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ABSTRACT

Wind turbines have emerged as a prominent renewable energy source globally. Efficient monitoring and detection
methods are crucial to enhance their operational effectiveness, particularly in identifying fatigue-related issues.
This review focuses on leveraging artificial neural networks (ANNs) for wind turbine monitoring and fatigue
detection, aiming to provide a valuable reference for researchers in this domain and related areas. Employing var-
ious ANN techniques, including General Regression Neural Network (GRNN), Support Vector Machine (SVM),
Cuckoo Search Neural Network (CSNN), Backpropagation Neural Network (BPNN), Particle Swarm Optimiza-
tion Artificial Neural Network (PSO-ANN), Convolutional Neural Network (CNN), and nonlinear autoregressive
networks with exogenous inputs (NARX), we investigate the impact of average wind speed on stress transfer func-
tion and fatigue damage in wind turbine structures. Our findings indicate significant precision levels exhibited by
GRNN and SVM, making them suitable for practical implementation. CSNN demonstrates superiority over
BPNN and PSO-ANN in predicting blade fatigue life, showcasing enhanced accuracy, computational speed, pre-
cision, and convergence rate towards the global minimum. Furthermore, CNN and NARX models display excep-
tional accuracy in classification tasks. These results underscore the potential of ANNs in addressing challenges in
wind turbine monitoring and fatigue detection. However, it’s important to acknowledge limitations such as data
availability and model complexity. Future research should explore integrating real-time data and advanced opti-
mization techniques to improve prediction accuracy and applicability in real-world scenarios. In summary, this
review contributes to advancing the understanding of ANNs’ efficacy in wind turbine monitoring and fatigue
detection, offering insights and methodologies that can inform future research and practical applications in
renewable energy systems.
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1 Introduction

1.1 Background
The world demand for renewable energy resources has recently increased significantly due to the

shortage of conventional energy sources and their adverse effects on the environment and climate. The
current severe shortage of energy and degradation of the environment have compelled individuals and
authorities around the globe to explore promising sources of alternative energy [1]. There are many
sources for generating renewable energy, and one of them is wind energy, which is the most common due
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to its abundance and simplicity in generating power. Wind energy is an alternative source demonstrating the
benefits of being sustainable, environmentally friendly, and clean [2–4]. Because of this, wind energy has
attracted significant interest as a form of plentiful, environmentally friendly renewable energy resources
and has recently seen unparalleled growth in development [1]. With just 2000 offshore wind megawatts
(MW) constructed at the end of 2009, wind energy has been acknowledged as one of the primary
renewable energy sources. Its progress has primarily involved the development of onshore wind farms
[5]. Up till recently, onshore installations have accounted for the majority of the utilization of wind
energy. Compared to other renewable energies, wind energy has a higher technological sophistication and
higher availability of wind resources, which account for this selective progress [5]. Hence, we can
witness a vast orientation of the developed countries to harness wind energy for power generation, as it
all started with one wind turbine in 1887 to produce electricity in Scotland, and now it is more than
70,800 in the U.S. only. Even though wind turbines have shown numerous expansions, they are still
significantly vulnerable to physical damage [6].

1.2 Fatigue
Fatigue occurs when a material under stress weakens with time, especially cyclic stresses [7]. Cycling

loading and fatigue can cause cracks to spread even at nominal maximum stress levels substantially lower
than the material’s ultimate stress limit, which can ultimately cause the structure to fracture [7].

During the operational phase of a wind turbine, most of its components experience fluctuating
mechanical stresses due to the variation in wind speed. Consequently, this process results in gradual
deterioration of individual components, ultimately culminating in a failure. The initiation of this process
occurs at the micro-scale as a result of irreversible alterations in the microstructure. Over time, it
progresses and eventually becomes evident as a defect, ultimately causing the loss of functioning in a
specific component [8]. Understanding the process of component degradation over time is of significant
importance, as it allows for the estimation of the remaining usable life of the component before the loss
of its functionality. To enhance the operational longevity of a wind turbine, it is vital to understand the
utilized lifespan, often referred to as cumulative damage. However, it should be noted that the cumulative
damage in wind turbines directly correlates with the fatigue load they endure [9].

If fatigue loads are continuously monitored while wind turbines are in operation, an up-to-date
evaluation of lifetime consumption concerning design criteria may be feasible [10]. To avoid fatigue as
much as possible and improve the wind energy production process, many mechanisms could be used to
predict fatigue, including the ANN (artificial neural network).

1.3 ANN
ANN is a set of interconnected units or nodes, as seen in Figs. 1 and 2. More accurately, it combines

many simple processing units running in parallel, each capable of learning from its environment and
storing that knowledge in its connections [11]. ANN provides obvious benefits over conventional data
processing techniques when handling fuzzy, random, and nonlinear data [12]. Remembering that all
artificial neural network methods exhibit optimal performance when dealing with nonlinear dependencies
between the inputs and outputs is crucial. ANNs can model and identify linear relationships. However, it
is worth noting that in some instances, the outcomes obtained through ANNs may be inferior to those
achieved using more straightforward basic statistical procedures [13].

Within a neural network, individual nodes engage in basic computations, while connections facilitate the
transmission of signals between nodes. These connections are characterized by numerical values referred to
as “Connection Weight”, which signify the degree to which a signal is either amplified or attenuated by the
connection [14]. The artificial neuron is designed to replicate the functionality of a real neuron, specifically
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by receiving multiple impulses from nearby neurons and processing them according to a predetermined and
straightforward method [13].

There are many types of ANN methods. In this paper, we investigated the literature for its uses in the
prediction of wind turbine fatigues, and the paper aims to make it a reference for researchers in this field
or any related field.

1.4 Paper Layout
The paper is structured as follows. Section 2 introduces an overview of wind turbine fatigue. The

fundamentals of artificial neural networks are presented in Section 3, which provides a comprehensive

Figure 1: An illustration depicting the architecture of an artificial neural network (ANN). The ANN is
composed of multiple layers, including an input layer, one or more hidden layers, and an output layer
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Figure 2: Artificial neural network architecture, as (a) represents the input values (i), (b), (d), (f) represent
the weighted connections (w), (c) and (e) represent the processing neurons, (g) represents the output
values (o)
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review of the essential aspects of ANNs, including their basic principles, the learning process, and their
specific application in the context of wind energy systems. A previous study on wind turbine fatigue is
investigated in Section 4, which comprehensively examines the current research literature. The
application of ANNs in wind turbine fatigue prediction is illustrated in Section 5, which includes an
extensive review of the application of ANN in fatigue prediction. Section 6 presents a previous case
study where ANNs had been applied in investigating wind turbine fatigue, in addition to a simulation that
we conducted based on the literature. The current limitations and challenges in using ANNs for wind
turbine fatigue prediction are presented in Section 7, and valuable perspectives for future research and
development in this field are provided. A summary of the main findings and the significance of ANNs in
advancing the understanding of wind turbine fatigue is presented in Section 8.

