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Abstract: Heart disease (HD) is a serious widespread life-threatening disease.
The heart of patients with HD fails to pump suf�cient amounts of blood
to the entire body. Diagnosing the occurrence of HD early and ef�ciently
may prevent the manifestation of the debilitating effects of this disease and
aid in its effective treatment. Classical methods for diagnosing HD are some-
times unreliable and insuf�cient in analyzing the related symptoms. As an
alternative, noninvasive medical procedures based on machine learning (ML)
methods provide reliable HD diagnosis and ef�cient prediction of HD condi-
tions. However, the existing models of automated ML-based HD diagnostic
methods cannot satisfy clinical evaluation criteria because of their inability
to recognize anomalies in extracted symptoms represented as classi�cation
features from patients with HD. In this study, we propose an automated heart
disease diagnosis (AHDD) system that integrates a binary convolutional neu-
ral network (CNN) with a new multi-agent feature wrapper (MAFW) model.
The MAFW model consists of four software agents that operate a genetic
algorithm (GA), a support vector machine (SVM), and Naïve Bayes (NB).
The agents instruct the GA to perform a global search on HD features and
adjust the weights of SVM and BN during initial classi�cation. A �nal tuning
to CNN is then performed to ensure that the best set of features are included
in HD identi�cation. The CNN consists of �ve layers that categorize patients
as healthy or with HD according to the analysis of optimized HD features.
We evaluate the classi�cation performance of the proposed AHDD system
via 12 common ML techniques and conventional CNN models by using a
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cross-validation technique and by assessing six evaluation criteria. The AHDD
system achieves the highest accuracy of 90.1%, whereas the other ML and
conventional CNN models attain only 72.3%–83.8% accuracy on average.
Therefore, the AHDD system proposed herein has the highest capability to
identify patients with HD. This system can be used by medical practitioners
to diagnose HD ef�ciently.

Keywords: Heart disease; machine learning; multi-agent feature wrapper
model; heart disease diagnosis; HD cleveland datasets; convolutional
neural network

1 Introduction

Heart disease (HD) is a life-threatening disease that can cause heart failure. The heart is
responsible for pumping the desired amount of blood to the entire body. The presence of HD may
result in insuf�cient blood supply [1,2]. In many countries, including the United States of America,
HD has the highest rate of incidence [3,4]. According to the European Society of Cardiology,
over 3.5 million people are diagnosed with HD annually. The total number of patients with HD
worldwide is 2.6 million [5], and half of them have lost their lives after the �rst or second year
of diagnosis [6]. The estimated expenditure for HD prevention and treatment is about 3% of
the global budget for healthcare [7]. The major symptoms of HD are dif�culties in breathing,
feelings of fatigue or tiredness, and peripheral edema. These symptoms arise due to abnormalities
in cardiac or noncardiac functions [3]. The current methods for diagnosing HD are incapable of
identifying HD in its early stages [4]. The severe lack of medical supplies and resources, including
specialists and equipment, in developing countries, contribute to inef�cient and ineffective HD
diagnosis and treatment in these nations [5].

Therefore, appropriate prevention and early diagnostic methods must be developed to min-
imize the risk of death due to HD [6]. Traditional HD diagnostic methods involve invasive
techniques that are time-consuming and tedious. In many cases, the accuracy of these methods
is inaccurate. Intelligent noninvasive decision support methods are proposed as an alternative
to address the limitations of invasive HD diagnostic methods and reduce the risk of death
due to HD. These methods provide an advanced diagnosis by analyzing the medical history of
patients with HD patient, examining the physical condition of the patients, and then generating
a compressive report on HD cases [8]. To perform data analysis, they utilize data mining and
machine learning (ML) techniques, including arti�cial neural network (ANN), AdaBoost, logistic
regression, support vector machine (SVM), Naïve Bayes (NB), fuzzy logic (FL), k-nearest neighbor
(K-NN), and decision tree (DT) [9–11]. Various ML methods are used to classify and diagnose
HD with reasonable accuracy [12,13]. Numerous researchers have tested their respective proposed
ML classi�cation methods by extensively using HD datasets to investigate and predict heart health
conditions [14].

Predicting the occurrence of HD in its early stages on the basis of risk factors that could lead
to HD, such as diabetes, hypertension, smoking, age and sex [8], provide a potential solution. The
common ML methods utilized in analyzing HD risk factors are ANN, DT, NB, and SVM. In a
previous study that aimed to predict risks of HD, regression SVM achieved the highest accuracy
of 92.1%, whereas DT obtained the lowest accuracy of 89.6% [15]. Previous studies that compared
the accuracy and �exibility of various ML techniques in predicting HD reported that associative
classi�cation approaches, such as NB, ANN, and DT, are superior to other techniques [16,17].
Another empirical study demonstrated that DT-based methods can produce good accuracy despite
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its simplicity [18]. Another study tested KNN and NB classi�ers on the Cleveland HD database
and Stat log Heart HD datasets and found that KNN outperforms NB [19]. A prior study
employed ANN with backpropagation training algorithm for HD prediction and achieved conve-
nient accuracy [20]. A previous work proposed an ensemble method to enhance HD diagnosis;
results showed that the proposed method achieves a higher accuracy than methods with individual
classi�ers [21]. Earlier studies also employed ANN to minimize human errors in predicting medical
indicators of HD, blood pressure, and blood sugar [22,23].

