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ABSTRACT

User authentication on smart devices is crucial to protecting user privacy and device security. Due to the devel-
opment of emerging attacks, existing physiological feature-based authentication methods, such as fingerprint, iris,
and face recognition are vulnerable to forgery and attacks. In this paper, GestureID, a system that utilizes acoustic
sensing technology to distinguish hand features among users, is proposed. It involves using a speaker to send
acoustic signals and a microphone to receive the echoes affected by the reflection of the hand movements of
the users. To ensure system accuracy and effectively distinguish users’ gestures, a second-order differential-based
phase extraction method is proposed. This method calculates the gradient of received signals to separate the
effects of the user’s hand movements on the transmitted signal from the background noise. Then, the second-
order differential phase and phase-dependent acceleration information are used as inputs to a Convolutional
Neural Networks-Bidirectional Long Short-Term Memory (CNN-BiLSTM) model to model hand motion fea-
tures. To decrease the time it takes to collect data for new user registration, a transfer learning method is used.
This involves creating a user authentication model by utilizing a pre-trained gesture recognition model. As a
result, accurate user authentication can be achieved without requiring extensive amounts of training data. Experi-
ments demonstrate that GestureID can achieve 97.8% gesture recognition accuracy and 96.3% user authentication
accuracy.
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1 Introduction

User authentication on smart devices is crucial for many everyday applications. Several user
authentication technologies, such as fingerprint, iris, and face recognition, have been widely used. The
accuracy and convenience of biometric authentication have met people’s daily needs, but there are some
limitations. Fingerprint-based user authentication methods, such as Apple’s TouchID [1], identify users by
recognizing their unique finger texture. However, this method is vulnerable to spoofing with fingerprint
films. Iris-based recognition can achieve high accuracy [2], but it requires expensive, specialized sensors.
Two-dimensional face recognition is prone to replay attacks on the user’s facial image or video [3], while
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three-dimensional face recognition systems, such as FaceID [4], require special sensors and are affected by
environmental factors such as light and angle.

Acoustic sensing techniques have been extensively studied with the development of pervasive
computing and the Internet of Things (IoT). These techniques enable various applications, including
coarse-grained motion sensing (e.g., gesture recognition [5–7] and gait recognition [8]), as well as fine-
grained activity sensing (e.g., tracking [9–11], lip reading [12–14], breath monitoring [15,16]), and user
authentication (e.g., liveness detection [17,18], facial authentication [19,20], lip authentication [21,22]).
Acoustic sensing for smart device authentication provides convenience, low cost, non-intrusiveness, and
accurate authentication.

VoiceLive [17] and VoiceGesture [18] proposed a liveness detection mechanism using a voice-based
authentication method. It achieves over 99% detection accuracy by utilizing time-difference-of-arrival
(TDoA) and Doppler frequency shifts of the received signal. However, both VoiceLive and VoiceGesture
require that the distance between the user’s mouth and the phone must be within 3 cm. This limitation
can result in a poor user experience. LipPass [21] and SilentKey [22] proposed a lip-reading-based user
authentication system that utilizes Doppler shifts and the signal envelope of the acoustic signal to derive
distinct behavioral traits of users’ speaking lips for authentication. However, the proposed method lacks
the ability to eliminate the interference of multipath and unpredictable phase, and relies on a quantity of
training samples. HandLock [23] proposed a gesture authentication method that relied on acoustic
sensing. They employed a supervised machine learning approach to achieve an average true-positive-rate
(TPR) of 96.51%. However, the proposed method requires the manual extraction of features to serve as
input for the machine learning model. The ideal acoustic authentication mechanism should (1) use
existing sensors without extra equipment, (2) be more convenient and flexible to use, (3) require a small
number of samples for per user, and (4) achieve higher authentication accuracy [24].

To address these issues, we propose GestureID, a user authentication system based on hand motion
sensing. It utilizes acoustic sensing technology to capture unique behavioral features of users’ hand
movements. GestureID employs a speaker for transmitting multiple-frequency ultrasonic waves and a
microphone for receiving echoes affected by reflections caused by the user’s hand movements. After pre-
processing, which includes I/Q modulation, denoising, and segmentation, the CNN-BiLSTM model is
employed for classification. Compared to existing work [21,23], the method proposed in this paper has
the following advantages: (1) During the signal processing stage, we transmit continuous waves of
various frequencies and extract phase and acceleration information from each frequency waveform to
capture the hand motion features of users. (2) To improve the signal sensing capability, we calculate the
gradients of the received signals to eliminate static components that are unrelated to hand movements. (3)
To train the user authentication model, we employ a transfer learning approach, which enhances the
accuracy and generalization capabilities of authentication without requiring extensive training data.