2 An Overview of Wind Turbine Fatigue

Wind turbine fatigue is the term used to describe the accumulated and gradual degradation that develops
over time in the structural elements of a wind turbine structure due to cyclic loads brought on by wind-
induced forces and operational circumstances. Fatigue is essential to consider while designing and
operating wind turbines since it can significantly affect the structure’s durability and viability over time
for these sustainable energy systems. Pacheco et al. in 2022 [15] addressed multiple issues evaluating
wind turbine tower fatigue. Wind gusts, turbulence, and the blades’ continual rotation, which subjects the
tower to cyclic loads, are just a few of the variables that can cause fatigue in wind turbine structures. The
following are some crucial aspects of how fatigue affects the health and durability of wind turbine structures:

1. Reduced Structural Life: The wind turbine structure’s estimated life may be reduced due to fatigue
[16]. The wind turbine’s structural elements develop cracks over time due to cyclic loads; if these
cracks are not effectively handled, they may eventually collapse the structure [16].

2. Maintenance Costs: To identify and reduce fatigue-induced damage, periodic checks and upkeep
are necessary [17]. The total effectiveness of the wind turbine may be impacted by these time-
and money-consuming upkeep tasks [17].

3. Safety Concerns: The safety of operating wind turbines may be affected by fatigue-related
degradation. Fatigue-related structural failures can cause disastrous incidents, such as the tower
collapsing, which puts both the surrounding environment and the workforce in danger [18].

4. Financial Implications: Operators of wind farms may suffer economic losses due to wind turbine
outages and repair expenses related to fatigue-induced damage. To reduce these financial risks,
efficient fatigue evaluations and handling techniques are crucial [16,19–22].

5. Design Considerations: Towers for wind turbines must be designed considering fatigue risks.
Enhancing the tower’s resilience to fatigue requires careful design considerations, including
materials choice, element sizing, and structural strengthening [23,24].

The recognition and handling of fatigue-related difficulties in wind energy structure depends on several
interconnected factors, such as wind loads, cyclic loads, and material qualities. Wind turbine towers are
particularly susceptible to these factors.

Due to its turbulent and dynamic properties, the wind force, which exerts variable and cyclic stresses on
tower structures, is the primary external source that causes fatigue. Wind-induced forces cause variable
strains to be placed on tower parts, which results in cyclic loading patterns. These forces are affected by
multiple factors, such as wind speed, gustiness, direction, and turbulence intensity. Wind loads must be
precisely characterized and modeled to be evaluated for their impact on fatigue life.

Furthermore, cyclic loading is the essential mechanism underlying the onset and spread of fatigue
damage within wind turbine towers. It is driven by noises brought on by the wind and the constant
rotation of turbine blades, which create stress fluctuations and, over time, accumulate fatigue damage
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[25,26]. Understanding and reducing the impacts of cyclic loading requires strategies involving load
tracking, stress evaluation, and fatigue assessment [27].

Additionally, it turns out that the inherent material characteristics of tower components have a crucial
role in determining how they respond to cyclic loads and, consequently, how susceptible they are to
fatigue [28]. Significant influence is exerted by ductility, fracture toughness, yield strength, and fatigue
strength. A wise material choice strengthens the ability to withstand fatigue-induced damage by reflecting
improved fatigue strength and fracture toughness [28]. It is crucial to understand that material qualities
might vary depending on the environment, temperature swings, and over some time, underlining the
necessity for careful material specification and selection [28].

An investigation of processing techniques for fatigue assessment is conducted. These solutions combine
techniques created to consider the critical role of material properties, capture the intricate components of
wind loading, and forecast the complicated impacts of cyclic loading [15]. The research emphasizes the
importance of developing a comprehensive strategy for managing fatigue that considers the complex
interactions between different causing elements [15].

Improved computational techniques, sensing technology, and materials science must be integrated to
successfully traverse the difficulties caused by fatigue in wind turbine structures. This integration is the
basis for establishing reliable and practical techniques for handling and evaluating fatigue. Moreover,
continuing research projects and industry collaboration activities are crucial for improving our
understanding of these complex elements, ultimately improving the dependability and long-term viability
of wind energy structures.

Table 1 summarizes different methods for wind turbine fatigue assessment, as it provides a
comprehensive overview and comparison of various methods used for assessing fatigue in wind turbines.

Table 1: Comparison of wind turbine fatigue assessment methods

Method The main discoveries Restrictions

PSF (Partial safety
factor) [29–32]

PSF is an approach for determining the
necessary partial factors and their
respective values for various
components.

The empirical nature and the
challenges associated with calculating
an adequate partial safety factor render
it unsuitable for application in the
context of structural optimum designs.

PDF (Probability
density function) of
wind speed [33,34]

The PDF demonstrates notable
characteristics such as flexibility,
simplicity, and utility for describing
various wind regimes, including high
frequencies of null winds, unimodal
distributions, bimodal distributions,
and bitangential regimes.

The PDF exhibits limitations in
adequately representing null, low, and
high wind speeds, as it fails to account
for the characteristics of the tails and
neglects the effects of ordering and
turbulence severity.

Mean wind distribution
and turbulence intensity
distribution [35]

Determining the distribution of mean
wind and turbulence intensity
quantifies the intrinsic fluctuations
within a turbulent wind field.

In this method, the fluctuation in wind
load distribution under extensive
spatiotemporal variability cannot be
accurately characterized.

The initial approach involves utilizing
the log-logistic distribution to model

(Continued)
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3 Artificial Neural Networks (ANNs): Fundamentals

3.1 An Overview of ANNs
Artificial neural networks (ANNs) are computational modeling methods recently developed and have

gained widespread adoption in many fields for simulating challenging real-world issues [39]. ANNs could
be described as thickly coupled adaptive basic processing units capable of executing enormously
concurrently high-performance computations for data processing and knowledge representation [40,41].
Even though ANNs are blatant representations of their biological counterparts, the ultimate objective of
ANNs is not to mimic the functioning of biological systems but rather to employ what is known about
how biological networks work to address complicated issues. The extraordinary information processing
traits of biological systems, such as nonlinear behavior, significant parallelism, durability, error and
failure tolerance, learning, capability to cope with inaccurate and ambiguous input, and the ability for
generalization, make ANNs attractive [42]. Such features make artificial models advantageous because (i)
nonlinearity provides for an improved fit to the data, (ii) Noise-insensitivity allows for precise forecasting
even in the presence of faulty measurements and questionable data, (iii) High parallelism ensures quick
processing and hardware fault tolerance, (iv) As the environment changes, the system can adapt by
updating (modifying) its internal structure, and (v) Generalization permits the model to be used with
unlearned data. The primary goal of ANN-based computing, often known as “neurocomputing”, is to
create mathematical formulas that allow ANNs to emulate the data processing and information acquisition
processes seen in the human brain. Although ANN models possess an empirical nature, they can yield
highly accurate answers for issues that are either precisely or imprecisely defined. Additionally, they are
adept at handling phenomena that can only be comprehended using experimental data and observations
conducted in real-world settings [43].

