anomalous
data, its utility is limited in that it only provides a binary decision regarding the abnormality. In practical
monitoring scenarios, it is imperative to not only indicate aberrations but also accurately identify their
spatial location within the dataset.

2.3 MSWPCA and Damage Warning Mechanism
Given the continuous and densely-distributed nature of optical fiber sampling points, localized damage

typically results in a small range of regional anomalies, whereas sparse single point anomalies are most likely
caused by noise. To address this issue, this paper presents an innovative MSWPCA method. The strain data
of the optical fiber is partitioned into w sub-regions using a sliding window, and the identification of
anomalies is performed based on the detection of regions where the Hotelling statistic component exceeds
the predetermined threshold. Specifically, assuming that s continuous optical fiber data represents a local
area, and each sliding window advances by n optical fiber data with s < n, then the total number of areas
divided into w = m/s.

For monitoring the sample matrix X ¼ fx1; fx2; :::; fxN
� � 2 Rm�N , it is necessary to retain only the

variable values xj(j = s,2s,...,m) within the range of rows j to j + n − 1, while assigning all other
variables Xk(k = 1,2,...i − 1, i + 1,...,m) a value of 0.

In the context of a monitoring sample matrix X ¼ fx1; fx2; :::; fxN
� � 2 Rm�N , only the variable values

from row i to i + n - 1 are retained, specifically xi for i = 1, s + 1, 2s + 1, ..., m, to form segmented submatrices
Xj ¼ fxi; fxiþ1; :::; fxs

� � 2 Rm�s, where j = 1,2,...,w. All other variables are discarded. This is illustrated in
Eq. (3). This process effectively isolates and focuses on the target variable for analysis, thereby facilitating
more precise monitoring and data interpretation. The matrix reflecting the small range of regional anomalies
is expressed as
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X ¼

x11 x12 � � �
x21 x22 � � �
..
. ..

. ..
.

xm1 xm2 � � �

x1j � � � x1s
x2j � � � x2s

..

. . .
. ..

.

xmj � � � xms

2
66664

3
77775

x1sþ1 � � � x1N
x2sþ1 � � � x2N

..

. . .
. ..

.

xmsþ1 � � � xmN

2
66664

3
77775

Xj

(5)

where i ¼ 1; sþ 1; 2sþ 1; :::;m; j ¼ 1; 2;:::;w.

Hence, the initial monitoring sample matrix X is augmented w fold (w = m/s). Subsequently, w novel
monitoring sample matrices Xj 2 Rm�N j ¼ 1; 2; :::;mð Þ, are subjected to PCA using Eq. (2). The resultant
w Hotelling statistics ðTjÞ2 (j = 1,2,...,m), obtained via Eq. (3), represent the Hotelling statistics
components pertaining to each region of interest within the primary monitoring sample matrix X. The
associated threshold value for each such component, determined by employing kernel density estimation
methodology, is denoted by ðTj

limÞ2.
Based on the aforementioned techniques, the damage warning procedure is established as follows:

(1) Offline status:

Step 1: involves the installation of optical fiber on the structure intended for monitoring purposes,
followed by the acquisition of strain data several times under varying health conditions. This data is then
utilized as training data to apply a Modified PCA model, enabling more precise monitoring and analysis.

Step 2: the kernel density estimation method is employed to determine both the global structural safety
threshold T2

lim and regional component thresholds ðTj
limÞ2. These determinations are crucial for ensuring

accurate and effective monitoring capabilities.

(2) Online status

Step 1: involves data collection of the current monitoring sample, followed by the calculation of its T2

statistics.

Step 2: the overall safety threshold T2
lim is compared to determine if it is within normal limits. In the case

of an abnormal reading, statistical component ðTjÞ2 of the monitoring sample T2 is calculated and a
comparative analysis with component threshold ðTj

limÞ2 is performed to identify the abnormal area.
Further monitoring is necessary if deemed necessary as per results obtained.

The flow chart is shown in Fig. 1.

3 Experimental Validation

3.1 Setup
The asymmetric double cantilever beam (ADCB) was used to investigate damage signals in honeycomb

sandwich panel structures. To enhance the bonding strength between the sandwich and the aluminum alloy
panel, both the upper and lower surfaces of the panels were polished with an angle grinder. A distributed
optical fiber was embedded in the interface between the panel and the sandwich. A pre-fabricated
debonding area measuring 75 mm × 60 mm was fabricated using a release cloth, as shown in Fig. 2. The
panel and honeycomb sandwich structure were bonded using an epoxy resin adhesive film, which was
hot pressed at 130°C for 3 h under a pressure of 0.3 MPa, as illustrated in Fig. 3.