In summary, this paper makes the following main contributions:

� The feasibility of using acoustic signals from smart devices to extract hand movement features for
user authentication is investigated. The proposed method can achieve convenience, low cost, non-
intrusiveness, and high authentication accuracy.

� A method is proposed for phase extraction that is based on second-order differences. This method
aims to improve the sensing capability of the signal by calculating the gradient of the received
signals. The objective is to eliminate the static components from the signal.

� A CNN-BiLSTM network is used to train a gesture recognition model. Then, the pre-trained model is
fine-tuned using transfer learning to create a user authentication model for each gesture. This
approach allows us to achieve higher authentication accuracy and generalization capability, even
with limited training data.
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� A GestureID prototype is developed on a smartphone, and experiments are performed in a real-world
environment. Experiments reveal that GestureID achieves 97.8% accuracy in gesture recognition
accuracy and 96.3% accuracy in user authentication.

The rest of the paper is organized as follows. In Section 2, we explore related work. Section 3
describes the comprehensive architecture of GestureID. Section 4 presents the evaluation results of
GestureID. Section 5 concludes the paper.

2 Related Work

2.1 Acoustic-Based Applications
Acoustic-based sensing methods have been widely studied and have been used in many fields, such as

activity and gesture recognition, localization and tracking, and lip reading, due to their popularity,
convenience, low cost, non-intrusiveness, and high perceptual accuracy. Both SoundWave [5] and
AudioGest [6] used the Doppler effect of acoustic signals to recognize different hand gestures. RobuCIR
[7] combined frequency-hopping and CIR information to reduce frequency selective fading and prevent
signal interference for precise and reliable contactless gesture recognition in various scenarios. CAT [10]
utilized a distributed Frequency Modulated Continuous Waveform (FMCW) and Doppler effect to
achieve sub-millimeter accuracy in tracking cell phone motion. LLAP [11] utilized the phase change of
the received baseband signal due to finger motion for finger movement tracking. SoundLip [14]
implemented an end-to-end lip-sync interaction system using the Doppler features of multi-frequency
ultrasonic sine wave signals. Each of these studies employs acoustic sensing to identify user activity.

2.2 Gesture-Based Authentication
User gesture movements have unique behavioral features that can be utilized for authentication. Gesture-

based authentication and recognition have been extensively studied. Hong et al. [25] proposed WA, a system
for motion gesture authentication that relies on accelerometers. This system utilized eight identification
features that were hidden within the acceleration trajectory of motion gestures. The classification of these
features is performed using a single-class support vector machine. WiID [26] extracts velocity time series
features from WiFi channel state information (CSI) to identify users who perform redefined gestures.
FingerPass [27] utilized the CSI phase of WiFi signals to capture and differentiate the unique behavioral
features of various users and authenticate them consistently during each finger gesture interaction.
However, WiFi signals can be affected by environmental interference and require users to be within a
WiFi-covered environment, thereby restricting their usefulness. Au-Id [28] proposed an RFID-based
authentication method performed through continuous daily activities. Based on the correlation between
RFID tags and infrastructure, Au-Id stacks a CNN with long short-term memory (LSTM) to automatically
tag different activities. The data is tagged and then inputted into another CNN for user identification,
resulting in an average identification accuracy of 97.72%. However, the RFID-based approach requires
additional dedicated equipment for the user. Acoustic signals have an advantage over WiFi and RFID
because they do not need extra sensors. Good authentication can be achieved using only the smart
device’s built-in speaker and microphone.

2.3 Acoustic-Based Authentication
In addition to the user authentication methods mentioned above, acoustic sensing techniques for user

authentication have gained significant attention. Many excellent works have been proposed in this field.
These techniques can be categorized into physiological biometric-based authentication and behavioral
biometric-based authentication, depending on the type of identity information used for authentication.

Physiological biometric-based authentication uses physiological features such as the user’s face or vital
signs to authenticate. EchoPrint [19] employed the FMCWmethod to identify the depth information of faces
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for two-factor user authentication. However, it lacks resistance against 3D face forgery attacks. BreathPrint
[29] used human breathing to generate audible sounds and extract acoustic features. These features include
the signal strength of acoustic signals and MFCC. Machine learning methods are then applied for
authentication. However, as the breathing sound falls within the audible frequency range, the method is
vulnerable to interference from surrounding environmental noise. Additionally, the breathing sound may
change greatly when the user performs intense exercise, thereby significantly affecting the authentication
performance.