Artificial intelligence is distinctive in its predominant application for data analysis, notably advocated by
social science and art scholars, and its utility in science and engineering [44]. ANNs have been extensively
used in various domains, including business, education, economics, and everyday life. ANNs have
demonstrated their applicability in multiple domains, including optimization methods [45], intrusion
detection [46,47] and data analysis [48–50]. Numerous scholars have utilized machine learning (ML)
methodologies to address classification challenges [51,52]. Artificial neural networks (ANNs) have
demonstrated a high level of proficiency in identifying trends and patterns within datasets [53].
Consequently, they are well-suited for fulfilling forecasting and prediction requirements [53].

Table 1 (continued)

Method The main discoveries Restrictions

10-min mean wind
speed and turbulence
intensity factor [36,37]

the distribution of the turbulence
intensity component over 10 min.
Additionally, a hierarchical extended
wind uncertainty representation
method is employed.

This method has the same limitations
as the mean wind and turbulence
intensity distribution method.

Local wind
measurements and
speed-up factors [38]

This method examines the influence of
uncertainty in the wind climatic
factors, particularly in a location, on
the overall uncertainty in evaluations of
structural reliability.

At present, the determination is made
based on engineering expertise and is
contingent upon obtaining additional
research.
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3.2 ANNs Learning Process
Within artificial systems, learning is commonly understood as the iterative process by which the

system’s internal representation is modified in direct reaction to external inputs, enabling the system to
execute a designated task effectively. Learning encompasses the alteration of the network architecture,
encompassing modifications of link weights, the creation or removal of connecting links, and the
adjustment of firing rules for individual neurons [41]. ANN learning occurs through iterative steps,
wherein the network is exposed to training instances, resembling the process through which humans
acquire knowledge through experiential learning. An ANN system is considered to have acquired
knowledge when it can effectively process imprecise, fuzzy, turbulent, and probabilistic information
without significantly compromising the quality of its responses. Additionally, a well-trained ANN system
should be capable of using the knowledge gained from specific tasks to solve unfamiliar problems,
thereby exhibiting the capacity to generalize its learning.

The forecasting process involves utilizing ANNs to analyze a time series dataset that represents a
specific phenomenon inside a particular situation. This analysis entails training the ANN using samples
from the dataset, enabling it to learn the patterns and relationships within the data. Once trained, the
ANN can be applied to additional scenarios to anticipate or forecast the phenomenon’s behavior at future
times [39].

3.3 ANNs Applications in Wind Energy Systems

3.3.1 Forecasting and Predictions
The accurate estimation of wind energy generation is a multifaceted undertaking that holds significant

importance in facilitating optimal decision-making for various stakeholders, including energy providers,
participants in the wind energy market, wind farm proprietors and operators, and maintenance teams. One
possible approach to mitigating overproduction among energy suppliers is incorporating energy storage
systems or synchronizing the projected wind energy production with the anticipated demand [54].
Additionally, generators can implement strategies for optimizing the electricity market offers [55,56].
Furthermore, maintenance tasks can be scheduled based on predictive models [57,58], among other
potential strategies.

The utilization of ANNs has proven effective when understanding physical processes that are limited or
highly intricate, such as predicting wind patterns [59], which is mainly attributed to the inherent complexity
and nonlinearity of wind behavior, making accurate wind forecasting challenging. Hence, the primary benefit
of artificial neural networks (ANNs) is their ability to effectively capture intricate nonlinear relationships
utilizing pattern recognition [60]. This characteristic renders them well-suited for application in the
domain of wind forecasting.

Most of the literature studies for wind speed forecasting using ANN are focused on concise and short-
term wind speed prediction because these predictions are beneficial and helpful for controlling the wind
turbine and avoiding any kind of fatigue [61], such as wind turbine blade fracture. Some other research
that has been considered for forecasting very short-term wind speed is 1-The new approach developed by
Riahy et al. in 2008 [62] for predicting short-term wind speed, combining the linear prediction model
with waveform filtering. Still, according to the published results, the suggested approach is fast and
practical for online use. However, it is not sufficiently precise [62]. 2-By using wavelet-based networks
and particle swarm optimization, Safavieh et al. in 2007 [63] suggested a newly developed integrated
approach to forecast very short-term wind speed. Although the mentioned hybrid model is effective, the
optimization technique takes up much CPU time. Hence, it is not suitable for online applications [63].

Kani et al. in 2011 [64] proposed a new approach to forecast the very short-term wind speed using ANN.
Two ANNs are utilized in this proposed approach. Ten real-world wind speed data are used from t to t � 10ð Þ
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as input variables for the first ANN (ANN-1), which is mainly used for forecasting and detecting the short-
term trend in wind speed signal [64]. Transition probabilities for the forecasted values, the other four indices,
and the primary forecasts are provided as input variables to a second ANN (ANN-2) following the first
prediction using ANN-1 [64].

Silva et al. [65] forecasted the wind speed by using the RBF (radial basis function) instead of the MLP
(multilayer perceptron) because it is more efficient, and they proved that by designing an experiment that
shows the difference between RBF and MLP [65].

Kulkarni et al. [66] after using the ANN to forecast the wind speed in the long-term, they observed that
current deep neural network techniques like NARX (nonlinear autoregressive networks with exogenous
inputs) and LSTM (long short-term memory) are comparable. However, LSTM turns out to be more
adaptable to changes in cell state while being effective in training time. It also gives better results than
NARX for more extended multistep forecasts [66].

Many proposed hybrid models in the literature gave better results than single ANN methods for
forecasting wind speed in the short term. As a result, the literature suggested that hybridizing the ANNs
is better than using a single ANN method for the wind speed predictions in the concise term [61].
Furthermore, the use of ANN for wind speed prediction was not limited to short and concise terms;
scientists used it in medium-term wind speed prediction by developing specific algorithms using ANN [61].

Babbar et al. [67] used LASSO (Least Absolute Shrinkage and Selection Operator) and BNN (Bayesian
Neural Network) to forecast medium-term wind speed. The data has been collected using the NWP
(Numerical Weather Prediction) model, which typically predicts weather characteristics. The primary goal
of wind speed prediction was to eliminate differences between expected and actual wind speed using
BNN. MAPE (Mean Absolute Percentage Error) and NMAE (Normalized Mean Absolute Error) are
performance indicators used to evaluate precision. The outcome demonstrates that, in contrast to LASSO,
which did not offer acceptable accuracy at any hour, BNN has done very well and has obtained high
precision for 6 to 72 h ahead of forecasting by estimation predicting [67].

