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Abstract: Various techniques to diagnose eye diseases such as diabetic
retinopathy (DR), glaucoma (GLC), and age-related macular degeneration
(AMD), are possible through deep learning algorithms. A few recent studies
have examined a couple of major diseases and compared them with data from
healthy subjects. However, multiple major eye diseases, such as DR, GLC,
and AMD, could not be detected simultaneously by computer-aided systems
to date. There were just high-performance-outcome researches on a pair of
healthy and eye-diseased group, besides of four categories of fundus image
classification. To have a better knowledge of multi-categorical classification of
fundus photographs, we used optimal residual deep neural networks and effec-
tive image preprocessing techniques, such as shrinking the region of interest,
iso-luminance plane contrast-limited adaptive histogram equalization, and
data augmentation. Applying these to the classification of three eye diseases
from currently available public datasets, we achieved peak and average accura-
cies of 91.16% and 85.79%, respectively. The specificities for images from the
eyes of healthy, GLC, AMD, and DR patients were 90.06%, 99.63%, 99.82%,
and 91.90%, respectively. The better specificity performances may alert patient
in an early stage of eye diseases to prevent vision loss. This study presents
a possible occurrence of a multi-categorical deep neural network technique
that can be deemed as a successful pilot study of classification for the three
most-common eye diseases and can be used for future assistive devices in
computer-aided clinical applications.

Keywords: Multi-categorical classification; deep neural networks; glaucoma;
age-related macular degeneration; diabetic retinopathy

1 Introduction

Diabetic retinopathy (DR), glaucoma (GLC), and age-related macular degeneration (AMD),
the major causes of vision loss and blindness around the world are the focus of our study. DR
is vision loss caused by diabetes mellitus, the most common cause of vision loss and blindness
among adults [1,2]. From 2000 to 2030, the global diabetes population was estimated to grow
from 2.8% (171 million) to 4.4% [3], with an additional 195 million people developing DR [4–6].
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Almost all of the patients with type 1 diabetes and over 60% with type 2 diabetes were expected
to develop DR in the next 20 years [7]. These diabetic patients were expected to account for ∼2%
of blindnesses and ∼10% of vision losses in the next 15 years [8]. The patients reported have
shown gradual growth but were expected to increase rapidly. According to a report, in the early
21st century, the incidence of diabetes mellitus has doubled in the United States and increased by
a factor of three to five times in India, Indonesia, China, Korea, and Thailand [9]. DR prevailed
in both developed and developing countries. The second most common cause of vision loss,
GLC, is the effect of differential pressure in intraocular that damages the optic nerve head and
causes vision loss. In 2000, 66.8 million people worldwide developed primary GLC; of these 6.7
million developed bilateral blindness [10]. This disease became the second leading cause of vision
loss and blindness by 2010, accounting for about 60.5 million of the GLC patient population
around the world [11]. It affected the size of optic nerve head in reshaping or damaged the
origin of its optic nerve, both diagnosable in fundus photography images. The third most common
cause of vision loss and blindness is AMD, which is an enormous threat in developed countries.
Although DR and GLC were more prevalent, the incidence of AMD in people older than 60 years
has grown and was reported alone to cause 8.7% of blindness worldwide, mostly in developed
countries [12–20]. Those who suffered from AMD have surely encountered difficulties in their life
due to the importance of vision, being one of the five basic human senses. Moreover, the optic
nerve, the nerve of sight, is the second sensory and critical nerve among the twelve cranial nerves.

Various techniques are applied by experts or doctors to diagnose eye diseases; two typical ones
are optical coherence tomography, which captures a cross-sectional image and fundus photography.
Optical coherence tomography has played a major role in medical diagnoses not only of the
eye but also of other organs, such as the brain. This technique’s cross-sectional images of the
eye affected by DR, GLC, and AMD had been studied by many researchers, such as Hwang
et al. [21], Bussel et al. [22], and Lee et al. [23]; however, the techniques had some disadvantages.