Behavioral biometric authentication employs acoustic signals to detect user behaviors, including lip
movements and gestures, for the purpose of authentication. VoiceLive [17] utilized TDoA of the received
signal to detect user liveness. However, TDoA measures absolute distance, so users must keep the phone
in a consistent position for each use. VoiceGesture [18] proposed to use the Doppler shift of acoustic
signal to model users’ mouth movements during speech for identity authentication. However, all these
works suffer from a limited effective authentication distance (within 3 cm) and poor user experience.
LipPass [21] used a three-layer autoencoder network to extract the acoustic Doppler effect from lip
movements. It then employed SVM for user identification. SilentKey [22] also employed an acoustic
Doppler shift for a lip-reading-based user authentication system. However, both works authenticate users
based on the mouth state during speech, but only in a password-related way, and require a significant
amount of training samples. HandLock [23] converted the acoustic phase time series into velocity and
acceleration series for user authentication using a machine learning model. However, the proposed
method requires manual extraction of features as input to the machine learning model.

To address the limitations of the above work, our work aims to use the unique behavioral features of the
user’s hand movements to authenticate the user’s identity. By using only the smart device’s built-in speaker
and microphone, we can send ultrasonic waves of various frequencies through the speaker. The microphone
then picks up the echoes, which are influenced by the reflection of the user’s hand movements. To remove the
static components of the received signal that are not related to hand movements, we use a second-order
difference-based phase extraction method. This method enhances the sensing capability by calculating the
gradient of the received signals. The extracted second-order differential phase and phase-dependent
acceleration information are then utilized as inputs to a CNN-BiLSTM model for the identification of
various hand gestures. Finally, the user authentication model is trained for each gesture by fine-tuning the
pre-trained gesture recognition model for verification users using a transfer learning approach.

3 System Design

This section describes the design of GestureID, a user authentication system that utilizes hand motion
sensing. It implements user authentication based on gesture recognition on commercial smartphones by
utilizing the phase information of acoustic signals.

3.1 System Overview
GestureID is comprised of four modules, as shown in Fig. 1: signal collection, signal pre-processing,

model construction and verification. During the signal collection stage, the smartphone emits inaudible
near-ultrasonic sound between 17–23 kHz using its built-in speaker. This frequency range is supported by
most smart devices for sending sound waves. Sound above 17 kHz are typically inaudible to most people
[30] and do not cause any disturbance. The microphone receives the echoes affected by the reflection of
users’ hand movements, carrying rich information about users’ hand movements in the received signal.
During the signal pre-processing stage, the received signal is subjected to I/Q modulation to extract the
hand movement-induced changes. In order to enhance the sensing capability and remove non-hand
motion-related static components of the received signal, we employ a second-order difference-based
phase extraction method. This method involves calculating the gradient of the signals. The model
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construction module constructs a gesture recognition model using a CNN-BiLSTM network. Then, a transfer
learning approach is used to build a user authentication model for each predefined gesture. This is done by
fine-tuning the pre-trained gesture recognition model. The gesture recognition module detects and recognizes
a gesture. It then sends the gesture to the user authentication model for authentication. The trained models are
stored in a database for further deployment when needed. The model design details are outlined in the
following sections.

3.2 Signal Collection
During signal collection, commercial smart devices utilize speakers and microphones as active sonar to

sense the surroundings. GestureID utilizes inaudible near-ultrasound with frequencies ranging from 17–
23 kHz. This frequency range corresponds to acoustic wavelengths of less than 2 cm. Consequently, even
slight movements of a few millimeters can significantly change the phase of the received sound waves
[11]. In this paper, eight frequency signals are used, each with a frequency interval of 700 Hz. The
signals of eight frequencies are summed and normalized to A

P
cos2pft, where A is the amplitude of

signals, the eight frequencies start at 17350 Hz and end at 22250 Hz. The speaker sends acoustic signals,
and the microphone receives echo signals at a sampling rate of 48 kHz. The transmitter and receiver have
no carrier frequency offset (CFO) because they use the same device to send and receive signals.