In predicting HD, most ML classi�ers, when combined with other methods, perform better
and achieve higher accuracy than when they are used as a standalone method. A previous research
presented a hybrid FL-based method that combines genetic algorithm (GA) with ANN [24]. In
this hybrid method, FL is used to extract HD features, GA is utilized to optimize feature selection,
and ANN is employed to classify HD cases. Experimental results indicated an increase in the
overall classi�cation accuracy. Another work described a combination of GA, FL, and ANN for
HD diagnosis [25], which performed well in predicting HD. Another study proposed a hybrid
approach combining FL and ANN for HD prediction [20]. This approach yields good results with
an accuracy of 87.4%. Two previous studies integrated a combination of GA, ANN, and FL into
a coactive neuro-fuzzy inference system (CANFIS) [26,27]. In this system, GA is employed to
optimize feature selection and automate the tuning of CANFIS parameters. Results demonstrated
that CANFIS predicts HD with high accuracy. Prior works combined an SVM model with particle
swarm optimization (PSO) to classify heartbeats [28,29]. In this model, PSO is used to optimize
and tune SVM parameters. Results demonstrated that the proposed model produces a higher
classi�cation accuracy than SVM alone. A related research combined different ML classi�ers by
adopting an ensemble technique to improve the performance of several classi�ers [30]. The authors
applied the combined classi�ers based on the ensemble technique in healthcare provision and
assessed their usefulness in this �eld. Another study evaluated different HD datasets via several
classi�cation models [31], some of which obtained high accuracy. A previous work combined
another classi�cation method based on the K-means clustering algorithm with the maximal fre-
quent item set algorithm (MAFIA) to address problems in HD diagnosis [23]. In this classi�cation
method, the K-means algorithm is employed for data extraction, whereas MAFIA is utilized for
mining frequent patterns. The authors tested the proposed method by using different weights and
factors and found that it has a higher accuracy in predicting myocardial infarction than similar
basic methods.

Similar to what a previous study conducted [32], the common evolutionary methods used for
feature selection are evaluated on the Cleveland HD dataset. Data show that these methods obtain
a higher classi�cation accuracy than basic methods. A study integrated a multilayer perceptron
(MLP) classi�er into SVM methods for HD diagnosis [33]. This classi�er achieves a classi�cation
accuracy of up to 80.41%. Another study proposed a different classi�cation method on the basis
of MLP ANN for HD diagnosis [34]. The classi�er is combined with feature selection and
backpropagation learning algorithms. A previous work employed DT, NB, and ANN in a medical
computer-based tool to help in HD diagnosis [35]. NB produced the best performance with an
accuracy of 88.12%, followed by ANN and DT with an accuracy of 86.12% and 80.4%, respec-
tively. Two studies suggested a three-phase ANN-based approach for HD classi�cation [36,37].
Another study utilized a logistic regression classi�er in a decision support system for HD case
classi�cation [38]. However, the classi�er produced a low accuracy of only 77%.

The research of [30] is more similar to the present work than to the aforementioned studies.
Both studies comprehensively investigate the performance of various ML methods and propose a
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hybrid ML model for HD feature selection and classi�cation. In HD feature selection, the features
are divided into sets that contain six features, and then the features of the sets are switched.
By comparison, in HD classi�cation, classi�cation accuracy is measured to �nd the best set of
features. Nevertheless, the two studies have crucial differences. The work of [30] greatly improves
the accuracy of running multiple models. However, the results of this method are applicable to
classifying instances with six features only, thereby restricting its generalization. Moreover, its
measurement of performance is still limited to a few classi�cation models in which the highest
accuracy of 85.48% is achieved by the hybrid model. By contrast, the present study adopts a new
feature selection method to determine the best set of features. Furthermore, this study utilizes ML
models to improve further the classi�cation accuracy.

In the present study, we propose a new hybrid model for developing an automated heart
disease diagnosis (AHDD) system that classi�es HD cases on the basis of deep learning and multi-
agent paradigms. It includes a multi-agent feature wrapper (MAFW) model for �nding a subset
of features most relevant to prediction or classi�cation tasks. The MAFW model performs within
the framework of the wrapper approach to ensure that the best subset of features is obtained.
It is especially useful in performing feature selection for small datasets. The MAFW consists of
four types of agents, namely, a data preparation agent (α1), a feature selection agent (α2), a data
classi�cation agent (α3), and a feature evaluation agent (α4). The model includes two popular
classi�ers in the data classi�cation agent, namely, SVM and NB. The model also includes a GA
for performing primary feature selection. In addition, cross-validation techniques are employed in
particular k-fold. Moreover, different evaluation metrics are assessed to evaluate the performance
of our proposed method in terms of accuracy, TP, FP, precision, recall, and F1-measure. The
HD dataset is also analyzed via data preprocessing methods. Our method is tested on the 2016
Cleveland HD dataset for HD diagnosis. The main contributions of this study are as follows:

• A new hybrid model is proposed for developing an AHDD system. The AHDD system
integrates a binary CNN model with an MAFW model. The CNN consists of �ve layers
that categorize subjects into healthy individuals or patients with HD by analyzing several
HD features. The binary CNN architecture includes an input HD data, a convolution, a
pooling activation, and output layers.
• The new MAFW model implements SVM and NB to conduct initial classi�cation to tune

the CNN and GA to perform a global search on HD features and adjust the weights of
CNN to include the best set of features.
• The performance of all classi�cation ML-based methods is evaluated in terms of prediction

accuracy of the overall feature set.
• The performance of all classi�cation ML-based methods is also evaluated in terms of

prediction accuracy of the selected features chosen by feature selection via the MAFW
model combined with cross-validation (k-fold).
• On the basis of the performance evaluation results, this study recommends the use of a

particular classi�cation ML-based method that works well with a certain feature algorithm
in designing powerful computer-aided HD prediction systems.
• The performance of various classi�cations ML-based methods as applied to an HD dataset

is compared and analyzed.

