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Abstract: Multiple kernel clustering is an unsupervised data analysis method
that has been used in various scenarios where data is easy to be collected but
hard to be labeled. However, multiple kernel clustering for incomplete data
is a critical yet challenging task. Although the existing absent multiple kernel
clustering methods have achieved remarkable performance on this task, they
may fail when data has a high value-missing rate, and they may easily fall into a
local optimum. To address these problems, in this paper, we propose an absent
multiple kernel clustering (AMKC) method on incomplete data. The AMKC
method �rst clusters the initialized incomplete data. Then, it constructs a new
multiple-kernel-based data space, referred to as K-space, from multiple sources
to learn kernel combination coef�cients. Finally, it seamlessly integrates an
incomplete-kernel-imputation objective, a multiple-kernel-learning objective,
and a kernel-clustering objective in order to achieve absent multiple kernel
clustering. The three stages in this process are carried out simultaneously until
the convergence condition is met. Experiments on six datasets with various
characteristics demonstrate that the kernel imputation and clustering perfor-
mance of the proposed method is signi�cantly better than state-of-the-art
competitors. Meanwhile, the proposed method gains fast convergence speed.

Keywords: Multiple kernel clustering; absent-kernel imputation; incomplete
data; kernel k-means clustering

1 Introduction

In many real-world scenarios, it is always easy to collect a large amount of data from the
normal condition [1–3]. But it is often time-consuming and expensive to label them for supervised
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learning methods. On the other hand, it is very dif�cult to obtain data from the abnormal
condition [4,5]. The above dif�culties require the analytics methods should be in an unsupervised
fashion. Moreover, the data are always collected from multiple sources [6]. Thus, it is necessary
to employ the multiple-view clustering method [7], which is a critical technique for analyzing
heterogeneous data from multiple sources [8]. Unlike single-view clustering [9,10], multiple-view
clustering further integrates information from different sources that may have various data types
and distributions. This integration poses signi�cant challenges [11] to the multiple-view clus-
tering approach. Most works dealing with multiple-view clustering focus on learning a uni�ed
clustering result that re�ects consistent or complementary information contained in different
sources [12–15]. However, they are unable to appropriately capture complex distributions
(e.g., inseparable distribution) in each data source [16], which is dif�cult because these complex
distributions re�ect the essential information in the data.

In order to capture complex distributions, recent multiple-view clustering methods have intro-
duced multiple kernels into their learning procedure; these methods are known as multiple kernel
clustering methods [17–22]. The multiple kernel clustering method adopts multiple kernels to
learn complex distributions and reformulates the integration of multiple-source information as a
convex optimization problem. Ordinarily, the multiple kernel clustering method �rst captures the
complex distributions in each data source using various kernels, namely base kernels; these base
kernels project heterogeneous data into a homogeneous representation space [23,24]. The method
then integrates multiple-source information by means of a uni�ed kernel learning procedure, i.e.,
leverages the linear combination of several base kernels to generate a uni�ed one. Subsequently,
the method clusters objects according to the uni�ed kernel which re�ects the complex object rela-
tionships among multiple sources. As a result, multiple kernel clustering can achieve remarkable
clustering performance on multiple-source data with complex distributions.

Although multiple kernel clustering methods can effectively cluster on multiple-source data
with complex distributions, they may be heavily affected by a data incompleteness problem:
namely, some data values in one or multiple sources may be missing due to lacking observations,
data corruption, or environmental noise. The data incompleteness problem exists in a variety of
scenarios, including neuro-imaging [25], computational biology [26], text security analysis [27],
and medical analysis [28]. Most current multiple kernel clustering methods are unable to be
implemented directly on data affected by the incompleteness problem. The main reason for this
failure lies in the fact that a kernel matrix generated from a data source with missing values will
be incomplete, as well as that a multiple kernel clustering method cannot learn a uni�ed kernel
based on incomplete base kernel matrices.

To tackle the data incompleteness problem, various absent-kernel imputation methods
have been proposed. These methods impute an absent-kernel matrix according to different
assumptions and strategies [29–31]. The representative imputation methods include zero-value
imputation [29], mean value imputation [29], k-nearest-neighbor value imputation [29], and
expectation-maximization value imputation [29]. More recently, several methods have further
incorporated an imputation process with a clustering process and thereby signi�cantly improved
clustering performance [32–36].

