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ABSTRACT

As an important component of load transfer, various fatigue damages occur in the track as the rail service life and
train traffic increase gradually, such as rail corrugation, rail joint damage, uneven thermite welds, rail squats fas-
tener defects, etc. Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation
of rail transit. In this paper, an intelligent and innovative method is proposed to detect the track defects by using
axle-box vibration acceleration and deep learning network, and the coexistence of the above-mentioned typical
track defects in the track system is considered. Firstly, the dynamic relationship between the track defects (using
the example of the fastening defects) and the axle-box vibration acceleration (ABVA) is investigated using the
dynamic vehicle-track model. Then, a simulation model for the coupled dynamics of the vehicle and track with
different track defects is established, and the wavelet power spectrum (WPS) analysis is performed for the vibra-
tion acceleration signals of the axle box to extract the characteristic response. Lastly, using wavelet spectrum
photos as input, an automatic detection technique based on the deep convolution neural network (DCNN) is sug-
gested to realize the real-time intelligent detection and identification of various track problems. The findings
demonstrate that the suggested approach achieves a 96.72% classification accuracy.
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1 Introduction

The track is an important component of load transfer in the rail transit system. Intelligent detection and
identification of its health condition is of great significance to ensure the safe and stable operation of rail
transit. Various fatigue damages occur in the track as the rail service life and train traffic increase
gradually, such as rail corrugation, rail joint damage, uneven thermite welds, rail squats, and fastener
defects can be divided into two forms: one is invisible defects, including bolt loosening and other
problems; The other is a visible defect, for instance, the worn or completely missing fasteners, etc. Slight
track defects cause vibration and noise during train operation and affect passengers’ comfort experience.
The continuous deterioration of track defects causes serious abnormal vibration between the wheel and
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the rail and even leads to major safety accidents. The conventional maintenance mode makes it difficult to
predict these sudden safety accidents, and it can no longer meet the safety detection and early warning
requirements of track infrastructure. Therefore, real-time intelligent diagnosis of the service status of
fasteners is crucial to improving the safety of rail transit operations and has practical significance.

The detection technology for tracking defects is currently divided into three categories, namely, machine
vision-based detection, laser scanning-based detection, and vibration signal-based defects detection.
Machine vision-based detection technology has been widely used in various fields such as industry,
communications, military, and so on [1,2]. Image-based machine vision technology is applied to the
detection of track defects, mainly for the defection of rail surface defects, rail contour collection, and
fastener deterioration failure detection [3]. For instance, automatic detection techniques for different types
of fastener losses have been developed extensively within the last ten years [4–8]. In addition, deep
convolutional neural networks (DCNN) have been used to automatically detect fastener damage [9–11].
However, the track defects detection method based on machine vision technology has high requirements
for the quality of the initial images [12–14].

The detection technology based on laser scanning is divided into two types: the track detection
technology based on laser camera [15] and the technology based on three-dimensional laser scanning
[16]. The former method is similar to the technology based on machine vision, which can be regarded as
an enhanced machine vision application technology [17,18]. The track detection technology by using
three-dimensional laser scanning is based on the geometric point cloud data and image data of the target
object for reconstruction processing to meet different application requirements [19]. However, this
method needs the three-dimensional geometric data of the track structure for the subsequent analysis.

In contrast, the track defects detection technology based on vibration response signals is more suitable
for real-time track defects detection on rail transit lines. The neural network is used to establish the mapping
relationship between track irregularity and vehicle abnormal response [20]. The technology to detect track
weld irregularities and rail surface squats with the aid of axle box vibration acceleration response is
proposed [21–24]. The energy spectrum of the vehicle vibration response is used to reflect the service
status of the track [25]. The track tread squats are detected with the help of the wavelet energy spectrum
entropy index of the axle box vibration signal [26]. A method for rail corrugation detection is proposed
using the wavelet packet energy entropy index of the detection signal [27]. The rail vibration response in
connection with the fastener failure is analyzed [28,29]. In addition, the detection of rail or fastener
defects by using the vibration acceleration of the axle box or the bogie frame is studied [21,30–32]. The
convolutional neural network (CNN) is introduced to learn the mapping relationship between vibration
signals and system failure [33–37].