Fundus photography images the inner eye with a specialized camera and has been of signifi-
cant interest to researchers. The same image can be used to detect several eye diseases, such as the
three in this study. The various fundus photography techniques can be classified into three types:
fluorescein angiographic, mydriatic, and non-mydriatic, which entail an examination of the retina
and choroid or blood flow by fluorescent or indocyanine green dyes, by use of pupil dilation,
and by imaging without dilation, respectively. In this study, fundus photographs from various
open-source databases are to be combined to classify eye diseases.

The current study uses a feedforward neural network to detect several eye diseases using
fundus photographs; we ensure that this study will play a leading role in future work. In the field
of DR detection, many studies have used deep learning approaches, such as those by Qummar
et al. [24] performed an ensemble approach to develop an automatic DR detection system for
retinal images, and Mateen et al. [25] performed a combination of a Gaussian mixture model,
Visual Geometry Group (VGG) networks, singular value decomposition, and principle component
analysis to create a DR image classification system. In GLC detection, a few studies have used
ensemble and neural network approaches; for instance, Singh et al. [26] created a deep learning
ensemble with feature selection techniques for an automatic GLC diagnostic system. In AMD
detection, a proposed computer-aided diagnosis system based on a custom convolutional neural
network provided second opinions to assist ophthalmologists in the study by Tan et al. [27].
Researchers have published many papers relevant to computer-aided diagnosis that may offer tools
to assist ophthalmologists in eye disease screening and detection.
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This manuscript is organized as follows. Section 2 is a literature review of eye-disease clas-
sification. Section 3 describes our data acquisition. The preprocessing and processing techniques
applied in the paper are described in Section 4. Section 5 is our classification results. A discussion
and conclusion are given in Section 6.

2 Related Work

Many studies have played significant roles in leading experiments on eye disease detection
using different types of approaches. In this study, we focused on classification using a deep convo-
lutional neural network (DNN). The most common approaches to disease detection and screening
using fundus photography were feature extraction with an ensemble, traditional machine learning,
and DNN. As mentioned above, prior studies [24–27], provided possibilities for classifying eye
diseases and thus for diagnosis. However, the current study emphasizes one approach, DNN,
which has recently been studied by many researchers to provide the classification of multiple
eye diseases.

Various neural networks, including novel, pre-trained convolutional, and meta-cognitive neu-
ral networks, have been deployed to diagnose eye diseases automatically. For screening DR,
Gardner et al. [28] proposed a neural network diagnostic method with 88.40% sensitivity and
83.50% specificity; Banu et al. [29] proposed a novel meta-cognitive neural network, which
monitored and controlled a cognitive neural network, yielded 100% accuracy, sensitivity, and
specificity. This performance was obtained by eliminating the optic disc from fundus images
using the techniques of “robust spatial kernel fuzzy c-means” before the meta-cognitive neural
network classifier; the optic disc was one of the most significant features of GLC detection in
this study. By contrast, Raghavendra et al. [30] proposed a support vector machine model for
detecting GLC. Their method yielded maximum accuracy, sensitivity, and specificity of 93.62%,
87.50%, and 95.80%, respectively, over a public dataset using a 26-feature classification technique.
Moreover, another study [31] proposed an 18-layer neural network model to detect GLC, which
yielded accuracy, sensitivity, and specificity of 98.13%, 98.00%, and 98.30%, respectively; the
technique was a major change from its neural network predecessors. The field of AMD detection
is represented by two experimental studies. Lee et al. [23] proposed a method with a 21-layer
neural network, that yielded accuracy, peak sensitivity, and peak specificity of 93.45%, 92.64%,
and 93.69%, respectively; and Burlina et al. [32] proposed a pre-trained convolutional neural
network model, that achieved peak accuracy, sensitivity, and specificity of 95.00%, 96.40%, and
95.60%, respectively.