The rest of the paper is organized as follows. The materials and methods are described
in Section 2. In Section 3, the implementation of the proposed method is presented, and its
performance in HD prediction is scrutinized. Lastly, the conclusions and directions for future work
are highlighted in Section 4.
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2 Materials and Methods

Numerous intelligent decision support systems are utilized to aid in various medical and
healthcare needs, including diagnosis, patient follow up, disease remediation, and prognosis. To
handle data complexity and uncertainty, these intelligent systems combine some of the most
successful and widely used intelligent computational algorithms, such as ANN, GA, and K-means
clustering [39]. In the context of the learning process, the issue of HD prediction is considered
as a clustering classi�cation problem. However, a framework is required to manage different sets
of data types. Only one type of class with a restricted HD class set may be classi�ed to address
this classi�cation problem. Doing so allows the easy detection of the correct class, resulting in
high accuracy.

2.1 HD Dataset
The Cleveland HD dataset is available from the UCI Machine Learning Repository. The

Cleveland HD dataset is extensively used by data miners and researchers on ML for evaluation
and analysis purposes. The Cleveland HD dataset is composed of 270 instances and 13 fea-
tures/attributes, including 6 numeric attributes and 7 categorical attributes. A description of the
dataset is shown in Tab. 1.

The range of age of the patients selected is 29–79 years. A gender value of 1 represents male
patients, whereas a gender value of 0 denotes female patients.

Symptoms of HD are associated with four types of chest pain:

1. Heart muscles do not receive the full amount of blood required, resulting in the narrowing
of coronary arteries, a condition that causes Angina type 1.

2. Heart muscles do not receive the full amount of blood required, resulting in the narrowing
of coronary arteries, a condition that also causes Angina type 2. The main difference is
that Angina type 2 is associated with the chest pain felt when experiencing emotional or
mental stress.

3. Some chest pains not related to Angina are experienced for various reasons, and this case
is not associated with HD.

4. No symptoms re�ecting an HD case are noted.

With respect to features, trestbps represents blood pressure reading in the resting position,
Chol indicates the level of cholesterol, and Fbs denotes the fasting blood sugar level. If the blood
sugar level is less than 120 mg/dl, a value of 1 is assigned; otherwise, this feature is given a value
of 0. Furthermore, Restecg represents electrocardiographic results in the resting position, thalach
is the maximum value of the heart rate, and exang indicates exercise-induced angina. If pain is
felt, then exang is assigned a value of 1; otherwise, it is given a value of 0. Moreover, an old
peak represents exercise-induced ST depression. The slope represents the peak slope exercise of
ST-segment. In addition, ca is the number of main vessels colored by �uoroscopy, that provides
the duration of test exercise in minutes, and num represents the class attribute. With regard to
num, a value of 0 is assigned for normal cases; otherwise, a value of 1 is given (for cases with
HD abnormality). The desired attribute is classi�ed into four categories: the �rst three categories
re�ect HD cases, whereas the fourth category denotes healthy cases. The holdout technique in
which the dataset is split into two sets is adopted for training and testing.
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Table 1: Details and description of Cleveland HD dataset features [40]

S.no Feature name Feature code Description Domain of values
(max–min)

1 Age AGE Age in years 30 <age <77
2 Sex SEX Male= 1

Female= 0
1
0

3 Type of chest pain CPT 1= atypical angina
2= typical angina
3= asymptomatic
4= nonanginal pain

1
2
3
4

4 Resting blood pressure RBP mm Hg admitted at the
hospital

94–200

5 Serum cholestrol SCH In mg/dl 120-564
6 Fasting blood

sugar> 120 mg/dl
FBS Fasting blood

sugar> 120 mg/dl
(1= true; 0= false)

1
0

7 Resting
electrocardiograpic
results

RES 0= normal
1= having
ST-T2= hypertrophy

0
1
2

8 Maximum heart rate
achieved

MHR _ 71–202

9 Exercise-induced angina EIA 1= yes
0= no

0
1

10 Old peak_ST depression
induced by exercise
relative to rest

OPK _ 0–6.2

11 Slope of the peak
exercise ST segment

PES 1= up sloping
2= �at
3= down sloping

1
2
3

12 Number of major
vessels (0–3) colored by
�uoroscopy

VCA _ 0
1
2
3

13 Thallium scan THA 3= normal
6= �xed defect
7= reversible defect

3
6
7

2.2 Methodology
The proposed approach aims to properly classify individuals as healthy or with HD. The

performance of different ML-based methods is evaluated in terms of accurately diagnosing HD
on the basis of complete and selected features. A supervised learning-based method is adopted
for classi�cation data availabilities. A diagnostic system for HD is then proposed. The proposed
approach includes different ML classi�ers to enhance prediction accuracy. Our proposed method-
ology involves �ve stages: (1) Preprocessing of HD dataset, (2) A feature selection stage involving
the MAFW model, (3) A cross-validation process, (4) Theoretical contexts of 11 ML techniques,
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and (5) Evaluating ML performance via various techniques. The dataset is split into training and
testing sets. The ef�ciency of the ML classi�ers is tested on the dataset described in Fig. 1.

Figure 1: Machine learning-based identi�cation approach for heart disease diagnosis

2.2.1 Data Preprocessing
Data preprocessing is necessary to obtain a suitable data representation for each ML classi�er

and ensure effective testing and evaluation. Some of these methods are standard scalar method,
missing values removal, and MinMax scalar. In the standard scalar method, each feature has a
value of 0 for the mean and a value of 1 for the variance, and all features are bridged to a similar
factor. The same is true for the MinMax scalar method, in which the data are shifted between
0 and 1 for all features. In the missing values removal method, missing values in each feature
row are removed from the entire dataset [41]. The aforementioned data preprocessing methods are
adopted in the present study.