However, there are some inherent limitations to the existing research. First, they often require human
intervention to analyze small differences, which reduces the accuracy of detection. Second, image-based
methods are usually only available for visible trajectory damage, such as missing fasteners or fatigue
cracks in clips. Furthermore, these techniques are influenced by factors such as the shooting angle, the
vibration of the train, and the lighting, leading to errors in sampling. Finally, the focus of these existing
methods lies in the feature extraction of track single defects based on data processing, which does not
form a perfect and effective intelligent detection method for multiple track defects, particularly when
several different track defects overlap together.

With this consideration, this paper plans to combine ABVA and deep learning technology to propose an
intelligent track defect detection method. First, a time-frequency analysis of the ABVAwill be performed to
explore whether track defects cause vibration to be transmitted to the wheelset system. Secondly, a vehicle-
track coupled dynamics simulation model with different track defects is built, and the wavelet power
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spectrum (WPS) analysis is performed on ABVA to extract its characteristic response. Ultimately, a deep
convolution neural network (DCNN)-based automatic detection technique is suggested to achieve the
intelligent real-time detection of various track flaws.

The main contributions of this paper lie in the following aspects. First, analyzing the influence of
different track defects on the dynamic response of the axle box provides a theoretical basis and a new
idea for vibration-based track defect detection. Secondly, an intelligent track defect identification method
using ABVA and deep learning technology is proposed.

This paper is organized as follows. In Section 2, the paper outlines the problems under study. Section 3
delves into the analysis of the vibration dynamics of the wheel-rail system through an illustrative example.
Section 4 describes how to include track defects in a wheel-rail system model. In Section 5, the vibration
response characteristics of the axle box considering various track defects are discussed in detail. Section 6
discusses the method of tracking defect identification based on DCNN. Finally, the research results are
summarized in Section 7.

2 Problem Statement

Various fatigue defects appear on the track surface under the repeated action of the vehicle axle load,
such as rail corrugation, local squats, rail joints, welding irregularity, and fastener defects as shown in
Fig. 1a. This section takes the DTVI2 fastener commonly used in subway lines as an example to illustrate
the track defect detection scheme, as shown in Fig. 1b. The fixing system comprises clamps, screws,
spacers, and insulating gauge blocks (see Fig. 1b(i)). The vibration shocks are transmitted from the rail to
the insulating gauge block, which in turn acts on the clamp. The vibration of the clamp can cause some
damage to the fastener, such as loosening of bolts, fatigue damage to the clamp, and breakage or loss of
the fastener (see Fig. 1b(ii)). In the rail-car coupling power system (see Fig. 1b(iii)), damage to the
fasteners directly weakens the force acting on the track, which leads to an increase in the vibration
reaction of the track, and consequently increases the wheel-rail system’s vibrations. The vehicle system is
subjected to waves of wheel and rail forces, which result in vibrations in the wheels, bogies, and even the
body.

In this paper, real-time automatic identification of track defects based on ABVA is studied. Table 1
illustrates the division of the TSS (track service state) into ten distinct groups based on the various typical
problems found in the track system.

Figure 1: (Continued)
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This study has to overcome the following issues to implement the automatic detection of typical track
flaws in real-time. Firstly, the vehicle-railroad connection system’s vibration dynamics are analyzed and it is
examined if track flaws (fastening defects as an example) cause vibrations to be transferred to the wheelset
system. Secondly, the ABVA including track defects information is obtained for the training of the detection
algorithm. Finally, an automatic detection algorithm based on a deep learning network model is established to
learn the mapping relationship between typical track defects and corresponding axle-box vibration response.