A wide neural network would be able to detect multiple eye diseases automatically at the
feedforward stage without overlapping classification results. Thus, it might be possible to diagnose
these diseases more quickly and reduce their impacts in terms of vision loss and blindness. Choi
et al. [33] used a deep neural network (VGG-19) in their pilot studies. Three-class early disease
screening among normal retina (NR), background DR, and dry AMD showed a peak accuracy
of 72.8% via the technique of transfer learning with a random forest when applied to images
from the Structured Analysis of the Retina (STARE) database. Moreover, five-class eye-disease
classification, NR, background DR, proliferative DR, dry AMD, and wet AMD, achieved a
peak accuracy of 59.1% with the same model structure. For a small database, this performance
was not a promising result. However, this leading study confirmed that it might be possible
to achieve an acceptable result with a 19-layer neural network analyzing a 397-file database of
14 disease categories. The reported performances of wide neural networks inspired the current
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investigation of this promising possibility for multi-eye-disease detection via a deeper pre-trained
neural network applied to the public datasets currently available online.

3 Materials

3.1 Research Scope
This study uses databases that are currently openly available to investigate the problem of

multi-class classification to prevent vision loss and blindness. Despite there being other types of
eye diseases, e.g., hypertensive and radiation retinopathies; only the three most common eye dis-
eases, DR, GLC, and AMD, are considered in this research. The datasets had similar properties:
field of view ranging from 35◦ to 50◦, specialized digital fundus photographs that had already
been labelled by experts, and consideration of the three eye diseases of interest.

3.2 Retinal Fundus Image Datasets
A total of 2335 retinal fundus images, NR: 1195, GLC: 168, AMD: 65, DR: 907, were

obtained for this study from 5 databases, as follows. Each image used had been annotated by a
named expert associated with the database of which it was a part.

The Online Retinal Fundus Image Database for Glaucoma Analysis and Research (ORIGA)
database, stylized by its authors as “ORIGAlight,” contained 650 images, comprising 168 GLC
and 482 randomly selected non-GLC images, from the Singapore Malay Eye Study. That study
examined 3280 Malay adults aged 40 to 80 years, of whom149 were GLC patients. Image acquired
at a resolution of 3085 × 2048 and 3072 × 2048 [34]. Fig. 1 shows some sample images from
this database.

Figure 1: Random images from the online retinal fundus image database for glaucoma analysis
and research (ORIGAlight) database

The Indian Diabetic Retinopathy Image Dataset (IDRiD) database contained 516 images,
comprising 168 non-DR and 348 DR training and testing images annotated in a file with a
comma-separated value format. The images were acquired using a digital fundus camera (model:
Kowa, VX-10 alpha) with a 50◦ field of view, centered near to the macula and a resolution of
4288×2848 pixels. Images were stored in the Joint Photographic Experts Group (JPG) file format,
and the file size was ∼800 kB. In total, 166 NR images and 254 DR images, all clearly annotated,
were selected for use [35]. Fig. 2 shows some sample images from this database.

The Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal
Ophthalmology database (known by its French acronym, MESSIDOR) consisted of 1200 fundus
color images classified in folders, comprising 547 non-DR and 653 DR images. The later were
classified into three levels of eye disease: mild (153 images), moderate (246 images), and severe
DR (the remainder). The images captured by three separate charge-coupled devices (3CCD)
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mounted on a Topcon TRC NW6 camera to form a non-mydriatic fundus retinography with a
45◦ field of view using eight bits per color plane at a resolution of 1440 × 960, 2240 × 1488,
or 2304× 1536 pixels [36]. Eight hundred of the images were acquired with pupil dilation (one
drop of tropicamide at 0.5%) and 400 without dilation. Fig. 3 shows some sample images from
this database.