2.2.2 Multi-Agent Feature Wrapper
Selection of relevant features is critical for identifying the required classes. It has a positive

effect on the ef�ciency of ML classi�ers in terms of prediction accuracy and execution time. By
contrast, selecting irrelevant features in the learning process can negatively affect the performance
of ML classi�ers. In our proposed method, the MAFW model is applied in selecting the impor-
tant features of targeted classi�cation. HD datasets have over thousands of features but only 13
attributes. Hence, classifying HD is a complex process because of the existence of a wide variety
of features and inessential or irrelevant attributes. If the full dataset containing a huge number of
features is used, then achieving reliable and accurate results becomes laborious and requires a long
computational time. Thus, the size of features must be reduced by selecting proper characteristics
as the initial step in the learning process. Doing so helps in understanding the outcomes, thus
increasing the classi�cation accuracy while enhancing the performance of classi�ers.
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The MAFW model is proposed to �nd a subset of features that are most relevant to pre-
diction or classi�cation tasks. The MAFW model performs within the framework of the wrapper
approach to ensure that the best subset of features is obtained. This model is especially useful
in performing feature selection for small datasets. The MAFW model consists of four types of
agents, namely, a data preparation agent (α1), a feature selection agent (α2), a data classi�cation
agent (α3), and a feature evaluation agent (α4). The model includes two popular classi�ers in
the data classi�cation agent, namely, SVM and NB. The model also incorporates a GA for per-
forming primary feature selection. The MAFW model works according to backward elimination
mechanism in which it starts with selecting all features and, within its iteration, removes the least
important features while maintaining the most relevant ones. The stopping condition is linked to
both the number of removed features and the progress of performance improvement of classi�ers.
Fig. 2 shows the main components of the MAFW model.

Figure 2: An overview of the MAFW model

In the MAFW model, the agents interact with each other to perform feature selection tasks
to reduce the number of features of a given dataset. The agents’ goal is to select features that
best improve the prediction performance with a minimum effect on the boundaries of learning
generalization of the classi�ers. The agents’ roles in the MAFW model are presented below and
summarized in Algorithm 1 (Fig. 2):

• α1: This agent prepares the feature vector for α2 to perform the feature selection task and
prepares the cross-validation data for α3 to perform the classi�cation task.
• α2: This agent integrates a GA that applies a binary feature selection operation to produce

subsets of features. The GA presents the feature space as a one-dimension binary vector
that forms a GA chromosome. This chromosome represents an individual population in
which the total population indicates the actual number of features. Each chromosome
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contains a number of genes that is equal to the actual number of features (e.g., 15 features
are represented by 15 chromosomes, and each chromosome is represented by 15 genes).
Each gene can hold a binary value (0 or 1) in which assigning a value of 1 to a gene
denotes including a feature, whereas assigning a value of 0 to the gene signi�es excluding
the feature. The �rst initial population of chromosomes is randomly generated to represent
subsets of features. α2 passes a copy of the generated subset of features to α4 for further
evaluation. The GA performs binary crossover to update the genes of two selected chromo-
somes and binary mutation to shuf�e or re�ne the selection of a particular chromosome.
The crossover and mutation decisions are made by α2 on the basis of feature evaluation
results provided by α4 (as explained below). It also decides on the stopping condition
according to a user-de�ned setting to the number of features and iteration thresholds.
• α3: This agent integrates SVM and NB classi�ers that perform classi�cation tasks to the

provided data according to the subset features evaluated by α4. α3 then provides the
required classi�cation results to α4 for further evaluation of the features.
• α4: This agent receives the copy of the subset features from α2 and the classi�cation results

of SVM and NB from α3. α4 then applies mean decrease in accuracy (MDA) measurements
to the classi�cation results for each of SVM and NB to evaluate the subset features.
MDA measures the importance of each feature from the variations in accuracy when
including or excluding features. On the basis of MDA results, α4 updates the independent
feature evaluation (IFE) matrix that corresponds to NB results and the dependent feature
evaluation (DFE) matrix that corresponds to SVM results. α4 generates an associative
feature evaluation (AFE) matrix from mapping between the two IFE and DFE matrixes.
On the basis of the AFE matrix, it then checks and compares the importance between
the current subset features and other copies of subset features. This operation is performed
by checking the maximum weight W of the subset feature F by using the formula MDA
(AFE)=Max

∑n
i=0 (fi∗wi), where n represents the number of features, and wi is the weight

of a corresponding feature fi. α4 then passes the best results of the AFE matrix to the
other agents for further optimization of the features selected in the following iteration.

Algorithm 1: The MAFW Model
01 Construct MAFW;
02 Set initial parameters of F, W, GA, IFE, DFE, AFE, SVM, NB, α1,2,3,4;
03 WHILE not best solution DO
04 α1: prepare the initial inputs F and W on the basis of AFE;
05 α2: adjust F and W according to AFE, GA: F ∧ W ∧ AFE ⇒ F ∧ W;
06 α3: classify the given data and generate a solution, NB → IFE ∧ SVM → DFE;
07 α4: evaluate the solution, MDA (IFE ∧ DFE) ⇒ AFE;
08 α4: determine the best solution, MDA (AFE)=Max

∑n
i=0
(
f ∗i wi

)
⇒T ∨ F;

09 END-WHILE

The discussion above describes the main components and provides a complete description of
a run cycle of the MAFW model that constitute the main contribution of this paper. The MAFW
model differs from existing models by considering the wrapper of an independent feature analysis
classi�er (i.e., NB) and a dependent feature analysis classi�er (i.e., SVM) in selecting the best
subset features. They are speci�cally selected to avoid the over�tting disadvantage of the wrapper
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feature selection approach. Moreover, the MAFW model applies a multi-agent system that renders
the feature selection process more �exible by segregating selection functionalities into four tasks,
namely, preparation, selection, classi�cation, and evaluation. These tasks then interact with each
other and reason over the input, process, and output of each task and apply the necessary revision
to the processes responsible for achieving the tasks during runtime. Given that this model relies
on the wrapper feature selection approach, its main limitations are high computational and time
complexity [42,43].