3 The Wheel-Rail System’s Vibration Dynamics under Track Defects

This part examines the wheelset dynamics with track flaws using a comprehensive dynamical model of
the vehicle-track interaction. Simplify the track and the vehicle to a multi-rigid body system and a free-ended
Euler Bernoulli beam, respectively. Here, the deteriorated fasteners are considered a typical track defect, and
their stiffness and damping coefficients are adjusted within a certain range to characterize their deterioration

Figure 1: Track defects and the detection scheme. (a) Typical track defects, (b) Detection scheme, (i) The
fastener construction of DTVI2 type, (ii) Fastener defects, (iii) The methodology for identifying fastener
flaws

Table 1: Classification of track service status

Category TSS1 TSS2 TSS3 TSS4 TSS5

Defects None Local
squats

Rail corrugation Rail joints Joint squats

TSS6 TSS7 TSS8 TSS9 TSS10

Defects Welding
irregularity

Fastener
defects

Rail corrugation &
Fastener defects

Local squats &
Fastener defects

Joint squats &
Fastener defects
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in this model. In this paper, using the integrated track as an example, we thoroughly describe the pertinent
T60 rail and DTVI2 fastener parameters and examine the impact of fastener faults on rail vibration. The
research is carried out under the condition that the radius of the orbit curve is 300 m and the
superelevation of the outer orbit is 0.1 m. With the help of MATLAB language, the analytical solution of
the power transmission of the wheel-rail system can be achieved by analyzing the vibration response of
the wheelset induced by typical track flaws; the specific calculation process and result analysis have been
detailed in our prior results [38].

3.1 Dynamics of Tracks with Fastener Flaws
Rolling contact exists between the wheel and the rail. The displacement of vibration caused by the

wheel-rail force at the wheel-rail contact point and a frequency domain representation of the rail as

ÛrðwÞ ¼ ArðwÞF̂wðwÞ (1)

The rail support’s flexibility matrix, denoted by ArðwÞ can be expressed in the following way, which can
be formulated as follows [39]:

Arðx; wf Þ ¼ 1

2p

XP
j¼1

ajûrðx; wj; wf Þ � Dw (2)

where P represents the total frequency analysis points that were considered, and wj is the uniformly
distributed frequency analysis points, while a denotes the determinable parameter, and

ûrðx; wj; wf Þ ¼ ½ûzðx; wj; wf Þ; ûyðx; wj; wf Þ�T (3)

where ûzðx; wj; wf Þ and ûyðx; wj; wf Þ denote the vertical and lateral displacement components of the track,
respectively. These components can be derived by solving the equation for track vibration under a moving
unit load in the frequency domain.

The equation that determines the vibrations caused by a moving unit load is as follows [40], where the
wheel-rail contact forces in radial, vertical, and longitudinal directions are considered.
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where ux, uy, uz represent the longitudinal, lateral, and vertical displacement components, respectively, the
letters u, m and represent the torsional angle about the z-axis, rail mass per unit length, and coordinates
of the fastener j. And fyjðtÞ, fzjðtÞ denote the supporting forces of the fastener fulcrum in the axial
direction, transverse, and vertical directions, respectively, and TjðtÞ represents the torsion support restraint
moment. Other symbols are listed in Table A1 in the Appendix A.
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The details regarding this computing method are provided in our previous paper [39], from the above
calculation, it is known that after determining the track parameters, the track flexibility matrix ArðwÞ at
the contact point, which can be represented as Arðw; sÞ, is entirely dependent upon the fasteners’
performance. Rail vibration Ûrðw; sÞ is induced by variations in the wheel-rail force resulting from
variations in the fastener condition, and

Ûrðw; sÞ ¼ Arðw; sÞF̂wðwÞ (8)

3.2 Dynamics of Wheelsets with Fastener Flaws
For a single subway vehicle, the car body, two bogie frames, and four wheelsets, i.e., a total of 7 rigid-

body parts are generally considered. The frequency domain vibration displacement induced by the wheel-rail
force on the wheelset is given by the following equation:

ÛwðwÞ ¼ AwðwÞF̂rwðwÞ (9)

where Frw is the wheel-rail contact force.

Research reveals that the flexibility matrix depends only on the vehicle characteristics and that the
wheel-rail force limits the wheelset AwðwÞ vibration displacement.