Figure 2: Random images from the Indian Diabetic Retinopathy Image Dataset (IDRiD) database

Figure 3: Random images from the methods to evaluate segmentation and indexing techniques in
the field of retinal ophthalmology (MESSIDOR) database

The Automated Retinal Image Analysis (ARIA) database consisted of 143 images from adults:
23 with AMD, 59 with DR, and 61 with a control group. The images were acquired in color
by using a fundus camera (model: Zeiss, FF450+) with a 50◦ field width, and were stored as
uncompressed files in the Tagged Image File Format (TIFF) format [37,38]. We used all 23 AMD
images from this database. Fig. 4 shows some sample images from this database.

Figure 4: Random images from the Automated Retinal Image Analysis (ARIA) database

The Structured Analysis of the Retina (STARE) project was initiated in 1975 comprising 397
images in an annotated file. These images were acquired using a fundus camera (model: Topcon,
TRV-50) with a 35◦ field of view and subsequently digitized at a resolution of 605× 700 pixels,
with 24 bits per pixel, “standard red-green-blue (RGB) color space” [39,40]. Forty-two images with
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AMD annotation were selected for our AMD training and testing dataset. Fig. 5 shows some
sample images from this database.

Figure 5: Random images from the Structured Analysis of the Retina (STARE) database

3.3 Full Combined Dataset (NOISE-STRESS)
Our full dataset, which was called NOISE-STRESS, consisting of the selected images from

the five public datasets, contained a total of 2335 retinal fundus images: 1195 NR, 168 GLC, 65
AMD, and 907 DR. The ORIGAlight, IDRiD, MESSIDOR, ARIA, and STARE datasets provided
650, 420, 1200, 23, and 42 of these images, respectively. The ORIGAlight NR images were included
for a noise experiment test. Some of the 61 control group images from the ARIA database and
some of the NR group images from the STARE database were excluded. Tab. 1 summarizes the
full combined dataset.

Table 1: Full combined dataset (NOISE-STRESS)

Category Database name Database size Total size

Normal Retina ORIGA 482 1195
IDRiD 166
MESSIDOR 547

Glaucoma ORIGA 168 168
Age-related macular degeneration ARIA 23 65

STARE 42
Diabetic retinopathy IDRiD 254 907

MESSIDOR 653

3.4 Mild and Moderate-DR Omission Dataset (NOISE)
From the full NOISE-STRESS data, a dataset that we called NOISE was selected by exclud-

ing the mild and moderate DR images from the MESSIDOR database, leaving a total of 1936
retinal fundus images: NR, GLC, AMD, and DR of 1195, 168, 65, and 508 images, respectively.
The ORIGAlight, IDRiD, MESSIDOR, ARIA, and STARE datasets were the sources of 650, 420,
801, 23, and 42 of these images, respectively. The ORIGAlight NR images were included for a
noise experiment to determine if the nodes of the NOISE-STRESS dataset classification neural
networks could be fooled into giving the wrong diagnosis. Tab. 2 shows the summary of mild and
moderate-DR omission dataset.
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Table 2: Mild and moderate-DR omission dataset (NOISE)

Category Database name Database size Total size

Normal retina ORIGA 482 1195
IDRiD 166
MESSIDOR 547

Glaucoma ORIGA 168 168
Age-related macular degeneration ARIA 23 65

STARE 42
Diabetic retinopathy IDRiD 254 508

MESSIDOR 254

3.5 Non-Glaucoma Omission Dataset (STRESS)
From the NOISE-STRESS dataset, a dataset that we called STRESS was formed by removing

the noise images in ORIGAlight database comprising a total of 1853 retinal fundus images: 713
NR, 168 GLC, 65 AMD, and 907 DR images. The ORIGAlight, IDRiD, MESSIDOR, ARIA,
and STARE datasets were the sources of 650, 420, 801, 23, and 42 of these images, respectively.
The NR images from ORIGAlight were excluded. Tab. 3 shows the summary of the non-glaucoma
omission dataset.