2.2.3 Machine Learning and Classi�cation Algorithms
In the context of the learning process, the issue of HD prediction is considered as a clustering

classi�cation problem. However, a framework is necessary to manage different sets of available
data. Only one type of class with a restricted HD class set may be classi�ed to address this
classi�cation problem. Doing so allows the easy detection of the correct class, resulting in high
accuracy. In this section, the theoretical contexts of 11 ML classi�cation methods adopted herein
are explained. These methods are then compared and analyzed.

• NB is a Bayes theorem classi�cation technique. In general, NB claims that a speci�c
feature present in a speci�c class is irrelevant to another presented feature [44]. If the
fruit is orange, round, and about 10 cm in diameter, then it can be called an orange.
If these characteristics are dependent on each other, or they depend on the presence of
other characteristics, both features separately lead to an apple fruit probability; hence, this
technique is regarded as “Naïve”.
• Stochastic gradient descent (SGD) is a method also employed to �nd a minima function.

SGD is a linear classi�er (linear SVM is by default in sklearn) that uses SGD to train (i.e.,
to scan for loss minima by using SGD). This estimator utilizes SGD with regularized linear
model learning: the estimation of each sample at a time by the gradient of the loss and
the model is modi�ed along the way with a reduced force schedule (i.e., learning rate) [45].
• The sequential minimal optimization (SMO) algorithm is derived from taking the concept of a

decomposition method to its maximum and optimizing at each iteration a minimum subset
of just two points. The strength of this technique lies in the fact that an analytical solution
is admitted for the optimization problem for two data points, thus eliminating the need to
use as part of the algorithm an iterative quadratic programming optimizer [45].
• The voted perceptron method (VPM) is based on the Rosenblatt and Frank perceptron

algorithm. This algorithm exploits data with large margins to get the full bene�ts of linearly
separable classes. Compared with Vapnik’s SVM, this approach is easier to apply and also
more ef�cient in terms of computational time. This algorithm can also be implemented with
kernel functions in very high dimensional spaces [46].
• KNN or IBK algorithm is a simple supervised learning from the family of ML algorithms.

The main idea behind this approach is to �nd a training sample nearest to the new point
at a distance and to estimate the label from those data points [47]. Despite its simplicity,
this algorithm suffers from numerous classi�cation and regression problems concerning the
nearest neighbors.
• AdaBoostM1 is a shortcut term for adaptive boosting, which is an ML meta-algorithm

devised by Yoav Freund and Robert Schapire, who received the 2003 Gödel Prize for this
work [48]. Combined with several types of learning algorithms, this meta-algorithm can be
utilized to enhance achievement. Other learning algorithm outputs (“weak learners”) are
merged with a weighted sum, which indicates the boosted �nal outperformance of classi�ers.
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• LogitBoost is a boosting algorithm developed by Jerome Friedman, Robert Tibshirani, and
Trevor Hastie on the basis of ML and computational learning theory. Their original work
lays a mathematical foundation for the AdaBoost algorithm [49]. If one considers AdaBoost
as a generalized additive model, then one can derive the LogitBoost algorithm and then
apply the logistic regression cost function.
• MultiClassClassi�erUpdateable is a meta classi�er for handling multiclass databases with

two-class methods. Moreover, this classi�er is competent in using error-correcting yield
codes for expanded precision. The main method should be an updateable method [50].
• The Hoeffding Tree is an incremental learner of decision tree for big data streams, assuming

the distribution of data does not change over time. A decision tree grows incrementally
according to the Hoeffding boundary (or Chernoff bound additive) theoretical guaran-
tees. As soon as suf�cient statistical evidence is obtained, a node is expanded until an
optimal splitting function is achieved, a decision based on the Hoeffding bound, which is
independent of distribution [50].
• J48 is an upgrade to ID3. J48 accounts for extra features for the pruning of decision-

making trees, continuous attribute value ranges, rule derivation, and missing values. J48 is
an execution of open-source Java within the WEKA data mining framework of the C4.5
algorithm. The WEKA tool provides several related choices for tree pruning [50].
• Random Forest (RF) is an ensemble technique typically utilized in the process of classi�ca-

tion, whereby the use of different decision trees is employed in data classi�cation [51,52].
Bootstrap templates are built from the main RF numbers, and a raw classi�cation process
or regression tree is developed in every bootstrap pattern.
• Hybrid Model for AHDD: A hybrid model for AHDD system is described in this subsection.

The AHDD system integrates a binary CNN model with the MAFW model. The CNN
consists of �ve layers that categorize patients into “healthy” or “with HD” on the basis of
several HD features. The binary CNN architecture includes input HD data, convolution,
pooling activation, and output layers. The MAFW model implements SVM and NB to
do initial classi�cation to tune the CNN and GA to perform a global search on the HD
features and adjust the weights of the CNN to include the best set of features. Fig. 3 shows
the basic model of the AHDD system.