The wheel-rail force can be calculated using the following formula:

�Frwðwf Þ ¼ kH � ½ �Uwðwf Þ � �Urðwf Þ � �Uroughðwf Þ�
¼ kH � ½�Awðwf Þ � �Frwðwf Þ � Arðwf ; sÞ � �Frwðwf Þ � �Uroughðwf Þ�

(10)

Extracting �Frwðwf Þ from Eq. (10):

�Frwðwf ; sÞ ¼ �½Awðwf Þ þ Arðwf ; sÞ þ kH
�1��1 � �Uroughðwf Þ (11)

In this context, kH represents the rigidity of the wheel/rail contact, while �Uroughðwf Þ is the displacement
of vibration of the wheelset in the frequency domain caused by rail flaws at the wheel-rail contact point.

By using the comprehensive computation procedure outlined in our earlier publication [39], the
wheelset’s frequency domain displacement can be obtained as

Ûwðwf ; sÞ ¼ Awðwf Þ � �Frwðwf ; sÞ (12)

Eq. (12) shows that the performance of the fastener directly affects the track flexibility matrix ArðwÞ, and
produces anomalous wheel-rail vibration by indirectly interfering with wheel-rail interaction.

4 Dynamic Simulation of Vehicle-Track System with Track Defects

This section creates a detailed dynamic model of the vehicle-rail coupling and analyzes the axle box’s
dynamic response to track problems. The axle box’s vibration response characteristics under various track
faults are thoroughly explained in the fifth section. The modeling of these common track problems is the
primary contribution.

4.1 Model of Vehicle-Track Dynamics Interaction
Using the multibody system dynamics modeling tool Universal Mechanism (UM) [41], we created the

vehicle-rail coupling model. The track and the highway slab in this model, which is displayed in Fig. 2, are
represented by finite element theory, with the vehicle connected to the track via the FASTSIM wheel-rail
contact model [42]. This paper initially employed finite element software for the modeling of elastic rails.
It considers a two-layer track structure consisting of steel rails and a unified track bed, concerning
common track structures found in rail transit lines in China.
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In this model, the track has a total length of 92.5 m and is divided into three parts. The track slab and the
track built by finite element software are 12.5 m long. The rails on both sides of the track are extended by
40 m in the simulation environment as the rail model boundary. The track is a curved structure with a radius
of 300 m, and the outer track is 100 mm super high. The typical track defects loaded in this model are set in
the track finite element part. The detection signal is characterized as the vibration acceleration recorded at the
inner axle box of the first wheel axle located within the first bogie. The bottom of the track plate and fasteners
are divided and simulated using multiple rows of rigid damping force units. The variance in the rail is
interpreted as a stochastic excitation of white noise with frequency components ranging from 2–2000 Hz.
Regarding the accuracy of the UM simulation model, we compared the accuracy of the model based on
the theoretical analysis results in our previous research results [38]. In this paper, the type of track disease
was added on the basis of the previous research, so the model verification was not repeated.

4.2 Simulation Model of Track Defects

4.2.1 Rail Squats
The vertical-longitudinal profile of rail local squats is very close to the sinusoidal waveform. Two profile

parameters need to be set during simulation, namely, the maximum collapse length and the maximum
depression depth. The typical profile of local squats can be fitted as follows [22,33]:

SðxÞ ¼ ds
2
cos

2px
Ls

� �
� ds

2
(13)

where x is the longitudinal coordinate of rail, ds indicates the maximum depth of local collapse in mm, and Ls
is the maximum length of local collapse in mm.

Adjusting the maximum length and depth of local squats to generate the vertical-longitudinal profile of
rail local squats. The transverse coordinates of each wheel-rail contact point corresponding to different wear
depths are obtained by the calculation of rail superimposed wear. The vertical-longitudinal profile of the rail
squats is divided into a limited number of micro-segments along the longitudinal direction with sufficiently
small intervals, and the horizontal coordinate of the wheel-rail contact point in the micro-segment is merged
with its vertical-longitudinal profile. The three-dimensional distribution of the local squats on the rail surface
can be obtained, and the modeling process of rail squats is shown in Fig. 3. The rail squats defects with a
three-dimensional profile are set in the rail 3D model. After that, this rail model meshes with the help of
ANSYS, which is imported into the dynamic simulation model illustrating the coupling between the
vehicle and the track, as depicted in Fig. 2.