Table 3: Non-glaucoma omission dataset (STRESS)

Category Database name Database size Total size

Normal retina IDRiD 166 713
MESSIDOR 547

Glaucoma ORIGA 168 168
Age-related macular degeneration ARIA 23 65

STARE 42
Diabetic retinopathy IDRiD 254 907

MESSIDOR 653

4 Methods

Automatic categorization of the three most common retinal fundus diseases will significantly
assist ophthalmologists in early, low-cost eye disease detection. The proposed method has two
stages: the data preprocessing and retinal image categorization (training and testing phases). Fig. 6
shows the proposed approach. First, each dataset was preprocessed by the following stages, the
shrinking region of interest, iso-luminance plane contrast limited adaptive histogram equalization,
k-fold cross-validation, and data augmentation. Second, each training set resulted from the pre-
processing stage proceeded with training settings to create a learnt weight for each dataset. Finally,
each testing set was predicted by the learnt weight created in the training phase to provide the
testing results of eye-disease classifications.
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Figure 6: Eye disease evaluation process

4.1 Pre-Processing
Before training our model, we applied a few methods of image normalization. Various

researchers had had different approaches to their image preprocessing. In this paper, we shrank
the region of interest of the original fundus images to standardize them across the datasets. This
was done automatically, with thresholds of 25 and 13 for the red and green channels, respectively,
while the blue channel was a complementary layer. The coordinates for shrinking the region of
interest are expressed, where imax and jmax are the image width and height, as follows:

ROI =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(X1,Y1)=max
(∀ri,j < 25

)∪ (∀gi,j < 13
)

for ∀(i, j)∈
[
0,

(i, j)max

2

]

(X2,Y2)=min
(∀ri,j < 25

)∪ (∀gi,j < 13
)

for ∀ (i, j)∈
[
(i, j)max

2
, (i, j)max

] (1)

We also applied another preprocessing technique, a technique that we called ISOL-CLAHE.
ISOL-CLAHE is a process of contrast limited adaptive histogram equalization (CLAHE) applying
on an isoluminant plane. According to Han et al. [41], we modified this technique for our retinal
fundus images within an isoluminant plane. Histogram equalization on the isoluminant plane
improved the lowest mean absolute error rate from the linear cumulative distribution function
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among previous studies on separate RGB histogram equalization [41–43]. All of the original image
files (located in four parent directories, NR, GLC, AMD, and DR, and eight child subdirectories)
underwent three-dimensional CLAHE. The images were converted to a color space specified by
the International Commission on Illumination (known by its French acronym, CIELAB) to extract
lightness using software from an open-source library [44]. CLAHE with a clip limit of 1.5 and
slicing grid kernel size of eight was followed by resizing to 384× 384 pixels. Fig. 7 indicates the
implementation of ROI shrink and ISOL-CLAHE.

K-fold cross-validation in its tenfold variety performed better than leave-one-out, twofold,
and fivefold cross-validation in models with a larger number of features, according to Breiman
et al. [45]. Ron Kohavi [46] reported that stratified tenfold cross-validation performed better than
twofold and fivefold cross-validation, or bootstrapping with a lower variance but an extremely
large bias. In the current study, we used stratified tenfold cross-validation for the fundus image
classification with data shuffling to prevent bias from the data preparation, as introduced by [47].
The full dataset was divided into three parts comprising 80%, 10%, and 10% of the images for
experimental training, validating, and testing, respectively.

(a) (b) (c)

Figure 7: Shrinking region of interest (ROI) and isoluminant-plane contrast limited adaptive his-
togram equalization (ISOL-CLAHE). (a) The original image with its original size. (b) The ROI
shrinking image. (c) The ISOL-CLAHE image