The LUNA® ODiSI series demodulator, was used with the distributed optical fiber in this investigation,
as shown in Fig. 4. ODiSI uses wavelength scanning interferometry to demodulate optical fiber sensors,
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which can detect physical changes in the sensor. The reflected light wavelength at a particular spot on the
optical fiber will deviate if there is deformation there. It is feasible to determine which section has
undergone deformation by contrasting the reflected light before and after deformation. By comparing
such changes with a reference value, the current physical condition of the optical fiber can be inferred
with precision. This physical phenomenon pertains to the interaction between temperature and strain
manifested in optical fibers.

The region of strain monitoring in an optical fiber partitioned into four distinct paths, and the initial
coordinates of optical fiber points along the entire optical fiber within each monitoring area were pre-
calibrated. The layout paths of the optical fiber and size specifications for the specimen model are
depicted in Fig. 5.

In accordance with the double cantilever beam tensile test standard, we made a fixture for the
honeycomb sandwich panel structure. This fixture was then combined with the honeycomb sandwich

Figure 1: The flow chart of the MSWPCA method for structural health monitoring

Figure 2: The optical fiber deployment path and prefabricated debonding area
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panel specimen, as illustrated in Fig. 6. The upper and lower clamps were swiftly attached to the
prefabricated debonding area at the honeycomb sandwich panel terminus using Elloda bonding.
Additionally, a T-shaped clamp was affixed to the system with screws, enabling a seamless connection to
a tensile testing machine for comprehensive tensile testing. Figs. 6 and 7 show the schematic and detailed
drawings of the fixture.

Figure 3: Hot pressing of specimens

Figure 4: ODiSI A50 optical fiber sensing demodulator

Figure 5: Optical fiber deployment path and specimen size
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The experimental setup for the ADCB utilizes an Instron electronic universal tensile testing machine and
quasi-static loading condition. The honeycomb sandwich test specimen was creating a seamless integration
with the Instron tensile testing machine. The distributed optical fiber system was meticulously interfaced with
the optical fiber demodulator through optical fiber jumpers, and a predefined set of benchmarks was
established in advance.

The tensile testing machine was utilized to facilitate the loading process at a rate of 2 mm/min. Upon
reaching a critical load of 0.3 KN, the prefabricated debonding area start to propagate along the panel-
sandwich interface, as depicted in Fig. 8. The appearance of debonding propagation during successive
loading cycles was presented in Fig. 9. The length of debonding extension was quantified by pausing the
tensile test and marking the debonding front position by a marker, as illustrated in Fig. 10.

Simultaneously, strain data was obtained along the fiber path within the debonding region. The failure
surface corresponded to a detachment between the honeycomb core and the upper aluminum plate surface.
The optical fiber sensors were placed at the interface between the epoxy resin adhesive film and the
aluminum alloy panel. This implies that the interface strength of the optical fiber sensor location

Figure 6: Schematic picture of ADCB experimental tensile fixture

Figure 7: Physical picture of ADCB experimental tensile fixture
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surpassed that of the honeycomb core adhesive interface. Incorporating dispersed optical fiber sensors into
the honeycomb sandwich panel structure exhibited negligible effects on the tensile attributes of the
composite.

Figure 9: Debonding damage propagation

Figure 8: Opening of the prefabricated debonding area

Figure 10: Mark the debonding propagation length
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3.2 Optical Fiber Data Recording and PCA Result Analysis
The zone at the front of the debonding exhibited a concentrated stress field, which spans approximately

1 cm in length [30,31]. As a result, the length of the debonding extension monitored during testing exceeds
the actual debonding length by about 1 cm. Before conducting the loading test, 100 representative data sets
were systematically collected and used as baseline data for PCA to establish a structural safety threshold.
Although loading can cause some strain measurement errors, they were significantly smaller than the
strain caused by structural damage. Therefore, the safety threshold should be moderately increased. To
obtain abnormality regions, the test was intermittently paused to collect signal data during testing.
Throughout the test, four distinct sets of experimental data were continuously monitored and entered into
a PCA model.

The boundary information can be better distinguished by extending the data range and selecting 30 strain
measurement points for the MSWPCA data area. We used a sliding window configuration to extract the data,
with each set of data comprising 10 consecutive strain measurement points and a sliding window increment
of 10 measurement points. Fig. 11 provides a visual illustration of this process.