Even after extensive studies utilizing various machine learning techniques, it is still possible to enhance
wind speed prediction. Prospectively, a wide variety of algorithms for improving the accuracy of predictions
are available in machine learning techniques. First, BNN has a more extended forecasting range for long-
term wind speed predictions. Second, a combination of several linear and nonlinear models may also be
used to forecast wind speed [67]. Studies have been done in the last ten years on merging forecasting
methods, and BNN is seen as a potential for the ensemble method. However, a small gap in achieving
high precision has been seen due to the limited data set. At the same time, López et al. [68] suggested an
approach for forecasting the wind speed using ANN. This approach accurately estimates the average
wind speed over the year with only a 3% error. In this approach, they used a multilayer perceptron neural
network that was trained using the Bayesian regularization process and has one hidden layer with
15 neurons [68].

3.3.2 Design Optimization
The aerodynamic configuration of wind turbines plays a crucial role in optimizing their efficiency and,

as a result, enhancing the overall effectiveness of wind energy systems. ANNs are utilized in the design field
because they can consider several aerodynamic elements, such as lift coefficient, drag coefficient, Reynolds
number, angle of attack, and viscosity [69].

Sun et al. [70] focused on the crucial matter of wake impact in wind power generation. The wake effect
refers to the phenomenon when wind turbines located downstream encounter a decrease in wind velocity due
to the turbulence caused by upstream wind turbines [71]. To minimize the effects and improve power
production, the researchers suggest a novel method that integrates artificial neural networks with
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experimental data on wind patterns. They specifically created an artificial neural network wake-power model
to forecast the power generated by wind turbines accurately. The model considers wind velocities, directions,
and yaw angles. The model is validated using experimental data from an active wind farm [72]. The findings
illustrate that the ANN-wake-power model accurately predicts power generation while ensuring
computational efficiency [70]. The accuracy of the ANN-wake-power model depends on the presence of
an adequate amount of data during the training phase. Having sufficient data coverage is essential for
attaining accurate predictions. The model considers wind speeds, directions, and yaw angles to accurately
represent the intricate interactions inside wind farms, resulting in enhanced power estimation [73]. The
model’s computational efficiency renders it suitable for real-world applications, mainly when prompt
evaluations are crucial.

3.3.3 Fault Detection and Diagnosis
There are numerous approaches to identifying faults in wind turbines through CM (condition

monitoring) techniques, commonly referred to as FDD (fault detection and diagnosis) when accompanied
by diagnostic capabilities. Numerous scholarly articles have examined various strategies in the field, such
as FDD using CMS (condition monitoring systems) [74], FDD for maintenance management [75], pattern
recognition for FDD [76], and FDD based on ANNs. Most techniques utilize ANNs to discern patterns
within SCADA (supervisory control and data acquisition) signals, which may serve as potential indicators
of fault events [77]. Various models exist to evaluate a system’s entirety and identify any outliers that
may be present [78]. Nevertheless, most algorithms and models are designed to assess distinct elements,
including but not limited to gearbox and bearings, generator, power electronics, electric controls, rotor
blades, and hydraulic controls, and the decrease of false-alarm rates.

3.3.4 Optimal Control
Research has provided evidence to support the notion that Artificial Neural Networks (ANNs) exhibit a

high level of resilience when employed in control tasks. Due to this rationale, they are extensively utilized in
diverse systems. For example, ANN controllers have been developed and used in various applications such
as flight control, robot manipulators, maritime dynamic positioning systems, induction motors, product
storage, and regulating multiple parameters in wind turbines [79].

Navarette et al. [80] investigated the crucial field of wind energy systems, specifically focusing on wind
turbine pitch control. Optimizing the power generation of wind turbines is essential due to their direct
connection to the electrical grid [81]. The difficulty lies in obtaining the most efficient power production
throughout a broad spectrum of wind velocities while considering the inherent unpredictability of wind
patterns [82]. Conventional control methods frequently encounter challenges in dealing with variable and
unpredictable wind conditions [82,83]. To tackle this issue, Navarette et al. [80] present expert control
systems, a new method that relies on human expertise and experience. These systems accurately predict
and simulate the control reactions for several possible events, thereby replicating the expertise of
specialists in the sector. The expert system improves decision-making in power generation by integrating
many variables, increasing efficiency. The aim is to simulate the conditions of various wind turbines,
ultimately aiding in developing wind energy technology [80].

4 Previous Studies on Wind Turbine Fatigue

This section explores the profound significance of mechanical fatigue analysis within the wind turbine
structural design framework. Wind turbines experience a significant number of load cycles throughout their
operating lifespans, which necessitates the inclusion of mechanical fatigue analysis as a crucial measure to
ensure the structural stability of these renewable energy systems [84,85]. The main aim of this analysis is to
quantitatively assess the potential structural damage that may arise at various positions within the wind
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turbine structure. The precision of fatigue assessments guarantees wind turbine production units’ enduring
reliability and safety [84,86].

The operational lifespan of a wind turbine can be characterized as a series of distinct structural states,
including periods of inactivity, regular output, idle operation, and several other operating circumstances.
These states exhibit complex interconnections with diverse environmental loading conditions,
distinguished by factors such as average wind speed, wave direction, and other relevant parameters. The
parameters are evaluated within certain intervals, varying from brief intervals of around 10 min to longer
durations lasting several hours. The choice of time interval depends on the particular operational scenario
being analyzed.

To effectively address the complexity of these circumstances, it is vital to undertake a sequence of
numerical studies referred to as DLC (design load cases). Each DLC corresponds to a distinct set of
environmental conditions and reflects a distinctive situation in which the wind turbine structure may
experience the accumulation of damage. Of particular significance is DLC 1.2, which focuses on
calculating the damage incurred during normal production states. The DLC poses a considerable
industrial challenge due to the multitude of possible loading situations that the structure may experience
in such circumstances [84,87].

The procedure of estimating short-term damage d for each of these parameter combinations is
complicated. The process proceeds by producing stochastic time trajectories using the relevant
environmental parameters. The structural stress responses are consequently calculated using
computationally complex numerical algorithms developed explicitly for conducting multiphysics
simulations. Those responses are subjected to analysis employing ‘rain flow cycle counting techniques’ to
estimate the extent of short-term damage [88]. The Miner cumulative model is utilized to compute short-
term damage, a procedure that requires a significant amount of time [89]. In several scenarios, the
computational duration necessary for conducting these simulations is equivalent to or beyond the duration
of the simulated period.

A probabilistic methodology assesses the enduring damage encountered by a particular location on the
wind turbine framework. This process entails the development of an integrated estimation of short-term
damage by assigning probabilities to each feasible combination of environmental elements. In assessing
wind turbine structural integrity over a long-term period, the likelihood analysis for each parameter
combination is significantly influenced by the utilization of real-time on-site measurements, such as
midocean data [84]. Although this estimating technique is generally considered conservative, it has
limitations. The process requires a significant amount of precise short-term damage assessments, which
may result in a combinatorial increase in the number of simulation requests needed. Engineers may need
to perform a substantial number of simulations, perhaps reaching hundreds of thousands, to obtain just
one estimation of the long-term damage per the comprehensive grid outlined in the established standards.
The substantial computational requirement can lead to extended computation periods, even using high-
performance computing resources [84].