One technique to enlarge datasets without generating fake images is called data augmenta-
tion. The collected dataset had various numbers of images in each disease type. At random, a
transformation was applied to an image, such as an 8◦ rotation, a 25% change in brightness,
a 20% magnification, and a horizontal reflection. This created a balanced training and testing
dataset of up to 9400 images for the full combined dataset experiment preventing differences in
performance because there were very few AMD images but many NR and DR ones. We did not
use some typical transformations, such as shear, or height or width shifts in the data augmentation
method. Typically, the fundus image was taken by an ophthalmologist from a direction in front
of the participant. Thus, shear range might not be an option in this procedure. Similarly, the
fundus image should contain every feature that occurred naturally, such as an optic disc, a macula,
and blood vessels; hence, we did not apply, because it might cause an unintentional loss of one
of these features. Some examples of data augmentation on a MESSIDOR dataset are shown
in Fig. 8.
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(a) (b) (c) (d)

Figure 8: Illustrations of data augmentation from a MESSIDOR image-set. (a) The original image
from ISOL-CLAHE. (b) An augmented image with +25% brightness and 80◦ rotation. (c) An
augmented image with +25% brightness, 20% zoom-out, horizontal flip, and 40◦ rotation. (d) An
augmented image with 25% brightness, 20% zoom-in, horizontal flip, and 80◦ rotation

4.2 Model Architectures and Settings
Residual Networks (ResNets) were deep neural networks named for their residual state [48].

This type of network took a leap over unnecessary convolutional layer blocks using a shortcut
connection [49]. We utilized three residual network (ResNet) architectures such as ResNet-50,
ResNet-101, and ResNet-152, comprising 50, 101, 152 weight layers with 25, 610, 216, 44, 654,
504, and 60, 344, 232 total number of parameters, respectively. The original input and output
shape of these models were 224× 224 × 3 and 1,000 fully connected Softmax regression classes.
We modified the input shape to an optimal shape of 384×384 × 3 for this study, while the output
was a four-class fully connected Softmax regression prediction probability.

Visual geometry group proposed networks that the twos, VGG-16 and VGG-19, consisted
of 16 and 19 weight layers with total numbers of parameters of 138 million and 144 million,
respectively [50]. The original input and output shapes, and the modified ones we used in the
current study, were identical to those of ResNets.

Neural network optimizers played important roles in selecting and fine-tuning these weights
to overcome the most accurate possible form, with loss functions guiding the optimizers to
move in the right direction. An adaptive gradient extension optimizer (Adadelta) improved the
learning robustness and learning rate variation [48] compared to the predecessor adaptive gradient
algorithm optimizer. Zeiler [51] reported that this optimizer had the lowest test error rate among
various competitors, including stochastic gradient descent and momentum optimizers. We used an
adaptive gradient extension optimizer with a learning rate of 0.001 and categorical cross-entropy
loss function.

Several techniques were available to prevent overfitting of the network. One efficient technique
was early-stopping, which works by monitoring the validation error rate during training and
terminating that process if the validation error did not improve after a certain number of epochs,
called “patience” [48]. An optimal drop-out rate could determine the possibility of overfitting. The
combination of early-stopping and drop-out rate optimization was proposed by Gal et al. [52] to
achieve a smaller test error rate. In the current study, we used an early-stopping function with a
minimum increment for the validation-loss of 0.001, a patience of 20 epochs, and a dropout rate
of 0.05 for the optimal prevention of overfitting.
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To perform the classification, we employed the TensorFlow [53] and Scikit-Learn [54] software
to train and evaluate the proposed architectural deep neural network models. We executed the
technique on our system configuration of a dual-core set up as follows: 2× Intel Xeon Silver
4114 CPUs@2.2 GHz, 12× 16 GB DIMM DDR4 Synchronous RAMs@2400 MHz, 3× 512 GB
Samsung 970 NVMe M.2 SSDs, and 3× NVIDIA TITAN RTX GPUs 24 GB GDDR6@1770
MHz-4608 Compute Unified Device Architecture (CUDA) cores.