Although the above absent-kernel imputation methods can enable multiple kernel clustering
in the presence of the data incompleteness problem, they are still affected by several issues.
Firstly, most of the above absent-kernel imputation methods ignore the relations between kernels
when imputing missing values. It is very important that these relations are considered during
absent-kernel imputation, they may re�ect the redundant information contained in kernels [1];
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this information can then be used as essential evidence for missing value imputation. Secondly,
clustering methods that integrated with the above advanced absent-kernel imputation methods
are less effective and less ef�cient than other state-of-the-art clustering methods. For example,
the clustering accuracy and time-ef�ciency of both the multiple kernel k-means clustering in [32]
and the localized multiple k-means clustering method used in [33] are worse than that of
the unsupervised multiple kernel extreme learning machine [21]. Consequently, the accuracy of
these absent-kernel imputation methods may be unsatisfactory, and their time cost may also be
very large.

To address the above problems, this paper proposed an absent multiple kernel clustering
(AMKC) method, which learns on unlabeled incomplete data from multiple sources and achieves
high effectiveness and a fast learning speed. The AMKC method �rst adopts multiple kernels that
map data from multiple sources into multiple kernel spaces, where the missing values are randomly
imputed. It then conducts a three-stage procedure to iteratively cluster data, integrate multiple-
source information, and impute missing values. In the �rst stage, AMKC clusters data based on
a uni�ed kernel learned. This clustering process can converge in limited iterations with a fast
speed and excellent clustering performance. In the second stage, AMKC constructs a new multiple-
kernel-based data space from multiple sources that contain incomplete data; this is done in order
to learn the kernel combination coef�cients so as to construct the uni�ed kernel, which will be
further used in the �rst stage of the next iteration. This construction enables improved information
integration on multiple-source data with complex distributions. In the third stage, AMKC imputes
the missing values in each base-kernel matrix, jointly considering the clustering objective and
the relations between the kernels. AMKC performs this three-stage procedure iteratively until the
convergence of its clustering performance. In summary, the main contributions of this paper can
be outlined as follows:

(1) It provides an effective multiple kernel clustering method for incomplete multi-source data.
As AMKC avoids a local optimal solution, it signi�cantly improves clustering performance.

(2) It provides an ef�cient multiple kernel clustering method. AMKC can converge within
a limited number of steps, which improves training speed and reduces the time cost
of clustering.

(3) It provides a high-precision absent-multiple-kernel imputation method. AMKC considers
not only the relations between different kernels, but also the ties between kernel relations
and the clustering objective. Consequently, the proposed method generates reliable and
precise complete kernels.

We carry out extensive experiments on six datasets in order to evaluate the clustering perfor-
mance of AMKC. Moreover, we adopt averaged relative error to measure the degree of recovery
of the absent-kernel matrices imputed by AMKC. The experimental results demonstrate that:
(1) AMKC performs better than comparison methods on datasets with a high missing ratio;
(2) AMKC’s joint optimization and clustering process enable better clustering performance on the
experimental datasets. This strong evidence supports the superior kernel imputation and clustering
performance of AMKC.

2 The Proposed AMKC Method

2.1 The AMKC Work�ow
The work�ow of the AMKC method is illustrated in Fig. 1. In this architecture, AMKC

adopts an iterative three-stage procedure to cluster data, learn kernel combination coef�cients, and
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impute absent-kernel matrices. In the �rst stage, AMKC clusters data based on a uni�ed learned
kernel. This clustering process can converge in limited iterations, rapidly and with high clustering
performance. In the second stage, AMKC constructs a new multiple-kernel-based data space to
learn the kernel combination coef�cients; this construction enables better information integration
on multiple-source data with complex distributions. In the third stage, AMKC imputes the missing
values in each base-kernel matrix. AMKC then performs this three-stage procedure iteratively until
convergence of its clustering performance occurs.