3.3 Signal Pre-Processing

3.3.1 Limitations of Doppler Shift
Several studies utilize the Short-Time Fourier Transform (STFT) to calculate the Doppler shift and

estimate the condition of surrounding reflectors. However, the resolution of STFT is limited by the
constraints of time-frequency analysis [14]. For instance, with a segment size of 2048 samples and a
sampling rate of 48 kHz, the STFT has a frequency resolution of 23.4 Hz. This corresponds to a
movement speed of 0.2 meters per second when the sound wave has a frequency of 17 kHz. In other
words, the minimum detectable speed of hand movement using the STFT approach is 20 cm/s [14].
Therefore, the Doppler shift can only provide a coarse-grained measurement of the speed or direction of
hand/finger movement [11]. Fig. 2a shows the STFT result of a moving hand when making the gesture
“W”. The frequency of the signal is 21.55 kHz. The figure only provides a rough observation of hand
movements, whereas our method can capture more detailed time-series information such as amplitude,
phase, and acceleration, as shown in Fig. 2b.

3.3.2 Signal I/Q Modulation
To overcome the limitations of the Doppler shift, we utilize the amplitude, phase, and acceleration

information of the received signal to accurately analyze subtle hand movements. To extract the phase and
amplitude from the received signal, we initially down-convert the received signal. This conversion aims
to convert high-frequency signals into low-frequency signals, resulting in a significant reduction in data

Acoustic sensingAcoustss ic senee singSignal Collection Signal
Pre-processing

I/Q Modulation

Denoising

Segmentation

Acoustic sensingAcouoo stss ic senee singModel Construction

CNN+BiLSTM

Verification

Users

Spoofers

Gesture model

User model

Figure 1: Overview of GestureID
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size and an enhancement in signal processing efficiency. The Doppler shift caused by hand movement is
below 100 Hz [23]. Thus, we use a fifth-order Butterworth Band-Pass Filter [31] to extract the target
frequency band from the received signals, which is [f0 � 100; f0 þ 100] Hz. Then, we utilize the
conventional coherent detector structure depicted in Fig. 3 to convert the received signal from passband
to baseband signal [32]. The received signal is divided into two identical copies, which are multiplied
with the transmitted signal cos2pft and its phase shift version �sin2pft. Then, we use a fifth-order
Butterworth Low-Pass Filter (LPF) [31] with a stop frequency at 100 Hz to eliminate high-frequency
components and obtain the in-phase (I-component) and quadrature (Q-component) components of the
baseband signal. The in-phase and quadrature components are two-dimensional projections of a signal,
used to drive the signal’s phase and amplitude. The phase of the received signal is directly related to the
length of the acoustic propagation path. Hand movement can change the path length, leading to phase
fluctuations. The speed of motion is proportional to the change in phase, and the acceleration related to
the phase change can be obtained by taking the derivative of the phase change. Fig. 4b shows the
amplitude, phase, and acceleration profiles obtained from the same gesture record that generates the
spectrogram in Fig. 4a. The patterns caused by hand movements can be clearly observed.

3.3.3 Signal Denoising
The signal received by the microphone is a mixed signal with multipath propagation. In addition to

dynamic signals caused by hand movements, there are also static signals. These include LOS signals (i.e.,
signals propagating directly from the speaker to the microphone) and signals reflected from the
surroundings (e.g., obstacles and the body). In addition, the static signal may also change slowly with the

Figure 2: Acoustic signals of hand movements. (a) Doppler shift. (b) Amplitude, phase, and acceleration
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Figure 3: I/Q modulation process
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movement of the user’s hand or body. Fig. 4 shows the amplitude, phase, and acceleration curves of the
gesture “W” with a frequency of 17350 Hz. It can be seen that after 3.1 s (the end time of the gesture
movement), the phase is still slowly changing and there is noise. To remove irrelevant data, we compute
the gradient of the received signals [14]. This gradient indicates the phase (amplitude) difference between
two consecutive samples at times t-1 and t. Wavelet-based denoising techniques are then employed. The
objective of wavelet denoising [33] is to eliminate noise from signal. Figs. 4a and 4b show the signals
before and after denoising, respectively. After denoising, it is evident that the amplitude, phase, and
acceleration become almost zero when there is no gestural motion. This confirms that the static signals
are effectively reduced.