Mathematically, the window size should be chosen to meet the statistical requirement of PCA to prevent
too small sample size [32], and the sliding interval can be selected quite flexibly. However, the selection of
window size and sliding interval should be in accordance with the actual need for damage identification (e.g.,
how small the debonding propagation can be detected). In particular, when dealing with discontinuous
damage in the structure, an excessively large window may erroneously identify the intact area as
damaged area.

Due to the continuous nature of the debonding region in the experimental setup, the corresponding
abnormal signal appeared uniformly and continuously without any noticeable discontinuities. After
performing PCA on each sub region by sliding window step, we monitored the debonding process starting
from the first identified abnormal region and continued until a return to normalcy was detected within the
given region. The debonding length along each fiber path can be presented by a formula, which roughly
approximates the distance between the initial coordinates of the first anomalous window and those of the
last window in a normal state. To determine the overall debonding length across the entire structure, we
needed to compute an average value based on the debonding lengths obtained along four individual paths.

a ¼ 1

n

Xn
i¼1

Li
abnorm

� Linorm

� 	
(6)

where Labnorm and Lnorm represent the first abnormal region and the last normal starting coordinates on each
fiber path data, respectively. n = 4 represents four optical fiber paths. It should be noticed that the MSWPCA
method is able to identify debondings in arbitrary directions if the optical fibers are deployed in those

Figure 11: Optical fiber data for MSWPCA monitoring
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directions. In this study, however, the method was only used to identify debondings propagating along the
length of the specimen and there were no optical fibers arranged in the perpendicular direction.

Since the honeycomb sandwich structure is heterogeneous and anisotropic, the debonding propagate
irregularly and unevenly along the interface. Therefore, after the interfacial debonding propagate by
around 7 mm (which is equal to the diameter of the honeycomb core), the specimen was unloaded at a
rate of 2 mm per minute until the tensile load is zero. The strain information along the four fiber optic
paths (as shown in Fig. 4) was collected, and the area of the debonding propagation was identified.

Figure 12: First debonding identification
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Each optical fiber measurement path consists of 150 strain measurement points, and 15 sets of
characteristic strain data can be derived from each individual path. The data length coordinates were
relative coordinates that were obtained from the calibration position of the optical fiber. The results of
abnormality recognition using MSWPCA can be observed in Figs. 12–15, and are also presented in
Tables 1–4. The total debonding length identified by the MSWPCA was indicated by the red box in the
Figs. 12–15. In Tables 1–4, the debonding lengths identified according to the strain measurement signals
and observed according to the red marks in Fig. 11 are presented. The length of the stress concentration

Figure 13: Second debonding identification
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area is assumed to be 1 cm, whereas the identification errors are calculated as the difference between the
observed debonding length and the identified debonding length plus the length of the stress concentration
area.

Based on the previously discussed data analysis, it was evident that the debonding boundaries of
distributed optical fibers undergo continuous changes throughout the loading test. Moreover, our findings
indicate that the MSWPCA methodology demonstrates remarkable precision in accurately identifying the
extension length of debonding within honeycomb face cores.

Figure 14: Third debonding identification
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Figure 15: Debonding identification

Table 1: Identification results in the first step of debonding propagation

Fiber path Debonding length
(identified) (cm)

Debonding length
(observed) (cm)

Assumed stress
concentration area (cm)

Identification
errors (cm)

1 3 2 1 0

2 3.1 2.1 1 0

3 3.6 2.1 1 0.4

4 3.8 2.2 1 0.6
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4 Conclusions

This paper presents a MSWPCA method in identify and tracking the propagation of debonding damage
in honeycomb sandwich structures, relying on measurement signals from distributed fiber optic sensors.

(1) The MSWPCA can efficiently extract information from the static distributed strain signals measured
on the structure, preventing the difficulties associated with manual evaluation of structural damage;

(2) Compared with other machine learning and deep learning methods such as ANN and CNN, PCA can
be applied more conveniently without the need of massive data training, which is an important merit since the
data amount from damaged structures is inherently limited;

(3) In contrast to conventional PCA techniques, the MSWPCA method makes use of data sliding
window technology to not only recognize damage but also precisely quantify its propagation process.

The proposed method is also suitable for other kinds of strain sensors as long as the sensor’s
measurement density is sufficient (e.g., quasi-distributed FBG sensors, Fabry-Perot fiber optic sensors,
weak reflection fiber gratings). The developed approach offers technological assistance to the future
development of online SHM systems.
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