Figure 1: Work�ow of the proposed AMKC method

2.2 First Stage: Kernel K-Means Clustering
The �rst step in the �rst stage is to conduct kernel k-means clustering on a uni�ed imputed

and learned kernel. This uni�ed kernel, which is a weighted combination of the observed values
in the absent-kernel matrices, is calculated as follows:

K̂=
m∑

p=1

µpK(cc)
p (1)

where m is the number of the employed base kernel matrices; K(cc)
p is an optimal base kernel

matrix, which is learned and imputed in the third stage in the next iteration. Initially, K(cc)
p inherits

the observed values in the p-th absent-kernel matrix with other values as 0. µ= [µ1,µ2, . . . ,µm]>

is a set of combination coef�cients that satis�es
∑m

p=1µp = 1 and µp ≥ 0. In the AMKC learning
process, all coef�cients in µ are initialized as 1/m. Following initialization, these coef�cients will
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be learned in the second stage of the AMKC’s iterative three-stage procedure. With the uni�ed
learned kernel K̂, we can formalize the kernel k-means clustering’s objective function as below:

min
C∈{0,1}n×nc

Tr
(
K̂
)
−Tr

(
L

1
2 C>K̂CL

1
2

)
subject to C1nc = 1n (2)

where the cluster assignment matrix C =
[
c11, . . . , c1nc ; . . . ; cn1, . . . , cnnc

]
∈ {0, 1}n×nc , cij indicates

whether the i-th object belongs to the j-th cluster, n is the number of the objects in a dataset,

nc is the number of clusters, L= diag
([

nn−1
1 , nn−1

2 , . . . , nn−1
nc

])
, nnj =

∑n
i=1 cij refers to the number

of objects in the j-th cluster, and 1n ∈ {1}n is a k-dimensional vector in which all values are 1.
It should be a remarkable fact here that it is very dif�cult to solve Eq. (2) directly, as the values
in C are discrete (i.e., either 0 or 1); one solution would be to relax Eq. (2) by allowing C to take
real values. Accordingly, Eq. (2) can be reduced to:

min
H

Tr
(

K̂
(

In−HH>
))

subject to H>H= Inc (3)

where H = CL
1
2 including the clustering performance. The clustering label of an object is

determined by the elements in its corresponding row of H. Here, AMKC sets the clustering
pseudo-label yi of the i-th object xi in the dataset as the arg maxj hij, where hij is the ij-th element
of H. In order to obtain the optimal H for improving the clustering results, we follow the way
in [37] to solve Eq. (3). As a result, the nc eigenvectors relating to the nc largest eigenvalues from
K̂ are selected as the optimal H.

2.3 Second Stage: Kernel Combination Coef�cients Learning
In the second stage, the set of combination coef�cients µ in Eq. (1) are learned in a trans-

formed space. Following [38], AMKC formulates the combination coef�cients learning process as
a binary classi�cation problem. More speci�cally, AMKC �rst constructs a kernel feature space,
referred to as K-space, based on imputed kernel matrices and the clustering pseudo-labels learned
in the �rst stage.

Initially, the p-th imputed kernel matrix is set as K(cc)
p ; this will be learned and imputed in the

third stage following initialization. If the data in the K-space is denoted as U, the given multiple-
sources dataset is X, then the transformation from multiple kernel matrices of X to U can be
expressed as follows:

u(xi,xj) =
(

K(cc)
1,(xi,xj)

, K(cc)
2,(xi,xj)

, . . . , K(cc)
m,(xi,xj)

)
(4)

where ∀xi, xj ∈ X, K(cc)
p,(xi,xj)

is the result corresponding to object xi and xj from the p-th kernel

matrix, while u(xi,xj) ∈R1×m is an object in U transformed from object xi and xj in X by m base

kernel matrices. Thus, all data in the K-space can be denoted as U=
[
u(1,1), . . . , u(n,n)

]>, while the
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label S(xi,xj) of u(xi,xj) in the K-space can be de�ned from the pseudo-labels yi and yj of objects

xi and xj as follows:

s(xi,xj) =

{
0, yi = yj

1, yi 6= yj.
(5)

Following the above K-space construction, AMKC learns the optimal combination coef�cients
µ for the uni�ed kernel K̂ through a closed-form solution [39]:

µ=

(
I
C
+U>U

)−1

U>T (6)

or:

µ=U>
(

I
C
+UU>

)−1

T (7)

where S=
[
s(1,1), . . . , s(n,n)

]>, C is a trade-off parameter. Eqs. (6) and (7) are suitable for datasets
with different characteristics. AMKC uses Eq. (6) to quickly learn the optimal µ for a large-scale
dataset. For data obtained from a large number of different sources, AMKC adopts Eq. (7) to
calculate the optimal solution with more ef�ciency. The learned optimal µ will be employed to
construct the uni�ed and imputed kernel K̂ in the �rst stage in the next iteration.