3.3.4 Signal Segmentation
After filtering, the start time and end time of the gesture need to be detected to extract the part of hand

movement. Given the use of an eight-frequency signal, eight phase curves are generated. Additionally, eight
differential phase curves are utilized for hand motion segmentation. Specifically, assume that
hi tð Þ ¼ i : i ¼ 0; 1; :::; 7f g is the differential phase value of eight-frequency signal at moment t, we take
the variance of the eight-frequency phase values at moment t:

Vart ¼ 1

8

X8

i¼1
ðfi � �fÞ2 (1)

where �f represents the mean of eight-frequency phase values at moment t, i.e.,

�f ¼ 1

8

X8

i¼1
fi (2)

Fig. 5a shows the variance curve of four gesture “W” samples. It can be seen that the variance is zero in
the absence of hand movement.

After the variance curves are obtained, the first step is to calculate the standard deviations of the variance
curves. After experimenting with different sliding windows, we chose a sliding window of size 200 with a
step size of 10 (overlap rate of 5%) to obtain a series of standard deviations. After obtaining the standard
deviation curve, we employ a dynamic threshold selection scheme using the criteria mentioned in [34].
Based on our experiment, we observed that the standard deviation curve is close to zero without any
hand movement. However, in the presence of hand movements, it becomes non-zero, as shown in

Figure 4: Amplitude, phase, and acceleration of the gesture “W”. (a) Without denoising. (b) With denoising
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Fig. 5b. Therefore, we determine the threshold r by the maximum and minimum values of the standard
deviation curve of the signal within the frame. The formula for selecting the threshold is as follows:

r ¼ minþ 0:1� max� minð Þ (3)

where min and max are the minimum and maximum of the variance curve in the current frame, respectively.
The points larger than the threshold value indicate the gesture motion part with subscripts i1; :::; in. We use
these subscripts to calculate the start frame tstart and end frame tstart of hand motion can be calculated as
follows:(
tstart ¼ istart � l � 1� pð Þ þ l

2 ;

tend ¼ iend � l � 1� pð Þ þ l
2 ;

(4)

where l and p represent the size of the sliding window and the overlap rate, respectively. Fig. 5a shows the
variance curve of four gestures “W” with the start (marked as blue line) and end (marked as red line). Fig. 5b
shows the standard deviation curve of the variance curve in Fig. 5a and the corresponding threshold value.
Fig. 6 shows the differential amplitude, phase, and acceleration curves of the segmented eight-frequency
signal.

Figure 5: Detection of the start and end points of a gesture within a signal. (a) Variance of multi-frequency
phase. (b) Sliding standard deviation of the variance curve
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Since different users take different time to complete a gesture, and even the same user takes different
times to complete a gesture, the speed variation of the gesture movement must be handled. The average
duration of a gesture in our dataset is approximately 1.5 s, with a sampling frequency of 480 Hz. To
ensure equal sample sizes for each gesture data, the data is resampled to 720 samples. Specifically, for a
gesture segment containing M data points, GestureID up-samples hi to 720 points if M < 720, while it
down-samples hi to 720 points if M > 720. Then, we perform maximum-minimum normalization on the
resampled time-series, ensuring that all values are mapped between −1 and 1. This process ensures that
the range of the same gesture action is consistent, making it easier to recognize and authenticate. It can
be calculated as follows:

Xnorm ¼ 2� X � Xminð Þ
Xmax � Xmin

� 1 (5)

where X is the original gesture data, Xmin and Xmax are the minimum and maximum values in the original
gesture data set, respectively. Xnorm is the normalized gesture data value at the current moment. The
differential amplitude, phase, and acceleration curves of resampled and normalized eight-frequency
signals are shown in Fig. 7.

3.4 Model Construction
Feature vectors. In this paper, we consider the proportional relationship between the speed and

acceleration of hand motion and the phase change and its acceleration. Therefore, we use phase and
acceleration sequences as inputs for the neural network. Additionally, we incorporate the characteristics of

Figure 6: Amplitude, phase, and acceleration signals after segmentation
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acoustic signals into the design of the network model. First, the phase profiles are time-series signals with
eight carrier frequencies. To calculate their delta features, we apply the concept of speech recognition and
compute the second-order difference of phase [35]. The acceleration of the second-order differential phase
is then computed to extract hand motion acceleration features. These 16 feature dimensions are used as
inputs to the neural network, which include eight second-order differential phase dimensions and eight
acceleration dimensions.