5 Results

5.1 Full Combined Dataset (NOISE-STRESS) Test Result
After the process of comparing the four-class eye-disease classification system using different

DNN model architectures, we obtained interesting performance data on data augmentation using
a ResNet with a depth of 50-layer layers. As we mentioned above, the NOISE-STRESS test
dataset contained noise from non-GLC images. If a neural network outperformed the others, this
was taken to indicate that it would be a great classifier for multi-class categorization. However,
it might have performed so well by overfitting to the noise data, which would cause multi-class
detection problems. With the 2335 original images, the ResNet-50 performed with average accu-
racy, sensitivities for NR, GLC, AMD, and DR of 73.12%, 77.06%, 18.13%, 53.33%, and 79.00%,
respectively. Moreover, the specificities for these four classes were 70.45%, 98.74%, 99.73%, and
81.77%, respectively. With data augmentation, the ResNet-50 model achieved the highest accuracy
compared to the VGG networks or their deeper siblings, the ResNet-101 and ResNet-152 models.
With data augmentation, the ResNet-50 achieved an average accuracy of 76.71% and sensitivities
for NR, GLC, AMD, and DR of 45.40%, 83.96%, 98.00%, and 79.49%, respectively. Additionally,
the specificities of these four classes were 88.51%, 91.99%, 99.26%, and 89.19%, respectively.
With these performance rates, it might be valid to assume that data augmentation of the
datasets achieved generalization over the models. Tab. 4 shows the results of the NOISE-STRESS
dataset test.

Table 4: Full combined dataset (NOISE-STRESS) test result

Accuracy NR (%) GLC (%) AMD (%) DR (%)

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

ResNet-50 73.12 77.06 70.45 18.13 98.74 53.33 99.73 79.00 81.77
ResNet-101 69.65 73.28 68.13 19.38 98.28 40.00 99.51 75.78 79.01
ResNet-152 63.59 64.03 67.95 3.13 99.91 23.33 99.78 76.44 66.31
ResNet-50
(augmentation)

76.71 45.40 88.51 83.96 91.99 98.00 99.26 79.49 89.19

ResNet-101
(augmentation)

75.06 38.89 89.02 82.72 90.78 97.32 98.79 81.32 88.16

ResNet-152
(augmentation)

74.54 37.74 89.19 82.21 90.38 97.96 98.10 80.26 88.38

VGG-16
(augmentation)

75.78 41.32 89.52 86.60 91.55 95.15 98.77 80.04 87.87

VGG-19
(augmentation)

74.66 36.89 90.45 84.64 91.65 93.06 98.61 84.04 85.50

∗Sens. and Spec. are the performance sensitivity and specificity, respectively.
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5.2 Mild and Moderate-DR Omission Dataset (NOISE) Test Result
The results of testing with the NOISE dataset showed that the decrease in data improved

the classification performance and generated a higher level of generalization for the detection
models. The average accuracy was 80.27%, and the sensitivities for NR, GLC, AMD, and DR
were 57.23%, 83.11%, 99.53%, and 81.19%, respectively. The specificities of these four classes were
89.21%, 92.03%, 99.02%, and 93.43%, respectively. The omission of mild and moderate DR images
from the NOISE-STRESS dataset decreased the stress of information generalization across the
DNN to produce higher performance. This test was an experiment using a neural network to see
what happened with fewer stress data. Ordinarily, stress data prevails in the open-access dataset for
DR and other disease types; hence, we included a STRESS result in this subsection incorporating
those data. Tab. 5 shows the result of the NOISE-STRESS, NOISE, and STRESS dataset test.

Table 5: NOISE-STRESS, NOISE, and STRESS dataset test result

Accuracy NR (%) GLC (%) AMD (%) DR (%)

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

ResNet-50 73.12 77.06 70.45 18.13 98.74 53.33 99.73 79.00 81.77
ResNet-50 (Aug.)
(NOISE-STRESS)

76.71 45.40 88.51 83.96 91.99 98.00 99.26 79.49 89.19

ResNet-50 (Aug.)
(NOISE)

80.27 57.23 89.21 83.11 92.03 99.53 99.02 81.19 93.43

ResNet-50 (Aug.)
(STRESS)

85.79 75.52 90.28 97.90 99.54 99.06 99.15 70.66 92.08

∗Aug. is an abbreviation of “augmentation.”