Figure 2: The vehicle-track dynamics coupling model
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4.2.2 Rail Corrugation
The vertical-longitudinal profile of the typical corrugation can be modeled by Eq. (14) [21].

cðxÞ ¼ dc
2
sin

2px
kc

� �
(14)

where dc indicates the wave depth of rail corrugation in mm, and kc is the wavelength of rail corrugation in
mm.

In order to calculate profiles, this paper introduces typical short-wave corrugation (wavelength of 30 mm
and wave depth of 0.1 mm), medium-wave corrugation (wavelength of 100 mm and wave depth of 0.2 mm),
and long-wave corrugation (wavelength of 200 mm and wave depth of 0.3 mm) [43]. The aforementioned
modeling technique involves the three-dimensional modeling of rail corrugation in various grades, which are
then progressively added to the three-dimensional rail model for the purpose of creating finite element
meshes using ANASYS. Finally, the dynamic simulation model of the vehicle-track connection
incorporates this rail model into the 40–50 m track section.

4.2.3 Rail Joints
The above modeling principle is introduced to simulate the rail low joint defects, and the cosine function

in Eq. (15) is used to simulate the typical rail low joint profile [44].

J ðxÞ ¼ dJ
2

1� cos
px
LJ

� �� �
(15)

where dJ indicates the maximum sinking depth of the joint in mm, and LJ is the maximum extension length of
the low joint in mm.

The maximum extension length of the low rail joint is about 0.4 m, and the maximum sinking depth is
3 mm. Considering that the vertical-longitudinal profile shape of the rail low joint is suitable for the
transverse section of the entire rail, the vertical-longitudinal profile is extended horizontally. Then it is
introduced into the rail 3D model for the finite element meshing operation as mentioned above.

4.2.4 Welding Irregularity
The longitudinal length of the high joint weld is about 0.5 m, and the weld crest is about 1.5 mm higher

than the top surface of the standard rail. On the other hand, the longitudinal area of the low weld irregularity
is longer, which is about 0.5–0.7 m, and the weld is lower than the standard rail surface by up to 1.85 mm.

Figure 3: Modeling process of rail squats

630 SDHM, 2024, vol.18, no.5



The vertical-longitudinal profile of weld irregularity can be approximately described by cosine waveform and
can be fitted with the aid of Eq. (16) [45]. In the simulation model of this paper, the length of the weld area is
400 and 600 mm, and the maximum depth of wave crest and trough is 1.5 mm. The specific modeling process
is the same as above, and not repeated here.

TW ðxÞ ¼ � dTW
2

1� cos
px
LTW

� �� �
(16)

where dTW indicates the maximum depth of the peak (trough) of the high (low) weld higher (lower) than the
top surface of the standard rail in mm, and LTW represents the maximum extension length of the high (low)
weld area in mm.

5 Response Features of the Axle-Box Vibration with Track Defects

With the help of the above simulation model, the vibration acceleration signals of the axle box with the
typical track defects are obtained. The characteristics of track defects are retained while the interference
vibration caused by noise excitation is minimized by using the coherent averaging method [46]. The
discrete wavelet transform (DWT) is performed on the ABVA to analyze the response characteristics of
the detection signal in the time-frequency domain.

Based on the classification of track service states in Table 1, this paper only takes the characteristic
responses of axle-box vibration of four typical track states such as track with local squats (TSS2), track
with rail joints (TSS4), track with welding irregularity (TSS6) and track with joint squats as well as
fastener defects (TSS10) as examples for illustration.

5.1 Response Features of the Axle-Box Vibration with Rail Squats
The maximum length of local rail squats is 15, 30, and 70 mm, and the maximum wear depth is 0.3 mm.

The dynamic simulation models of track I, track II, and track III with squats are established, respectively.
Fig. 4 shows the wavelet power spectrum of the axle-box acceleration in four different operating conditions.