The AHDD system process starts with an input layer that receives HD symptoms as inputs in
a speci�c structure, which are then fed to the convolutional layer. Eight convolutional layers (l1–l8)
reconstruct the features through a �ltering process by using different numbers of kernels (l1:6k,
l2:2k, l3:6k, l4:6k, l4:6k, l5:12k, l6:12k, l7:18k, and l8:18k). In conventional CNN, the weights of
kernels are randomly initialized. In our hybrid model, the weights are initialized and adjusted on
the basis of the MAFW model in which the CNN assigns weights between (0–1) according to the
initial classi�cation results of SVM and NB during the data classi�cation phase in the MAFW
model. The operation of feature selection is presented in Section 2.2.2. The weights of features
are transformed from a 2D matrix into a 1D matrix to be processed by CNN. Subsequently, the
pooling layer reduces the dimension of the feature map by calculating the average of kernels in
the convolutional layers by using the average pooling function. The activation layer applies the
ReLU function to enhance the rate of converging for the learning process. Finally, the output layer
classi�es the processed cases into “healthy” or “with HD” according to the training process. When
the training process converges the best solution results (highest accuracy), the model parameters
are set and the model becomes ready for the testing phase. In the testing phase, the weights tuned
by CNN are obtained and by which the minimum classi�cation or diagnosis error rate is achieved.
Algorithm 2 represents the MAFW optimization to CNN.
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Figure 3: Automated heart disease diagnosis (AHDD) system

Algorithm 2: Hybrid Model
01 Construct MAFW;
02 Construct a binary CNN with �ve layers;
03 Set the initial parameters of MAFW and CNN;
04 WHILE not best solution DO
05 MAFW: select the best features for CNN;
06 Layer 1: prepare the initial input features and weights;
07 Layer 2: adjust the features and weights accordingly;
08 Layer 3: select the best �nal features;
09 Layer 4: classify the given data and generate solution;
10 Layer 5: evaluate the solution;
11 END-WHILE

2.2.4 Validation of Classi�ers
The k-fold cross-validated approach and six metrics are assessed to evaluate the performance

of the classi�ers. In k-fold cross-validation, the dataset is separated into k of the same size,
wherein the classi�ers are trained using k − 1 group and the outperformance in each step is
checked using the remaining part. The validation cycle is replicated k-times. The performance
of 0e classi�er is calculated on the basis of k results. Various values of k are chosen for CV.
k= 10 is used in our experiment because its performance is good; 90% of the data are utilized for
10-fold CV preparation, whereas 10 percent are employed for research purposes. The procedure
is replicated 10 times for every fold of the procedure, and before collecting and testing new sets
for the new cycle, both training and evaluation group instances are randomly distributed over the
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entire data collection [53,54]. Finally, the averages of all output metrics are set at the end of the
10-fold cycle.

2.2.5 Evaluation Metrics of HD Performance
Speci�c performance evaluation metrics are assessed to evaluate the performance of the

classi�ers. A confusion matrix, which predicts any observation in exactly one box in the test
set, is used (Tab. 2). This matrix is a 2 to 2 matrix because there are two groups of repose.
It also provides two forms of proper prediction for classi�ers and two types of incorrect
prediction classi�er.

Table 2: HD confusion matrix

Sample no. HD patient (1) Healthy person (0)

Actual HD patient (1) TP FN
Actual healthy person (0) FB TN

The following metrics are calculated from the confusion matrix:

• TP: performance is measured as a true positive (TP): the observed subject of HD is
classi�ed correctly and the person suffers from HD.
• TN: performance is expected to be a true negative (TN): the observed subject is healthy

and classi�ed correctly.
• FP: performance is expected to be a false positive (FP): the observed subject is healthy but

wrongly classi�ed as having HD (type 1 error).
• FN: the performance is estimated as a false negative (FN): the observed subject is healthy

but wrongly classi�ed as having no HD (type 2 error).

A value of 1 indicates that the positive case is unhealthy, whereas a value of 0 denotes that
the negative case is healthy.

The output of each method is evaluated at this phase to determine which method could
achieve the best result. The following parameters are evaluated: Accuracy, precision, recall, and
F-measure. These parameters are described and calculated as follows:

• Accuracy refers to a measurement’s closeness parameter when reading the data value against
the real data values:

Accuracy=
(TP+TN)

(TP+TN+FP+FN)
× 100. (1)

• Precision tests the proportion of related subjects. It measures the classi�er’s ability to turn
down irrelevant subjects:

Precision=
TP

TP+FP
(2)

• Recall measures the proportion of identi�ed related subjects. It tests the classi�er’s ability
to produce all applicable subject matters:

Recall=
TP

TP+FN
. (3)
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• F-score can be regarded as an average weight of recall and precision, wherein an F1 score
achieves the worst at 0 and the highest value at 1. The precision of relative contribution to
the F1 score and recall is equal. The F1 score is calculated as follows:

F1=
Precision×Recall
Precision+Recall

(4)

where the value of precision is obtained on the basis of Eq. (2) and that of recall on the
basis of Eq. (3).

2.2.6 Parameter Settings of Machine Learning Techniques
Each classi�cation technique requires one or more parameters that control (effects) the clas-

si�er’s predictive outcome. Selecting the best values for those parameters is dif�cult and requires
seeking a trade-off between model complexity and model generalization. In this study, a grid
search is used to �nd the parameter settings. A grid search involves changing a value grid (2D or
3D depending on the number of model parameters) and increasing each parameter by an af�xed
interval before the values of the optimal parameter are found. The advantage of this approach
is that it allows the selection of optimal parameters at speci�ed intervals. However, this approach
is considered expensive in terms of computation time. The ML techniques used herein are shown
in Tab. 3.

Table 3: Parameter settings of machine-learning techniques

S.No. ML used Parameter setting

1. NB Default
2. SGD Epochs= 500, learning rate= 0.01,

loss function=Hing loss, regularization
constant= 0.0001

3. SMO C= 1, kernel= PolyKernel, toleranceParameter= 0.001
4. VotedPerceptron Number of iterations= 3, exponent= 1
5. IBk Nearest neighbor search algorithm= linear NN search,

distance weighting= no distance weighting
6. AdaBoostM1 Number of iterations= 10, Classi�er=DecisionStump,

weight threshold= 100
7. LogitBoost Number of iterations= 10, Classi�er=DecisionStump,

weight threshold= 100
8. MultiClassClassi�erUpdateable Classi�er= SGD, randomWidthFactor= 0.2,

method= 1-against-all
9. HoeffdingTree Hoeffding tie threshold= 0.05, split criterion= info gain