Model structure. The neural network model must combine the phase and acceleration data. This is
because the phase and acceleration data for the eight frequencies are one-dimensional vectors with a time
sequence length of 720. To accomplish this, we utilize a one-dimensional convolutional neural network
(1D-CNN) [36]. This type of network, utilizing weight sharing through one-dimensional convolutional
kernels, enables the extraction of features from each dimension of the one-dimensional vector, serving as
a more comprehensive feature information extraction network. In a one-dimensional CNN, it is required
to predefine one-dimensional convolutional kernels. Subsequently, information is extracted from the one-
dimensional vector using the specified stride. This process captures information from dimensions and
extracts inter-dimensional connection information. Due to its structural characteristics, recurrent neural
networks (RNNs) maintain memory based on historical information, making them suitable for processing
sequential data. Long Short-Term Memory (LSTM) networks are explicitly designed to address long-term
dependencies by using specialized memory units, demonstrating superior performance in longer
sequences. Bidirectional LSTMs (BiLSTM) take into account the comprehensive impact of preceding and
succeeding action information on the current moment. In terms of temporal signals, BiLSTM [37] has a
more powerful capability for extracting representations compared to LSTM. It achieves this by
considering both previous and subsequent information, while also addressing problems like gradient
vanishing and exploding. Therefore, we developed a CNN-BiLSTM deep neural network model (Fig. 8)
to extract hand motion features from multidimensional temporal data and perform gesture classification
and user authentication. The model is composed of four parts: the input layer, CNN layer, BiLSTM layer,
and output layer. The input data of the model is the multidimensional time series obtained in Section 3.3.
Therefore, we first use three layers of one-dimensional convolution to extract the local features of the

Figure 7: Amplitude, phase, and acceleration signals after resampling and normalization
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time series, followed by two BiLSTM layers to model the sequence and capture its temporal information.
The output layer of the model is a fully connected layer. The probability prediction of each category is
obtained using a softmax function. For all layers, ReLU is used as the activation function.
L2 regularization methods are used at each CNN and BiLSTM layer to mitigate overfitting. Moreover,
dropout layers are added after each layer in the model with a dropout rate of 0.2. Table 1 shows the
details of the CNN-BiLSTM model.

diff ph+accInput Layer

Conv1D

BatchNoramlizetion

MaxPooling1D

CNN×3

BiLSTM

Dropout1D
BiLSTM

Flatten Layer

Softmax Layer
Output Layer

BiLSTM

Figure 8: The architecture of CNN-BiLSTM model

Table 1: Details of CNN-BiLSTM model

Layer Layer type Output shape # Param

1 Conv1D + ReLU (1,720,128) 18560

2 MaxPooling1D (1,360,128)

3 Conv1D + ReLU (1,360,128) 147584

4 MaxPooling1D (1,180,128)

5 Conv1D + ReLU (1,180,256) 295168

6 BiLSTM (1,180,512) 1050624

7 BiLSTM (1,180,512) 1574912

8 Dropout1D (1,180,512)

9 Dense + ReLU (1,180,128) 65664

10 Flatten (1,23040)

11 Dense + Softmax (1,5) 115205
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1D-CNN. Given that the input signal is a time series, the 1D convolutional neural network can be
employed to extract features in each dimension of the 1D vector using a 1D convolutional kernel with
shared weights. The CNN network in this paper comprises three one-dimensional convolutional layers
and two max pooling layers. The convolution kernel extracts the hand motion features of the time series,
and the maximum pooling layer down-samples the feature maps after the 1D convolution. Batch
normalization (BN) is used in every convolutional layer for faster and more stable training [38]. BN also
aids in preventing parameters from falling into poor local minima. The output of the CNN network is a 1
× 180 × 256 feature map, which is used as input to the BiLSTM network.

BiLSTM. The BiLSTM layer consists of a forward LSTM and a backward LSTM together. BiLSTM is
a variant of RNN. It has a stronger ability to extract forward and backward information representations than
LSTM, especially for temporal data. In this study, we employ a two-layer BiLSTM with 256 hidden units in
each layer. With the bi-directional LSTM, the information of the input sequence can be learned more
comprehensively, including its order and context.

Output layer. In the output layer of the model, we use the softmax activation function as the classifier.
The final output layer of the gesture recognition network uses a softmax function to output the probability of
five gestures, denoted as p ¼ pi p1; p2; :::; p5ð Þ, where pi denotes the probability that the input gesture belongs
to the i-th gesture.