It shows that rail squats cause a strong vibration response of the axle box. For example, the wavelet
power spectrum amplitude of the axle-box vibration acceleration with the normal track is only 0.3–
1.8 m2=s4. When the initial rail squat appears (the longitudinal length is only 15 mm), the axle-box

Figure 4: Wavelet spectrum of axle-box vibration with different rail squats
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vibration is obviously intensified, and the wavelet power spectrum amplitude is 2–9 m2=s4. With the further
deterioration of the rail squat, the train shows a stronger vibration response, and the wavelet spectrum
amplitude of the vibration signal continues to increase, which is about 10 times stronger than that under
normal track conditions. For the initial squat with a relatively short collapse area, its vibration impact on
the running vehicle is close to the pulse excitation, and the vehicle vibration time caused by it is the shortest.

Furthermore, the wavelet spectrum efficiently displays the vibration signal’s frequency distribution. The
axle-box vibration response for the standard track exhibits a considerable degree of unpredictability. On the
other hand, a wide frequency band is stimulated by rail squats for the axle-box vibration response, and the
high energy response frequency resulting from varying degrees of rail squats corresponds to various
frequency bands within the 300–1200 Hz range.

5.2 Response Features of the Axle-Box Vibration with Rail Joint Defects
Fig. 5 illustrates how rail joint flaws exacerbate the vehicle’s vibration response. Axle-box vibration

resulting from rail joint problems has a maximum response frequency of 500 to 1200 Hz. The vibration
response of the axle box is superimposed with the vibration response of the rail squat when it happens in
the position of the rail joint. The axle-box vibration response frequency gradually approaches 500–
800 Hz as the squat size grows.

Figure 5: Wavelet spectrum of axle-box vibration with different joints defects
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5.3 Axle-Box Vibration Response Characteristics When Rail Joint Problems Are Present
Fig. 6 shows the wavelet spectrum of the axle box acceleration when the vehicle is running through the

high and low welding area of the track.

It shows that the vibration response of the axle box caused by the rail’s high and low weld irregularity is
mainly in the low-frequency band (30–60 Hz), in which the vibration of the axle box excited by the high weld
irregularity is concentrated in the 40–60 Hz. However, the primary vibration response frequency associated
with the rail’s low weld irregularity is comparatively lower, ranging from 30 to 50 Hz.

5.4 Response Characteristics of the Vibration Axle-Box with Rail and Fastener Flaws
Three typical track conditions are introduced, which refer to track I with rail corrugation and fastener

defects, track II with joint defects and fastener defects, and track III with rail joint and squats as well as
fastener defects, respectively. Fig. 7 illustrates how various track flaws lead to the axle box’s vibration
response at a specific frequency. They are comparable to the high-low joint weld irregularity on the rail
and the response to vibration of the axle box due to fastener failures. The low-frequency range of 40–
60 Hz is where the vibration response is concentrated, and its continuous range is roughly 0.5–0.7 m.
Furthermore, compared to the axle box directly aroused by rail joint flaws, the amplitude of vibration
response resulting from fastener problems is substantially reduced.

In summary, the wavelet power spectrum of the axle box vibration acceleration reflects the impact and
time-frequency characteristics of different track defects, but only relying on it for track defects identification
and detection has the following shortcomings: (1) It is impossible to effectively distinguish fastener defects
from track weld irregularity; (2) It is difficult to detect and identify the track condition where the rail joints
defects are superimposed with fastener defects; (3) It is impossible to effectively extract the subdivision
frequency information related to different defects in complex detection signals, and realize effective
denoising processing.

Figure 6: Wavelet spectrum of axle-box vibration with different thermite welds
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To address these issues, we introduce a deep convolution neural network to learn the mapping relation
between the ABVA and the track defects, and to detect such weak differences between the dynamic responses
of the axle-box caused by the damaged and the intact track system to classify the types of track defects.

6 Track Defects Recognition Based on CNN

Through simulations, 8250 sets of sample data are produced, with the axle box vibration signal’s
spectrum image acting as the network’s input feature. Using a random sampling technique, the wavelet
spectrum data of axle box acceleration with various track faults in the dataset were split into training and
test sets in the proportions of 80% and 20%.