split, Leaf predication strategy=Naive Bayes adaptive
10. J48 Con�dence factor= 0.25
11. RF Default
12. AHDD Eight convolutional layers (l1–l8) reconstruct the

features through a �ltering process by using different
numbers of kernels (l1:6k, l2:2k, l3:6k, l4:6k, l4:6k,
l5:12k, l6:12k, l7:18k, and l8:18k)
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After the step of parameter setting, the dataset is split into testing and training sets according
to the cross-validation leave-one-out protocol. The labels are used during the learning process
for the supervised approaches. Subsequently, during the test phase, the labels calculated by each
classi�er are matched with the true labels (reference labels) for calculating the classi�cation per-
formance. Unlike supervised models, unsupervised models are trained using the features extracted
only and reference labels are not used. Instead, the labels are only utilized for evaluation purposes
of classi�cation. Remember that (1) all the extracted features are used as classi�er data, and (2)
only the selected features are implemented. Every sub-dataset is considered separately for selecting
the most important features.

3 Experimental Results and Discussion

The performance of various ML methods, namely, J48, RF, NB, SGD, SMO algorithm, VPM,
IBk, AdaBoostM1, LogitBoost, MultiClassClassi�erUpdateable, Hoeffding Tree along with the
hybrid model (binary CNN model with the MAFW model), and Cleveland HD dataset, are tested
and discussed via different perspectives. The MAFW model and cross-validation k-fold method
are adopted for critical feature selection. Several metrics are assessed to evaluate the performance
of these methods and test the ef�ciency of classi�ers. All features are standardized and normalized
before they are applied to the classi�ers. The overall results for the original dataset are obtained
and presented in Tab. 4 on the basis of the following 13 features: AGE, SEX, CPT, RBP, SCH,
FBS, RES, MHR, EIA, OPK, PES, VCA, and THA. Furthermore, the following parameters are
used in the evaluation process: accuracy, TP rate, FP rate, precision, recall, and F-measure.

Table 4: Classi�cation results based on all features

Classi�ers Accuracy TP Rate FP Rate Precision Recall F-Measure

NB 80.8 0.848 0.239 0.809 0.848 0.828
SGD 73.9 0.739 0.261 0.772 0.739 0.755
SMO 78.2 0.788 0.225 0.807 0.788 0.798
VotedPerceptron 80.1 0.812 0.210 0.822 0.812 0.817
IBk 80.1 0.812 0.210 0.822 0.812 0.817
AdaBoostM1 82.5 0.836 0.188 0.841 0.836 0.839
LogitBoost 81.5 0.842 0.217 0.822 0.842 0.832
MultiClassClassi�erUpdateable 73.9 0.739 0.261 0.772 0.739 0.755
HoeffdingTree 49.1 0.309 0.290 0.560 0.309 0.398
Hybrid Model 85.3 83.7 0.176 0.851 0.840 0.826
J48 75.9 0.764 0.246 0.788 0.764 0.775
RF 69.9 0.794 0.413 0.697 0.794 0.742

The hybrid model achieves the highest accuracy of 85.3%. Moreover, the hybrid model obtains
the highest precision, recall, F-measure values. By contrast, the HoeffdingTree attains the lowest
accuracy of 49.1% and the lowest scores for the other parameters. SMO, RF, J48, MultiClassClas-
si�erUpdateable, and SGD have a lower accuracy than the other classi�ers. NB, VotedPerceptron,
IBk, and LogitBoost achieve an intermediate average accuracy of 80.1%.

Based on the eight features selected by the MAFW model, namely, SEX, CPT, MHR, EIA,
OPK, PES, VCA, and THA, the hybrid model has the highest diagnostic accuracy of 90.1%
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(Tab. 5), followed by SMO and LogitBoost with 83.8%. SMO is also higher than X in terms of
precision but not in terms of recall and F-measure. By contrast, RF has the lowest accuracy of
72.3%. Except for J48, the other methods have accuracies above 80%.

Table 5: Classi�cation results based on the features selected by the MAFW model

Classi�er Accuracy TP Rate FP Rate Precision Recall F-Measure

Naive Bayes 83.4 0.867 0.203 0.836 0.867 0.851
SGD 80.1 0.836 0.239 0.807 0.836 0.821
SMO 83.8 0.855 0.181 0.849 0.855 0.852
VotedPerceptron 83.5 0.842 0.174 0.853 0.842 0.848
IBk 80.5 0.842 0.174 0.853 0.842 0.848
AdaBoostM1 83.2 0.830 0.167 0.856 0.830 0.843
LogitBoost 83.8 0.861 0.188 0.845 0.861 0.853
MultiClassClassi�erUpdateable 80.2 0.836 0.239 0.807 0.836 0.821
HoeffdingTree 83.5 0.867 0.203 0.836 0.867 0.851
Hybrid Model 90.1 0.88.2 0.153 0.889 0.894 0.878
J48 79.8 0.836 0.246 0.802 0.836 0.819
RF 72.3 0.794 0.362 0.724 0.794 0.757

In general, remarkable improvements are noted in the diagnosis results obtained for the
12 classi�ers when the �ltered dataset is implemented. The Hoeffding Tree achieves the highest
accuracy improvement of 34.4%; thus, it’s performance highly in�uenced by the proposed feature
selection model. The improvement in accuracy is 6.3%, 5.6%, 4.8%, and 3.9% for SGD and Mul-
tiClassClassi�erUpdateable, SMO, hybrid model, and J48, respectively. By contrast, IBk has the
lowest accuracy improvement of 0.3%. The average development in diagnostic accuracy outcomes
is up to 6.17%. Furthermore, the TP rate for all classi�ers is substantially increased, whereas
the FP rate for SMO and LogitBoost is decreased to the minimum level, indicating that the
classi�cation results of HD cases are more reliable. In summary, the proposed feature selection
model has a considerable effect on accuracy improvement for 11 out of 12 classi�ers. This result
con�rms that the proposed model can work successfully with different types of classi�cation
algorithms. The differences in diagnostic accuracy outcomes obtained via the ML models for the
two databases is illustrated in Fig. 4.