In recent research investigations, several approaches have been suggested to handle the computational
problems and mitigate evaluation timeframes. A frequently utilized technique in the industrial sector is the
aggregation of environmental factors, generally called “lumping”. This approach aims to decrease the
number of simulations necessary for conducting a comprehensive assessment of damages, hence
rendering the process more feasible and efficient [90,91]. Although this approach efficiently analyzes one
location, it may face challenges when dealing with many structural locations, which could result in
inaccurate damage predictions [90]. Moreover, the aggregation of environmental factors may not
sufficiently include the uncertainties inherent in models, which hold significant importance within wind
turbine structural analysis [92,93].
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Reduced model techniques have been extensively utilized in offshore mechanical engineering and
precisely tailored to analyze wind turbine structures [94–96]. Various strategies have been developed to
minimize simulation times, including spectral approaches [97–99], simplified time-domain analysis [100],
and decoupled simulation approaches [101]. These techniques have demonstrated the ability to
substantially reduce the time required for simulations. However, including linearization artifacts can have
a detrimental effect on the accuracy and reliability of the findings.

An alternative method for mitigating simulation costs is minimizing the number of simulator
invocations. Zwick et al. [102] suggested the utilization of regression models as a means to forecast the
structural damage reactions d for unsimulated combinations of environmental elements. This approach’s
calibration of statistical models depends on a limited number of model observations [102]. Although this
methodology has the potential to yield acceptable levels of prediction accuracy, it is crucial to note that
the selection of the limited set of model observations highly influences its performance, which highlights
the significance of proper calibration to obtain reliable results.

The fatigue evaluation in wind turbine structures encompasses a multifaceted interaction among
environmental factors, structural conditions, and comprehensive computational modeling. The field faces
considerable difficulty balancing the precision requirement and the computational resources necessary for
such analyses. Engineers have devised multiple techniques to optimize the process, each exhibiting
distinct advantages and drawbacks, to guarantee the continued dependability and safety of these crucial
renewable energy resources.

5 Application of ANNs in Wind Turbine Fatigue Prediction

Detecting fatigue damage in wind turbine blades ensures safe and efficient operation. While traditional
methods exist, Artificial Neural Networks (ANNs) have emerged as a promising alternative due to their
ability to learn complex relationships from data.

As for the traditional methods, such as attaching physical sensors to the wind turbine blade to measure
stresses, relying on SCADA (Supervisory Control and Data Acquisition) systems, or using finite element
analysis models, there are limitations as the use of physical sensors or SCADA systems might not capture
the complete picture of fatigue damage throughout the blade. In contrast, the FEA models have high costs
and are time-consuming [103]. On the other hand, ANNs can learn complex relationships between
various data sources, and by learning from historical data, ANNs can potentially achieve higher accuracy
in fatigue damage detection compared to traditional methods. Also, ANNs can potentially identify fatigue
damage at earlier stages before it becomes critical, allowing for preventive maintenance [103]. In this
paper, we investigated the fatigue in wind turbine components as follows:

5.1 Wind Turbine Structure Fatigue Prediction
One of the areas that the literature investigates is wind turbine fatigue reduction. Awind-induced stress

transfer function changes by the nonlinearity of turbine reactions to various mean wind speeds, and numerous
simulations handling thousands of environmental factors are needed to obtain the stress transfer function
from time simulations in fatigue analysis [104]. Additionally, this requires a lot of time to complete,
which could take a couple of days to complete the process. To minimize the required number of
simulations, Kim et al. [104] used ANN models to account for the impact of mean wind speed on the
fatigue analysis results. Whereas the stress transfer function, the stress spectrum, and the fatigue damage
are potential outputs of the ANN models, the mean wind speed and frequency are supposed to represent
the inputs. Significantly, using ANN models indicates that computational efficiency can be increased
while retaining a maximum error range of 35% and reducing the number of simulations needed from
41 to 7 [104]. A thorough overview of ANN model development highlights the significance of sampling
techniques in improving model performance. It suggests including crucial wind speeds, such as cut-in,
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cut-out, and rated wind speeds [104]. Furthermore, the superposition model concept, which focuses on
correction factors close to stress spectrum peaks, can improve predicted outcomes without adding more
sample data or neurons to the hidden layer. Although it is observed that the effect of lowly fluctuating
resonant motion on fatigue damage in floating wind turbine systems is negligible, its inclusion in ANN
models research is recommended, suggesting directions for further investigation [104].

Yin et al. [105] studied a big data-driven multi-objective prediction system for predicting wind farm
power production and structural fatigue. The average power production of the wind farm and the
equivalent thrust of turbines were used as the response variables in the prediction system. In contrast, the
wind conditions, control settings, and turbine characteristics were used as the predictor factors. Five
distinct data mining methods, including the GRNN (General Regression Neural Network), the RF
(Random Forest), the SVM (Support Vector Machine), and the GBR (Gradient Boosting), were then used
to build the prediction models. A wind farm simulation platform, FLORIS (FLOw Redirection and
Induction in Steady State) created by the National Renewable Energy Laboratory (NREL) and the Delft
University of Technology, has been used to evaluate the aforementioned data-driven machine learning
algorithms. Based on the most recent version of FLORIS, the five methods’ prediction performances were
compared and assessed. According to their results, all of these approaches can achieve a relative accuracy
of 99% or higher, which is sufficient for practical applications [105]. The GRNN and SVM show the
highest levels of accuracy, with the GRNN having the highest accuracy and performance when making
predictions about thrust. The GRNN is the most efficient in terms of computational performance [105].

Luna et al. [106] focused on predicting wind turbine tower fatigue, and they suggest using the NARX
due its capability to predict nonlinear time series as it uses historical data from expected or actual time series.
He et al. [107] proposed a data-driven technique for predicting fatigue load and power to evaluate the
structural performance of wind turbines precisely and effectively under yaw control. The power yield and
fatigue loads at crucial turbine elements are computed under realistic yaw angles while considering wake
impacts. Then, input-output mappings are created using a support vector regression (SVR) model that has
been trained. Based on comparison evaluation and effectiveness assessment, they discovered that the
suggested prediction technique can return very high regression coefficients with a minor deviation,
confirming its preciseness and resilience [107].

5.2 Wind Turbine Blades Fatigue Prediction
Yilmaz et al. [108] used the MLP (Multilayer Perceptron) and RBF (Radial Basis Function) in their

study to control the wind turbine pitch angle and avoid any possible fatigue that could occur in the wind
turbine blades. Their study focused on controlling the blade pitch angle at wind speeds above 14 m/s.
One hidden layer has been used in both approaches (MLP & RBF). Two input neurons, five hidden
neurons, and one output neuron used in MLP. Three input neurons, ten hidden neurons, and one output
neuron used in RBF. Per their results, if there is no control for the pitch angle, the generator won’t be
able to generate power because there will be no overspeed prevention [108]. Also, compared to the
common PID (Proportional Integral Derivative) controller, the MLP and RBF showed better results in
controlling and generating power [108].