6.1 The DCNN Architecture
Commonly used neural networks include Feed forward neural networks (FF or FFNN) and perceptrons

(P), Hopfield networks (HN), and Convolutional neural networks (CNN or DCNN). In a convolutional neural
network, there are three components. The input layer is the initial component. Pooling layers and n-
convolution layers make up the second section. A fully connected multi-layer perceptron classifier makes
up the third section. This is a unique deep neural network model, and it is unique in two ways: first,

Figure 7: Wavelet spectrum of axle-box vibration with different track defects
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some of the connections between neurons in the same layer share weights, and second, there are some
incomplete connections between neurons. Its network structure, which minimizes the number of weights
and network model complexity, is more akin to a biological brain network due to its imperfect
connections and weight sharing. A deep convolutional neural network is an extension of the
convolutional neural network, which has more convolutional layers and pooling layers, so it can extract
image features better. Deeper networks are able to learn more complex features, which improves
classification accuracy.

The deep learning network used in this work is based on the concept of connected convolutional kernels,
and it is structurally very similar to the VGG16 network [47]. Table 2 displays the network architecture, with
Conv denoting the convolutional layer, Maxpool standing for the maximum pooling layer, and Fc for the
fully connected layer.

The network architecture comprises 11 layers interconnected by concatenated convolution blocks and
pooling layers, consisting of 3 fully connected layers and 4 convolutional layers. Interestingly, there are
eight convolutional layers in the network structure, using a smaller convolutional kernel size of 3 × 3,
and the step size is set to 1. In addition, the network contains three maximum pooling layers, all of which
are 2 × 2 in size and set to 2 in step. In terms of fully connected layers, the dimensions of the first two
are 256 × 256, and the dimensions of the third are 256 × 10. The network model has the advantage of
being lower in size and provides efficient nonlinear feature extraction in addition to having a fully linked
layer. To improve the generalization ability of the network and avoid overfitting, the dropout
regularization [4,48] and L2 regularization methods are applied, and the hyperparameters of the model are
determined by multiple cross-experiments.

6.2 Experimental Results
The network model is tested based on the test samples, and the confusion matrix shown in Table 3a is

obtained. It shows that the recall and precision of 10 different categories of track service status are all higher

Table 2: Network structure (Input (128� 256� 3 RGB image))

Name Kernel size Stride Trainable

Conv1-1 3� 3� 32 1� 1� 1� 1 TRUE

Conv1-2 3� 3� 32 1� 1� 1� 1 TRUE

Maxpool1 1� 2� 2� 1 1� 2� 2� 1

Conv2-1 3� 3� 64 1� 1� 1� 1 TRUE

Conv2-2 3� 3� 64 1� 1� 1� 1 TRUE

Maxpool2 1� 2� 2� 1 1� 2� 2� 1

Conv3-1 3� 3� 128 1� 1� 1� 1 TRUE

Conv3-2 3� 3� 128 1� 1� 1� 1 TRUE

Maxpool3 1� 2� 2� 1 1� 2� 2� 1

Conv4-1 3� 3� 256 1� 1� 1� 1 TRUE

Conv4-2 3� 3� 256 1� 1� 1� 1 TRUE

Fc-5 256� 256 TRUE

Fc-6 256� 256 TRUE

Fc-7 256� 10 TRUE
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than 92.1%, indicating that for all working conditions in which track defects occur, more than 93.3% of the
defects can be detected accurately with the help of the deep learning network. Among them, the network
model has the lowest recall rate for TSS7, which is 92.1%. The recall rates of the remaining nine types of
service status are all higher than 95.34%. This is primarily because when a fastener defect occurs in the
track system, the vibration response frequency of the axle box excited by the fastener is primarily focused
in the 40–60 Hz range, and the vibration response time history is about the length of the sleeper spacing,
which is very similar to the vibration response caused by the track welding irregularity. Therefore,
misclassification can be caused when the wavelet spectrum of the axle box acceleration is used as the
feature input of the network model. More importantly, limited by the number of samples used for
network model training in this paper, the detection accuracy of TSS7 is lower.