5.3 Non-Glaucoma Omission Dataset (STRESS) Test Result
After excluding non-GLC images from the NOISE-STRESS dataset, average accuracy was

85.79%, and sensitivities of NR, GLC, AMD, and DR were 75.52%, 97.90%, 99.06%, and 70.66%,
respectively, for the ResNet-50 model with data balancing. The specificities of the four classes
were at the rate of 90.28%, 99.54%, 99.15%, and 92.08%, respectively. The better specificity
performances compared to those with the NOISE-STRESS dataset suggests better caution for
patients in the early stage of eye diseases.

The results from testing k-fold cross-validation of mild, moderate DR, and non-GLC
omission dataset achieved a peak accuracy of 91.16% for the experiment of four-class eye-
disease classification. The average accuracy from the 50-layer ResNet with tenfold cross-validation
was 85.79%. Tab. 6 shows the results of testing various k-fold cross-validations with the
STRESS dataset.

Table 6: Individual fold accuracy from STRESS dataset

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Average Standard
deviation

ResNet-50
(accuracy %)

86.05 91.16 88.67 86.88 89.50 82.04 80.11 85.77 82.60 85.08 85.79 ±3.48
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6 Discussion and Conclusion

In the Results, Subsection 5.1, we observed that data augmentation not only played an
important role in data generalization with a dataset, as noted by Perez et al. [55], in that validation
accuracy was improved, but also resulted in remarkable testing performances with these fundus
photographs. From the full combined testing dataset, we additionally observed that the combi-
nation of data augmentation with the ResNet-50 model resulted in better performance than that
achieved by other competitive models for eye disease classification. In our opinion, the ResNet-50
model might distinguish the maximum number of features possible in the depth available from
an image with a resolution of 384× 384 pixels. Moreover, the residual property of the networks
might allow them to learn everything that could be learned with fundus images. Deeper residual
models might obtain too many features in their nodes, which might cause slight overfitting.

We excluded the mild and moderate DR images from our training and testing dataset in
Results, Subsection 5.2 so as to investigate the performance improvement resulted from using less
stress data. The slight improvement with the NOISE dataset confirmed our hypothesis: the less
challenging the data was, the higher the performances were. The previous experiment achieved an
accuracy of 76.71%, whereas this experiment reached 80.27% accuracy, as we expected.

In our experimental sequence, we developed a dataset to test noise tolerance. As a result,
we obtained 85.79% accuracy from the STRESS dataset (Result, Subsection 5.3). Of its total
of 650 images, 482 were non-GLC images consisting of NR or non-GLC from ORIGAlight. In
our experiment, the performance improved significantly after the exclusion of that 40% of noisy
data from our NR data. Additionally, the stress inclusion of the mild and moderate DR images
from the MESSIDOR dataset had a slight impact on overall performances, as we expected. For
publicly available datasets, fundus photographs should undergo inter-rater reliability tests by both
the experts employed by those databases and by local experts in order to improve the classification
of multiple eye diseases.

We tested deep neural networks to classify fundus photographs with noisy and challenging
data. Within a 50-layer ResNet architecture, our proposed method achieved 85.79% accuracy from
the STRESS dataset using 10-fold cross-validation. A peak accuracy of 91.16% was obtained from
this four-class eye disease classifier with our data preprocessing technique.

In conclusion, this study revealed that multi-category classification applied to public datasets
could achieve a significant improvement in performance over previous studies, with changes to
the preprocessing and data acquisition stages. In addition, this investigation showed the feasibility
of multiple category diagnosis on multiple combined datasets. Thus, this can be judged as a
successful pilot study of classification for the three most common eye diseases to develop assistive
tools in the future for medical diagnosis. We also confirm that the publicly available fundus image
databases may be inspired by valuable data for researchers who intend to deploy computer-aided
systems for eye disease detection.
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