Classi�cation can be precisely conducted by exploring the following aspects: (i) The most
excellent technique for diagnosing or predicting a given disease or issue, (ii) The ideal classi�er
for the assessment and determination of HD features, and (iii) The most excellent parameters
for the ML methods based on the HD features selected. Thus, by utilizing various classi�cation
methods to HD datasets, the most appropriate and ef�cient ML method can distinguish healthy
individuals from patients with HD. In previous studies, when HD features are decreased, the
dataset’s feature vector is evidently improved, the complexity of ML models is reduced, and the
precision of diagnosis is enhanced. For example, MultiClass Classi�er Updateable, which is a set
of methods that can precisely work with complex choice boundaries, frequently exhibit sensitivity
to feature determination. Thus, such methods would likely suffer from over�tting issues.
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Figure 4: Differences among the outcomes of all features and selected features

Therefore, the assessment, choice, and ranking of HD features within classi�er problems
are not guided by settled factors. This procedure is executed on the basis of the properties
of HD data learning, type of ML models, and complexity of choice boundaries. The MAFW
model applies a multi-agent system that renders the process of feature selection more �exible by
segregating selection functionalities into four tasks, namely, preparation, selection, classi�cation,
and evaluation. These tasks interact with each other and reason over the input, process, and
output of each task and apply the necessary revision to the processes responsible for achieving
the tasks during runtime. In this way, this study aims to determine the ideal combination of HD
features that can be utilized to obtain adjusted feature selections and to enhance the accuracy of
HD identi�cation. The MAFW model selects important HD features to distinguish healthy people
from patients with HD. According to the MAFW model, the most important and reasonable
features for HD identi�cation are exercise-induced angina, thallium scan, and type of chest pain.
Moreover, the model suggests that fasting blood sugar is not appropriate for the identi�cation
of patients with HD and healthy individuals. In this study, the classi�cation, feature extraction,
dataset preprocessing, validation, and evaluation of classi�cation performance are comprehensively
discussed. A complete set of features and a selected set of features are used to evaluate the
performance of our system. The complete set of features is reduced to generate the selected set of
features. This process greatly affects the accuracy of classi�cation methods and their performance
time. The proposed HD diagnosis system can help medical practitioners in identifying patients
with HD ef�ciently.

Benchmarking is the most essential step that needs to be considered in performing research
on common medical processes of disease diagnoses. Benchmarking can be used to compare the
ef�ciency and reliability of newly developed approaches and existing ones. Benchmarking is usually
conducted either through the use of a standard dataset or different approaches for the same
problem domain or application. Moreover, benchmarking is achieved by utilizing the best and
modern methods for HD classi�cation based on existing ML approaches and feature selection
methods. Tab. 5 summarizes the different benchmarking approaches for several processes.
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Table 6: Accuracy of the proposed method versus that of state-of-the-art techniques for
HD classi�cation

Author(s)/year Method Accuracy

Verma et al. [29] Decision tree 80.68%
Latha et al. [30] Majority vote with NB, BN, RF, and MP 85.48%
AHDD system Integrates a binary convolutional neural network

(CNN) model with the multi-agent feature wrapper
(MAFW) model

90.1%

The limitations of the present work can be summarized as follows:

• The models evaluated herein are 12 different classi�ers. Additional classi�ers should be
tested to provide a more comprehensive evaluation of the results.
• Given that the proposed model relies on the wrapper feature selection approach, its main

limitations are high computational cost and time complexity.
• Runtime is not considered as an evaluation criterion.

4 Conclusion

In this study, an AHDD system for HD diagnosis is proposed. The AHDD system integrates
a new MAFW model with a binary CNN model. The MAFW model performs feature selection
and optimization tasks, whereas the CNN model conducts classi�cation tasks. The MAFW model
consists of four software agents that operate a GA, an SVM, and NB. The agents instruct
the GA to perform a global search on HD features and adjust the weights of SVM and BN
during the initial classi�cation phase. It chooses imperative features for enhancing the performance
of the classi�ers. The AHDD system is trained, tested, and validated using the Cleveland HD
database. The benchmarking classi�cation models of NB, SGD, SMO, VPM, IBk, AdaBoostM1,
LogitBoost, MultiClass Classi�er Updateable, Hoeffding Tree, J48, RF, and the hybrid model
proposed herein are integrated with the proposed MAFW model for testing and evaluation. The
K-fold cross-validation technique is used to evaluate the performance of the ML models and
the MAFW model in terms of accuracy, TP rate, FP rate, precision, recall, and F-measure. The
MAFW model selects important HD features that increase the accuracy of distinguishing patients
with HD from healthy individuals for all the tested classi�ers. According to the MAFW model,
the strongest features are exercise-induced angina, thallium scan, and type of chest pain, whereas
fasting blood sugar is found to be a weak feature. Moreover, the hybrid model achieves the
highest accuracy of 90.1%, a high precision of 88.9%, and a high recall of 98.4%. The average
accuracy of the benchmarking ML models with the aid of the MAFW model is 75.08%, in which
SMO and LogitBoost have the highest accuracy (83.8%) and RF has the lowest accuracy (72.3%).
Furthermore, the MAFW model increases the overall accuracy of the benchmarking classi�ers by
6.2% and that of the hybrid classi�ers by 4.8%. In a follow-up study, we will test the proposed
hybrid model and the MAFW model in other multivariate datasets. In addition, we will include
training and testing runtime as effective evaluation criteria.
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