The findings demonstrate that the network model put forward in this work has a positive impact on track
service state detection. The network model’s prediction accuracy and overall prediction accuracy for various
track circumstances are displayed in Table 3b. It demonstrates that the model created by the suggested deep
learning network approach has a prediction accuracy of 95.98% on the test set, with the TSS7 track state
having the lowest prediction accuracy at just 93.85%.

To sum up, with the help of a series convolution neural network, the accuracy of detecting track defects
with axle box vibration response as detection signal is as high as 95.98%. Taking into account the number of

Table 3: Experimental results

(a) The fastener detection confusion matrix

Actual category Predicted class Recall (%)

TSS1 TSS2 TSS3 TSS4 TSS5 TSS6 TSS7 TSS8 TSS9 TSS10

TSS1 1600 0 0 0 0 0 0 0 0 0 100

TSS2 0 1549 0 0 0 0 0 0 0 0 100

TSS3 0 0 1577 0 0 0 0 0 0 0 100

TSS4 0 0 0 1560 0 0 0 0 0 0 100

TSS5 0 0 0 0 1571 0 0 0 0 0 100

TSS6 0 23 0 0 11 1528 21 17 0 0 95.50

TSS7 0 33 20 0 15 2 1474 34 22 0 92.13

TSS8 0 0 0 0 10 10 51 1548 0 0 95.61

TSS9 0 0 0 0 0 0 0 12 1562 28 97.50

TSS10 0 0 0 0 12 0 0 0 16 1572 98.25

Precision (%) 100 96.51 98.75 100 97.03 99.22 95.34 96.09 97.63 98.25 –

F1-score 100 97.64 99.37 100 98.49 97.33 93.70 95.85 97.57 98.25

(b) Prediction accuracy

Track status categories TSS1 TSS2 TSS3 TSS4 TSS5

Classification accuracy (%) 96.81 95.27 97.13 94.63 96.22

TSS6 TSS7 TSS8 TSS9 TSS10

Classification accuracy (%) 94.98 93.85 95.74 97.42 96.04

Global accuracy (%) 95.98
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samples used for network model training, the prediction accuracy presented by the network model in this
paper is slightly lower. However, its recall rate and accuracy rate indicators both show that the model has
a good predictive classification effect. If enough axle-box vibration data can be obtained for the training
of the network model, the prediction accuracy of the network model will inevitably be improved.
Therefore, the method proposed in this paper can be used for the detection of track defects in the future.

7 Conclusion

In this paper, an intelligent identification and detection method of track defects based on the wavelet
spectrum of axle box acceleration and series convolution neural network model is proposed. Taking the
rail squats, rail corrugation, rail joint defects, rail welding irregularity, and fastener defects as typical track
defects, the service state of the track system is divided into 10 categories. By using deep learning
technology, the operating conditions of 10 different types of track service status are classified and
detected. The results show that the detection method proposed in this paper can realize effective detection
of track defects, and its prediction accuracy rate is 95.98%. In this research, a vibration-based detection
method is presented to overcome the limitations of the image-based detection method and provide real-
time detection of invisible damage on the track system. As such, it can be applied in addition to the
vision-based approach for track defect identification, thereby improving the level of comprehensive
monitoring and maintenance of the track system. Section 5 of this paper lacks the use of real data to
verify the correctness of features, which is also a shortcoming of our paper. We will continue to improve
this part in the future.
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Appendix A

Table A1: Symbols used in calculation

Symbol Definition Symbol Definition

E Elastic modulus A Rail section area

ux, uy, uz The rail displacement in x; y; z direction R Curve radius

fxj, fyj, fzj The axial, transverse, vertical supporting forces xrj The coordinates of the jth fastener

Iy, Iz The area moment of inertia of y-axis and z-axis Id Rail section torsional constant

I0 Part polar moment of inertia m Reference mass in unit length of rail

G Shear modulus q Rail density

w Angular frequency of track vibration u The torsional angle around the z-axis

df Sleeper spacing wf Excitation circle frequency
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