2.4 Third Stage: Absent-Kernel Matrices Imputation
The AMKC method learns and imputes absent-kernel matrices in the third stage based on the

clustering pseudo-label and kernel combination coef�cients learned in the �rst and second stages,
respectively. The learning objective can be formalized as follows:

min{
K(cc)

p

}m

p=1

Tr
(

K̂
(

In−HH>
))

subject to K̂=
m∑

p=1

µpK(cc)
p , K̂ < 0, (8)

In the third stage, AMKC regards µ and H as constants. AMKC utilizes the optimal H,
which is generated on m base kernels in the �rst stage, and the optimal m combination coef�cients
µ1, . . . ,µm, which are optimized in the second stage. Thus, the optimization in Eq. (8) is equivalent

to the optimization problem in Eq. (9) in respect of
{

K(cc)
p

}m

p=1
:

min
K(cc)

p

m∑
p=1

µpTr
(

K(cc)
p

(
In−HH>

))
subject to K(cc)

p < 0 (9)

When approached directly, the optimization problem in Eq. (9) appears to be intractable due

to K(cc)
p being of m number of different kernel matrices. Thus, we solve this optimization problem
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to impute the missing value of K(cc)
p from the perspective of matrix decomposition. Let Q= In−

HH>, Eq. (9) can be decomposed as m independent sub-problems equivalently. The p-th sub-
problem is formalized as follows:

min
K(cc)

p

Tr
(

K(cc)
p Q

)
(10)

subject to K(cc)
p < 0 (11)

Because K(cc)
p is PSD (Positive Semi-De�nite) in the above sub-problem [32], the optimal K(cc)

p

in Eq. (10) can be obtained by using a closed-form expression. Let K(cc)
p be decomposed as ApA>p ,

and Ap =

[
A(c)p ; A(l)p

]
with A(c)p A(c)>p =A(cc)

p . Here, A(cc)
p =Kp

(
sp, sp

)
meaning the p-th kernel sub-

matrix calculated from the objects
{
sp
}
s whose p-th view are present. With the similar form, the

matrix Q in Eq. (10) can be expressed in block form as[
Q(cc) Q(cl)

Q(cl)> Q(ll)

]

As a result, by rewriting the optimization problem in Eq. (10), a closed-form expression in

Eq. (11) can be obtained for the optimal K(cc)
p , which will be used to impute and update the

uni�ed kernel K̂ in the next iteration.

K(cc)
p =

[
A(cc)

p −A(cc)
p Q(cl)(Q(ll))−1

−(Q(ll))
−1

Q(cl)T A(cc)
p (Q(ll))−1Q(cl)T Q(cl)(Q(ll))

−1

]
(12)

2.5 The AMKC Algorithm
The iterative three-stage procedure of AMKC is outlined in Algorithm 1.

Algorithm 1: Absent multiple kernel clustering
Require:
Incomplete multiple kernels

{
K(cc)

p

}m

p=1
, and the convergence condition ε

Ensure:
The combination coef�cients µ, a set of new kernels

{
K(cc)

p

}m

p=1
and the clustering information H

1: Set C = 1, t= 1; initialize µ1 =µ2 = · · · =µm = 1/m; �ll the absent elements in the incomplete
multiple kernels

{
K(cc)

p

}m

p=1
with zero.

2: repeat
3: Utilize the optimal µ(t−1)and K̂(t−1)to formulate the uni�ed kernel K̂(t) by Eq. (1);
4: Conduct kernel k-means clustering on K̂(t) to obtain the optimal H(t) by solving Eq. (2);
5: Learn the optimal µ(t) by Eq. (7) or Eq. (6) according to the characteristics of the dataset;
6: Impute

{
K(cc)

p

}m

p=1
independently with optimal H(t) by solving Eq. (11);

7: t= t+ 1;
8: until cov≤ ε.
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As noted above, it is not easy to simultaneously optimize the three variables H, µ and{
K(cc)

p

}m

p=1
at different stages, as K(cc)

p is both incomplete and independent. Accordingly, in the

iterative three-stage procedure, AMKC optimizes these three variables independently. At each
stage, AMKC optimizes one of these variables and treats the others as constants. In this way,
AMKC can obtain the local optimal values of these three variables after the iteration converges.
AMKC determines the iteration convergence based on the changes in the loss value obj(t) of the
clustering objective function Eq. (3), where t refers to the t-th iteration. More speci�cally, AMKC

de�nes a convergence index as cov =
(
(obj)(t−1)

− (obj)t
)
/ (obj)(t). If the value of cov is smaller

than a pre-de�ned ε, AMKC will stop the iterative procedure.