Ziane et al. [109] used ANN to predict the fatigue life of the wind turbine blades, as shown in Fig. 3, by
proposing the following hybrid neural network models: BPNN (Backpropagation Neural Network), PSO-
ANN (Particle Swarm Optimization Artificial Neural Network), and CSNN (Cuckoo Search Neural
Network). Based on the results, it was observed that the CSNN outperforms the BPNN and PSO-ANN in
terms of prediction due to its ease of use when applying mathematical models, and due to its capability to
change weights without determining a gradient [109]. Also, CSNN showed better fatigue life predictions,
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faster computation, higher precision, and most importantly a high convergence rate toward the actual global
minimum [109]. The advantages of CSNN that make it preferable to use over BPNN and PSO-ANN are that
it explores the search space more effectively, potentially leading to better convergence and avoiding local
optima [109,110]. CSNN is robust to noisy data and can handle complex, nonlinear relationships between
input features and fatigue life. CSNN efficiently adjusts the synaptic weights of the neural network,
improving prediction accuracy while minimizing computational resources [109,110].

The limitations of CSNN are as follows: 1-It requires tuning of hyperparameters for optimal
performance, because poorly chosen parameters may lead to suboptimal results [109,110]. 2-CSNN
performance can be sensitive to the initial population of solutions, as different initializations may yield
varying results. 3-CSNN may not perform as well as other algorithms regarding local exploitation around
promising regions [109,110].

Li et al. [113] used the Back Propagation (BP) neural network and Radial Basis Function (RBF) neural
network for icing conditions prediction of the wind turbine blades. For predicting the blade icing mass, the
neural networks trained by the usage of data sets showing a positive correlation between blade icing mass and
natural. Per their findings, the BP neural network is more accurate than RBF in detecting the blade icing mass
[113].

Abdallah et al. [114] created a machine learning (ML) method to statistically combine the fatigue load on
the wind turbine blade from numerous concurrent simulators, considering the varying fidelity, complexity,
and underlying assumptions to create a “most likely” fatigue load and thereby decrease the model-form
uncertainty. To derive a map of probability, they developed clusters of simulator outputs as a function of
wind speed, and they utilized bootstrap aggregations to obtain an aggregated estimate of the damage
equivalent fatigue of the blade root bending moment [114].

Figure 3: Fatigues in wind turbine blades, as (a) shows a wind turbine with broken blades, (b) and (c) show a
wind turbine that experienced failure in the trailing edge. Please note that (b) reprinted from Composites Part
B: Engineering, Vol. 176, Raman et al., “Numerical simulation of a resistant structural bonding in wind-
turbine blade through the use of composite cord stitching”, Copyright (2024), with permission from
Elsevier [111], and (a) and (c) reprinted with permission from reference [112]
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For early damage identification utilizing vibration analysis measures Dervilis et al. [115] employed ML
(Machine Learning) nonlinear neural network techniques such as auto-associative neural network (AANN)
and radial basis function (RBF). The primary purpose was to improve the structural health monitoring of the
wind turbine blade and assist with preventing catastrophic failure.

According to Malik et al. [116] the primary causes of a blade imbalance, as shown in Table 2, include
mistakes made during manufacturing or construction, icing conditions, deterioration brought on by aging, or
wear and fatigue in the wind turbine. Equipment shifts and wears to varied degrees over time due to
imbalance on the blades and rotating shaft. Various factors, including control system errors and extreme
wind shear, contribute to aerodynamic asymmetry. One blade pitch angle differs slightly from the other
two due to a control system malfunction, which will cause aerodynamic asymmetry in the wind turbine.
Malik et al. [116] used PNN (probabilistic neural network) to analyze the wind turbine defects caused by
imbalance conditions. The simulated results demonstrate that the PNN has a greater diagnosis accuracy
than other ANN approaches and requires less training and testing time, and it performs better than
conventional approaches [116].

5.3 Wind Turbine Gearbox Fatigue Prediction
Due to their capability to transmit a relatively high load from blades while offering a high gear ratio

(necessary for the generator to produce electrical energy efficiently), considerable power planetary
gearboxes became widespread components of wind turbine drivetrains [117]. In this category of rotating
machinery, gearboxes are at the top of the drivetrain components that are most prone to damage [117]. A
single malfunction typically causes total gear damage, necessitating the replacement of the entire gearbox
because a planetary gearbox distributes the load amongst multiple meshes while in operation [117].
Vibration analysis is one of the methods for evaluating the extent of damage to planetary gearboxes. Still,
it is more difficult for such planetary gearboxes because wind turbines inherently operate in nonstationary
circumstances with varying speeds and loads [117]. Strączkiewicz et al. [117] used methodology that
considers the fluctuation of vibration signal characteristics under the effects of rapidly changing speed
and load. The ANN algorithms trained at the machine typical operation. The provided value of a feature
is compared to the value estimated using the taught net for each following unclassified observation. A
linear regression is used, and the b parameter, also known as the error term, is observed to reduce the
impact of changing conditions [117].

Table 2: Overview of wind turbine imbalance failures

Imbalance failures Causes

Aerodynamic
asymmetry

Because the torque is distributed unevenly among the three blades due to many
factors, including variation in the pitch angle of the blades, a control system
malfunction, and high wind shear [116].

Furl imbalance Because the furl angle has changed from the desired position [116].

Blade/shaft
imbalance

Because the mass of the WTcomponents is not distributed evenly with respect to the
rotor [116].

Nacelle-yaw
imbalance

Due to the change in the initial or fixed yaw angle position from the required
position, the orientation of the WT rotor will be altered, which causes the nacelle-
yaw angle imbalance [116].
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Chen et al. [118] used the CNN (Convolutional Neural Network) for fatigue prediction in the wind
turbine gearbox, and the CNN was trained by using experimental vibration data that was processed by
using standard deviation, skewness, and kurtosis in the time domain, and FFT (Fast Fourier Transform)
and RMS (Root Mean Squared) in the frequency domain. Based on the results, they found that for over
20 test cases, the CNN model classification rate is better than that of SVM as it is more accurate. The
CNN model had an accuracy range of 91.4% to 98.9%, whereas the SVM (Support Vector Machine)
model ranged from 55.9% to 70.2% [118]. In contrast, Janssens et al. [119] used a CNN model to
classify faults, as the CNN model is applied to raw frequency spectrum vibration data from bearings
experiment rigs. The results showed that CNN has a higher classification accuracy than the conventional
feature extraction methods, with an accuracy of 94% [119]. Based on that, we can see that Convolutional
Neural Networks (CNNs) have proven to be highly efficient in predicting fatigue in spinning machinery,
such as wind turbines [120–122]. The imported original vibration signals can be automatically and
effectively analyzed to capture fatigue features and determine their condition using several CNN models
[122]. This can be done by acquiring features directly from the one-dimensional raw vibration signals
without manual feature extraction [123]. Using CNNs in this domain has yielded exceptional accuracy in
recognizing and classifying fatigues [120,124].