Transfer learning. Retraining the model when a new registered user joins is time and resource
consuming, and the feature extraction capability is insufficient. Therefore, for user authentication, we
utilized a transfer learning [39] approach with pre-training and fine-tuning [40]. Each gesture has its own
user authentication model, which is trained using a pre-trained gesture recognition model. The pre-trained
model is truncated at the softmax layer and replaced with a sigmoid function for binary classification. It
identifies if the user is registered or a spoofer. The objective of the user authentication network is to
improve authentication accuracy and generalization capability using a limited number of training samples.

4 Evaluation

4.1 Experimental Setup
Experimental Equipment. We utilized a HUAWEI Mate40 smartphone with HarmonyOS

3.0 operating system and a Dell Inspiron 5577 laptop for data collection and processing. Keras [41] with
a TensorFlow [42] backend was employed to construct and train the neural network offline. The CNN-
BiLSTM models were trained offline on a server with 32 G of RAM and an Intel i7-8700k|@|3.7 GHz
processor, along with a GeForce RTX 2080 graphics card.

Data Collection. Due to the absence of a publicly available dataset for researchers in the field of
acoustic sensing, both domestically and internationally, we obtained real data on gestures from multiple
volunteers and formed a dataset. Nine volunteers (four males and five females, aged 18–28 years) were
invited to participate in the data collection. Before the experiment, they were informed about the purpose
and process of this study. Data were collected in three environments: laboratory, bedroom, and living
room. To evaluate the effectiveness of our gesture recognition and user authentication models, we
referred to existing literature [23] and focused on five common gestures: “+”, “O”, “W”, “X”, and “Z”
(shown in Fig. 9). Before collecting the data, the volunteer was asked to practice the gestures several
times so that he or she could understand the data collection process. Each participant was instructed to
perform a given gesture repeatedly, with a brief pause between each gesture. The participants were
required to place their hands within a range of 5~30 cm from the smartphone. The collection process
relied solely on the user’s habits. Five popular gestures were repeated 50 times by nine volunteers, and
the collection process lasted for one month. In total, we collected 2250 gesture samples from various
ages, genders, and environments.

162 SV, 2024, vol.58



Evaluation Protocol. To comprehensively evaluate the performance of system, we use the following
metrics:

� Confusion Matrix: Each row of the matrix represents the true label (ground truth), while each column
represents the classification result of the system.

� Accuracy (Ac = TP + TN/TP + TN + FP + FN): the ratio of the number of all correctly classified
samples to the total number of samples.

� Recall rate (Re = TP/FN + TP): percentage of true positive classifications in all target class instances.
� F1-Score (F1 = 2 × PR × RE/PR + RE): the weighted summed average of Precision and Recall.

4.2 Overall Performance
In this section, we evaluate the performance of GestureID in the gesture recognition phase and the user

authentication phase.

First, to ensure model generalization, we employ the k-fold cross-validation to assess gesture recognition
performance. Specifically, the training and test sets are divided in a ratio of 8:2. Then, the original training set is
randomly divided into k mutually non-overlapping subsets. Out of these subsets, k − 1 subsets are sequentially
used as the training set, while the remaining one is used as the validation set. In this paper, we use ten-fold
cross-validation, i.e., k = 10. Fig. 10 shows the confusion matrix, accuracy, recall, and F1 score of the
gesture recognition model. The recognition accuracy of each gesture is above 95%. The average
recognition accuracy of GestureID for five gestures is 97.8%. The accuracy, recall, and F1 score are above
95%, proving the good performance of GestureID in the gesture recognition stage.

(a)             (b)              (c)            (d)            (e) 

Figure 9: Different types of gestures evaluated

(a) (b)

Figure 10: Performance on gesture recognition. (a) Confusion matrix of gesture recognition. (b) accuracy/
recall/F1 score of gesture recognition
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To train user authentication models for the five predefined gestures, we adopt a transfer learning
approach. This involves utilizing a pre-trained gesture recognition model. This approach is also effective
in decreasing the time and resources needed to retrain the model when a new user is added, while
enhancing the model’s ability to extract features. We employ the K-fold cross-validation approach to train
the user authentication model, evaluating each gesture. In the user authentication model, we employ five-
fold cross-validation to split the training set and test set in an 8:2 ratio. Five users were randomly selected
to create the registered users, while the remaining four users were designated as spoofers. Fig. 11 shows
the accuracy of user authentication for the five gestures. The average authentication accuracy of
GestureID is 96.3%, and the authentication accuracy of all five gestures is above 94%. GestureID’s
effectiveness lies in its ability to differentiate between registered users and unknown spoofers, thereby
enhancing the accuracy of user authentication.