3 Theoretical Analysis

3.1 Time Complexity
In order to demonstrate the fast learning speed of the proposed method AMKC, we theo-

retically analyze and discuss its time complexity in this section. The time complexity of AMKC
is primarily determined by three components: kernel k-means clustering, kernel combination
coef�cient learning, and absent-kernel matrices imputation.

Suppose the number of objects is n, the number of base kernels is m. For kernel k-means
clustering in the �rst stage, its time complexity can be reduced from O

(
n3
)

to O (n) via clus-
ter shifting [40]. For the second stage: kernel combination coef�cient learning, if the optimal
µ is learned by solving Eq. (6), then the time complexity is O

(
m3
+m2n+mn

)
, while that

is O
(
n3
+mn2

+mn
)

by solving Eq. (7). For absent-kernel matrices imputation in the third
stage, the time cost depends on three matrix operations in Eq. (11), the time complexity of
which is O

(
l3
+ cl2

+ c2l
)
, where c and l refer to the number of objects with incomplete and

complete values, respectively, c + l = n. Because both c and l are less than or equal to n,
O
(
l3
+ c2l+ l2c

)
≤ O

(
n3
)
. Above all, time complexity of AMKC in each iteration is mainly

determined by O
(
m3
+m2n+mn

)
or O

(
n3
+mn2

+mn
)

in the second stage. Obviously, if m< n,

then O
(
m3
+m2n+mn

)
< O

(
n3
+mn2

+mn
)
. Thus, in order to reduce the time complexity in

each iteration for achieving a fast learning speed, AMKC is best to use Eq. (6) when n is very
large, while using Eq. (7) for m is very large. Namely, the time complexity of AMKC in an
iteration is O

(
m2n

)
or O

(
mn2

)
. Accordingly, the time complexity of AMKC in nt iterations is

O
(
m2nnt

)
or O

(
mn2nt

)
. In practical terms, nt also effects the ef�ciency of AMKC. Fortunately,

AMKC is able to theoretically converge within �nite iterations, as demonstrated in Theorem 1,
and nt can be empirically proved to be a very small number when the convergence condition is
met, as shown in Fig. 7.

3.2 Convergence Analysis
In this section, we theoretically testify that AMKC algorithm can converge within �nite steps

to support its fast learning speed.

Theorem 1. The AMKC algorithm (see Algorithm 1) can converge to a local optimum within
�nite iterations.

Proof. Given a dataset X, AMKC �rst conducts kernel k-means clustering with the clustering

loss f = Tr
(
K̂
)
−Tr

(
L

1
2 C>K̂CL

1
2

)
. Suppose the number of all possible partitions is y, and each
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partition is represented by a cluster assignment matrix C ∈ {0, 1}n×nc . Their assignment matrices
are different when the two partitions are different; otherwise, they are identical.

Assuming that the number of clusters nc is �nite, for nt iterations, AMKC generates a
series of imputed kernels K̂ (i.e., K̂1, K̂2, . . . , K̂nt) and a series of cluster assignment matrices C
(i.e., C1, C2, . . . , Cnt). Given a cluster assignment matrix C and an imputed uni�ed kernel K̂, the
clustering loss in AMKC is denoted as f

(
C, K̂

)
.

In the �rst stage, the kernel k-means clustering converges to a minimal solution. The AMKC
achieves C = arg minC f

(
Cnt−1, K̂nt−1

)
in the nt-th iteration; moreover, since the uni�ed kernel

has been imputed and the clustering also converges to a minimal solution, f
(
C, K̂

)
is strictly

decreasing (i.e., f
(
C1, K̂1

)
> f

(
C2, K̂2

)
> · · ·> f

(
Cnt , K̂nt

)
). Assuming that nt ≤ y+ 1, there are at

least two identical assignment matrices in the series of cluster assignment matrices C (i.e., Ci =Cj,

1 ≤ i 6= j ≤ nt). Because Ci = Cj, we can infer that K̂i = K̂j; therefore, the value of the clustering

loss does not change (i.e., f
(
Ci, K̂i

)
= f

(
Cj, K̂i

)
= f

(
Cj, K̂j

)
). In this case, the convergence criterion

of AMKC is satis�ed and the AMKC algorithm stops. Since nt ≤ y+ 1, AMKC (Algorithm 1)
converges to a local optimum in �nite iterations.