Simani et al. [125] used NARX for fault diagnosis. NARX before comparing it with other methods like
the GSKV (Gaussian kernel support vector machine), UDC (up-down counters), and GFM (general failure
model), it was trained using data from routine and defective wind turbine simulators. When evaluated on nine
failures, neural network estimates outperformed other methods, with just a 1.12-s delay between the
incidence of the failure and its detection [125]. Additionally, it was shown that this method had
significantly lower false alarm and missed fault rates than other methods. Based on that, we can tell that
NARX is a type of recurrent neural network that has proven effective in predicting future values in time-
series data. Within the domain of wind turbine monitoring, these models can predict future conditions of
the turbine by analyzing its previous performance. This capability can detect and prevent fatigue early [125].

Awind turbine gearbox test rig experimental vibration data was gathered under fault-induced conditions
by Jiang et al. [126]. To diagnose the faults in these data, the MSCNN (Multi-Scale Convolutional Neural
Network) approach was used, and the results of this analysis were compared to those of conventional
CNN and other techniques. Based on the results, the proposed MSCNN outperformed the different
approaches, averaging 98.53%; the most significant average was 84.31% in fault classification and feature
learning [126].

6 Case Studies and Results

This section presents a study conducted by Yilmaz et al. [108] that aimed to evaluate the ability and
efficiency of pitch controllers in controlling wind speeds within the optimal range for fatigue prediction
purposes in the wind turbine blades. Additionally, we conducted a simulation by using MLP (Multilayer
Perceptron) and RBF (Radial Basis Function) neural networks to validate the approach employed by
Yilmaz et al. [108].

Yilmaz et al. [108] examined the adaptability of pitch controllers to varying conditions and assessed their
effectiveness in regulating wind speeds over the optimal range. The parameters of the simulated wind turbine
are derived from an actual turbine and its associated generating equipment. Therefore, the suggested
controllers can be readily adjusted for utilization in real-time applications and may effectively operate in
conjunction with actual wind turbines. The training of the proposed controllers is conducted using MLP
and RBF neural networks. According to the computer simulations’ findings, the pitch angle of turbine
blades can be adjusted to achieve optimal values for the Cp (performance coefficient) and TSR (tip speed
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ratio). The reference model is constructed based on the aerodynamic calculations for the wind turbine. The
primary objective of the turbine controller is to regulate the speed through the use of pitch control. The pitch
control remains inactive when wind speeds do not exceed 14 m/s, as the turbine fails to achieve its maximum
power output. This means the study does not consider wind speeds below 14 m/s. Therefore, the neural
network controllers described in this study effectively imposed the necessary limitations during the
aforementioned wind speeds. The proposed controllers effectively tracked the reference signal despite the
volatile nature of the applied wind speeds. When comparing the two neuro-controllers, it is seen that
although the amount of errors between them is not significantly different, the RBF controller exhibits a
shorter settling time than the MLP. Furthermore, in the case of MLP, it has been shown that small-
magnitude oscillations are present in the lower frequency range after a change in wind speed [108]. The
presence of oscillations delayed the controller’s ability to accurately track the reference signal. Two
intelligent controllers are presented for blade pitch position controlling beyond the rated wind speed.
Both controllers yielded satisfactory outcomes. However, the controller based on RBF yielded more
efficient results than MLP [108].

Based on Yilmaz et al.’s study [108], we have conducted a simulation for Louisiana offshore wind speed
data using MLP and RBF neural networks to ensure the proposed model reliability, as shown in Figs. 4 and 5.
Furthermore, the Louisiana offshore wind speed map is shown in Fig. 6. Also, the wind speed time histories
are illustrated in Fig. 7, and the wind speed labels are described in Table 3. The neural network structures
used are depicted in Fig. 8 and Table 4. The 5 MW NREL wind turbine has been used as a reference in
this study, and Table 5 illustrates its properties [127].

Figure 4: ANNmodel for controlling pitch angle in the wind turbine. Please note that the metrological tower
photo was reprinted with permission from reference [128] John fitzburn, CC BY-SA 3.0 <https://
creativecommons.org/licenses/by-sa/3.0, accessed on 13/04/2024>, via Wikimedia Commons
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Figure 5: MATLAB simulation flowchart for fatigue prediction

Figure 6: Louisiana offshore wind speed map at 90 m. Please note that the map was reprinted with
permission from DOE/NREL, reference [129]
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Figure 7: Wind speed data time histories generated by using Weibull distribution. x-axis, time (s), and y-
axis, velocity (m/s)

Table 3: Wind speed labels

Label Wind speed (m/s)

1 7.44

2 7.45

3 7.39

4 7.32

5 7.27

6 7.2

7 7.14

8 7.14

9 7.15

10 7.09

11 7.03

12 6.98

13 6.89

14 6.81

15 6.81

16 6.78

17 6.78

18 6.81
(Continued)
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Table 3 (continued)

Label Wind speed (m/s)

19 6.86

20 6.97

21 7.1

22 7.22

23 7.32

24 7.38

25 14

26 20

27 25

28 30

Figure 8: ANN model components, as (a) represents the Multilayer perceptron model components with two
inputs, five hidden neurons, and one output, while (b) represents the Radial basis function model
components, with two inputs, 16 hidden neurons, and one output, noting that we used the sigmoid
activation function in the Multilayer perceptron, and gaussian activation function in the Radial basis function

Table 4: Overview of the trained neuro controllers structure

MLP RBF

Hidden
layer

1 1

Input
neurons

2 2

Hidden
neurons

5 16

Output
neurons

1 1

(Continued)
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Based on Sudhamshu et al. 2016, we have used a starting value of pitch angle equal to 5 degrees as an
optimum value to build our simulation [131]. Based on the simulation results, the changes in the performance
coefficient, the tip speed ratio, and the pitch angle of both methods are depicted in Figs. 10 and 11.
Additionally, Fig. 10 shows that the performance coefficient significantly decreased when the wind
turbine was exposed to high speeds, which indicates that the turbine performance was horrible during that
period. Thus, there will be a significant impact on the output power, as it will be significantly decreased.
Moreover, Fig. 11 shows that the pitch angle increases at specific periods when the wind speed is too
high to minimize the amount of energy captured by the wind turbine, therefore preventing the turbine
blades from spinning too fast and potentially damaging the turbine or its components, as increasing the
pitch angle will slow and brake the turbine. By comparing the results of both methods, it can be
concluded that both produce equivalent performance coefficients and tip speed ratios, indicating
comparable performance in the context. Please note that Fig. 12 shows the fitting curve between the
predicted and the target values of the pitch angle.