4.3 Impact of Signal Processing
Signal processing methods play a key role in the authentication task. In this study, we utilize phase and

acceleration information (ph and acc) as an alternative to coarse-grained Doppler frequency shifts for
capturing hand motion. To eliminate static signals in the received signal that is not related to the hand
motion, we use a second-order differential-based phase extraction method that further enhances the
sensing capability of the signal by calculating the gradient of the received signals. The extracted second-
order diff phase and the phase-dependent acceleration info (diff ph+acc) are inputs to the CNN-BiLSTM
model. The accuracy of different pre-processing methods is presented in Fig. 12. In particular, ph+am, ph
+acc, diff ph+am and diff ph+acc are the four types of input features. The last one, diff ph+acc, is the
technique employed in this paper. In Fig. 12, it is evident that every step of the signal processing process
in this paper enhances authentication performance to some extent. The result after taking the second-order
difference is much better than the other two features.

4.4 Impact of Transfer Learning
To reduce the time and resource consumption of retraining the model during new user registration and to

enhance the performance of user authentication, a pre-trained and fine-tuned transfer learning approach is
used to train the user authentication model. In practice, using the transfer learning approach can reduce
the sample collection time for new user registration as well as the training time of the network, thus
effectively improving the usability of GestureID in real-world scenarios. In this study, we compared the
user authentication model trained using the original CNN-BiLSTM network with the model trained using

Figure 11: Authentication accuracy of GestureID
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a pre-trained gesture recognition model through transfer learning. Each network is tuned for 100 epochs to
ensure convergence. Figs. 13a and 13b show the accuracy and training time of the two model training
methods. It is evident that utilizing the transfer learning approach significantly decreases the model
training time and enhances the model performance.

4.5 Impact of Training Scale
In practice, the size of the data used to train the network is an important influencing factor. The size of

the training set affects the network’s performance. Typically, a large training set aids in mitigating overfitting
and enhancing the mode’s generalization capability. However, users often expect quicker data collection.
Therefore, we performed experiments to investigate the effect of different training set sizes on user
authentication performance. Specifically, we train the network with varying proportions (0.1 to 0.8) of
training set samples, and the remaining samples are used for testing. The user authentication accuracy
with the proportion of the training set is plotted in Fig. 14, and the results show that the user

Figure 12: Accuracy of different signal processing methods

Figure 13: Impact of transfer learning on performance. (a) Impact of transfer learning on accuracy. (b)
Impact of transfer learning on training time
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authentication performance shows an increasing trend as the size of the training set increases. After using
50% of the dataset for training, the accuracy of user authentication can exceed 93%. This indicates that it
does not require too many training samples to build a good authentication model.

4.6 Impact of Distance
To evaluate the impact of hand-to-device distance on authentication performance, we tested the

authentication model for the gesture “+” at different distances from user to device. Volunteers are asked
to perform the “+” gesture at distances from 5 to 40 cm. Fig. 15 shows the accuracy rate at different
distances. The authentication accuracy is at least 94% within a 20-cm range. When the distance exceeds
30 cm, the accuracy drops to approximately 89%. The results indicate that GestureID’s performance
decreases with greater authentication distance. Additionally, the authentication distance is constrained by
the signal strength of hand motion sensing. This implies that the sensing range is limited by the power of
the transmitted signal. Therefore, it is best for users to keep the distance within 30 cm when using GestureID.

Figure 14: Impact of training set proportions

Figure 15: Accuracy of authentication at different distances

166 SV, 2024, vol.58



5 Conclusions

This paper proposes GestureID, a user authentication system based on hand motion sensing. User
authentication is performed by extracting unique behavioral features of users’ hand movements using
acoustic sensing technology. First, we propose a method for phase extraction that uses second-order
differentials to remove static components from received signals. This is performed by calculating the
signal gradient of the received signals. Then, the second-order differential-based phase and phase-
dependent acceleration information are used as the input of the CNN-BiLSTM model to model the hand
motion features. Finally, transfer learning is used to build a user authentication model by utilizing the pre-
trained gesture recognition model. This allows us to achieve accurate user authentication without
requiring extensive training data. Experiments show that GestureID can achieve 97.8% gesture
recognition accuracy and 96.3% user authentication accuracy. In the future, we plan to investigate the
adaptability of GestureID to attacks in order to validate the system’s security in realistic scenarios.
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