Table 5: 5 MW NREL wind turbine characteristics

Parameter Value

Rating 5 MW

Rotor orientation Upwind

Number of Blades 3 Blades

Rotor diameter 126 m

Hub diameter 3 m

Hub height 90 m

Cut in wind speed 3 m/s

Cut out wind speed 25 m/s

Rated rotor speed 12.1 rpm

Cut in rotor speed 6.9 rpm

Turbulence intensity (Eq. (9)) [130] 0.0315

Table 4 (continued)

MLP RBF

Learning
rate

0.01, we chose this learning rate
value based on the mean squared
error after comparing different
learning rate values, as seen in
Fig. 9.

The “newrb” function in MATLAB
used in our ANN model is designed
to minimize the error by modifying
the RBF neurons’ spread and center
according to the input and target
data. The algorithm determines the
internal rate at which these
modifications are performed; it is
not directly modifiable nor
designated as a “learning rate”
parameter in the function’s
arguments.

726 SDHM, 2024, vol.18, no.6



Furthermore, both MLP and RBF are effective. They can identify the underlying patterns in the data and
generate reasonably accurate predictions because their performance coefficients lie within a comparable
range. The equations that are used to get the target values for training our ANN model are as follows:

CP ¼ 0:44� 0:167hð Þ � sin
p k� 3ð Þ
15� 0:3 k

� �
� 0:00184 k� 3ð Þh (1)
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Figure 10: Changes of performance coefficient and tip speed ratio for both multi-layer perceptron (MLP)
and radial basis function (RBF) methods, as (a) and (b) represent the performance coefficients for MLP
and RBF, respectively, while (c) and (d) represent the tip speed ratio for MLP and RBF, respectively.
Noting that the wind speed labels are explained in Table 3
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h ¼
CP � 0:44 sin

p k� 3ð Þ
15� 0:3 k

� �

�0:167 sin
p k� 3ð Þ
15� 0:3 k

� �
� 0:00184 k� 5:52� 10�3

� � (2)

k ¼ xtR

V
(3)

Noting that CP represents the performance coefficient, k represents the tip speed ratio, h represents the
pitch angle, R, xt, and V represents the rotor radius, the rotational speed, and the wind speed, respectively
[132,133].
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Figure 11: Changes in pitch angle based on the multilayer perceptron (MLP) method
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Figure 12: Scatter plot, as (a) represents the predicted values of pitch angle by usingMLP, and (b) represents
the predicted values of pitch angle by using RBF
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For the ANN model, the training of the ANN algorithms and calculations in the neurons and layers will
be done by using an input-output equation (Eq. (4)), and the following procedures will be followed in the
training of the ANN algorithms:

The first step is initializing all weights at random. The output vector and error propagation terms are
calculated in the second step. In the third step, the weights will be updated by using Eq. (7). After that,
the total error will be calculated by using Eq. (8). Finally, the last step is repeating step 2 to continue
iterating the calculation until the overall error is less than the required error [108].

y kð Þ
p ¼ sgm kð Þ

p

XNk�1

i¼1
W k�1ð Þ

ip : y k�1ð Þ
i � b kð Þ

p

h i
(4)

p ¼ 1; 2; . . .Nk ; k ¼ 1; 2; . . .Mð Þ
AsW k�1ð Þ

ip is the connection weight between the ith neuron in the k � 1ð Þth layer and pth neuron in the kth
layer, while y kð Þ

p is the output of the pth neuron in the kth layer, and sgm kð Þ
p is the sigmoid activation function of

the pth neuron in the kth layer, and b kð Þ
p is the threshold of the pth neuron in the kth layer.

The sigmoid activation function is represented in Eq. (5), while the gaussian activation function is
represented in Eq. (6) as following:

sgmðxÞ ¼ 1

1þ expð�xÞ (5)

f xð Þ ¼ e�x2 (6)

W k�1ð Þ
ip t þ 1ð Þ ¼ W k�1ð Þ

ip tð Þ þ a
Xl

n¼1

d kð Þ
np y

k�1ð Þ
ni (7)

where t is the iteration number and alpha is the learning rate

e ¼
Xl

n¼1

XNM

j¼1
yðMÞ
nj � y0ðMÞ

nj

� �2
(8)

TI ¼ rV
Vmean

(9)

rV represents the wind speed standard deviation, and Vmean represents the mean wind speed.

7 Challenges and Future Directions

The application of Artificial Neural Networks (ANNs) in investigating wind turbine fatigue poses
several significant challenges and offers potential avenues for future research and development. Firstly,
the accuracy of short-term wind speed prediction using ANNs remains a concern, particularly in real-time
scenarios, necessitating improved precision and computational efficacy. Additionally, while hybrid ANN
models have shown promise in forecasting wind speed, further enhancements are needed, including
exploring hybridization approaches and integrating data to increase precision and resilience.

Expanding the use of ANNs to encompass medium-term wind speed forecasts represents a significant
development opportunity but requires tailored models to achieve advancements in accuracy. Predicting
wind turbine structure fatigue with ANNs faces challenges in reducing processing time and training,
indicating a need for more efficient models to predict fatigue damage while minimizing computational
costs precisely.
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Furthermore, while ANNs have shown potential in predicting blade fatigue, incorporating advanced
optimization methods or data-driven techniques could improve prediction accuracy and computational
efficiency. Gearbox fatigue prediction in wind turbines presents distinct challenges due to fluctuating
wind conditions, suggesting advanced ANN models and feature extraction techniques tailored for non-
stationary conditions are needed.

To enhance the training process and efficiency of ANNs in wind turbine fatigue prediction, researchers
are encouraged to explore the integration of advanced optimization techniques such as genetic algorithms,
particle swarm optimization, or reinforcement learning. These efforts could significantly improve the
precision and effectiveness of ANNs in this domain.

8 Conclusion

The results of this paper shed light on the significance of using artificial neural networks in wind turbine
fatigue prediction as they can be trained by using historical data, analyzing vibration patterns, or using other
sensor data to predict the fatigue in wind turbine components, allowing for proactive maintenance, reducing
downtime and improving operational efficiency, which will result in extending the lifespan of the wind
turbine and reducing maintenance cost. ANNs have proven valuable in wind turbine monitoring and
fatigue detection. ANN models are widely used for short- and long-term wind speed forecasts, with
hybrid models surpassing single ANN methods in performance. Modern deep neural network approaches,
such as NARX and LSTM, are practical for long-term wind speed predictions. ANN models have been
used to examine the impact of mean wind speed on stress transfer function and fatigue damage in wind
turbine structures. Various data mining techniques, such as GRNN, RF, SVM, GBR, and RN, have been
developed for wind farm power generation and structural fatigue prediction. ANN models have also been
used to monitor wind turbine blades and detect early damage. ANN models have shown considerable
potential in accurately forecasting wind speed, detecting wear in wind turbine components, and
identifying early damage. However, there is a lack of research on predicting long-term and medium-term
wind speeds using ANN. Additional research is needed to increase the precision and efficacy of current
methods to prevent catastrophic failures and improve structural health monitoring of wind turbine blades.
Merging vibration analysis approaches with ANN models could enhance the precision and dependability
of diagnosing gearbox faults in wind turbines.
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