4 Experimental Analysis

4.1 Experimental Settings
4.1.1 Original Datasets

In order to evaluate the AMKC’s performance, we conduct experiments on six datasets;
namely, Iris [41], Lib [41], Seed [41], Isolet [41], Cifar [42], and Caltech256 [43]. Of these data
sets, Iris, Lib, Seed and Isolet are collected from UCI data repository [41], and are commonly
used to evaluate multi-view learning methods [18,44] and multiple kernel learning methods [21,38].
Furthermore, these four datasets were all collected from different real-life scenarios with differ-
ent characteristics, enabling a comprehensive evaluation of the proposed method from different
perspectives. The remaining datasets, i.e., Cifar and Caltech256 have also been commonly used
to evaluate machine learning method in recent research. For Cifar and Caltech256, we chose
300 and 10 objects belonging to each cluster respectively. The important statistics including the
number of objects, base kernels, and classes of these datasets are listed in Tab. 1; The base
kernels used in the experiments include three kinds of kernel, namely, linear kernel, polynomial
kernels with degree {2, 3, 4}, and Gaussian kernels with kernel width falling within the range of{
10−10, 10−8, 10−6, 10−4, 10−2, 1, 102, 104, 106, 108, 1010

}
.

Table 1: Summary of datasets

Dataset #Objects #Base kernels #Classes

Iris 150 8 3
Lib 360 15 15
Seed 210 15 3
Isolet 6238 10 26
Cifar 3000 6 10
Caltech256 2560 6 256



276 CMC, 2021, vol.67, no.1

4.1.2 Competitors
The clustering performance of AMKC is compared with other two-stage clustering methods

for incomplete kernels. The comparison methods �rstly complete the absent base kernels with
special values learned by different imputation methods, and then conduct multiple kernel k-means
clustering (MKKM) [45] on the imputed kernels. In our experiments, four representative impu-
tation methods are employed; namely, zero imputation (ZI), mean imputation (MI), k-nearest-
neighbor imputation (KNN), and alignment maximization imputation (AF). For convenience, the
methods combined MKKM with different imputation methods are denoted as ZI + MKKM,
MI +MKKM, KNN +MKKM and AF +MKKM, respectively. Furthermore, the state-of-the-
art method MKKM + IK [32], which iteratively performs clustering and kernel imputation, is
also employed for comparison. We do not include the MVKC method [35] in our clustering
performance comparison because of its high computational cost, even for small amounts of data.
Instead, we simply compared MVKC with AMKC in terms of imputation precision.

4.1.3 Absent Kernel Generation
We follow the approach in [32] to generate absent kernels. More speci�cally, round (ns = τ × n)

objects are randomly selected, where round (·) means that rounds each input element to the nearest
integer, τ is the missing ratio. The τ is set to [0.1, 0.2, . . . , 0.8, 0.9]. Subsequently, we prede�ne
a random threshold θ0 ∈ (0, 1), and generate a random vector θ = (θ1, . . . , θm) ∈ (0, 1)m obeying
uniform distribution. For p= 1, 2, . . . , m, if θp ≤ θ0 holds, the selected round (τ × n) objects will be
deleted for the p-th base kernel.

To reduce the impact caused by the tested datasets and randomness of the kernel k-means
clustering, for the same parameters τ , θp, and θ0, the absent-base-kernel matrices are randomly
generated 10 times by randomly selecting different objects to be absent. Furthermore, for each
series of generated absent-base-kernel matrices, we repeatedly carry out random initialization
20 times for extensive experiments.

4.1.4 Performance Measures
To accurately evaluate the clustering performance and effectiveness of the methods of interest,

we measure the clustering results through three performance measures: clustering accuracy (ACC),
normal mutual information (NMI) and Purity. Differently-parameterized results of ACC, NMI
and Purity are aggregated by averaging them, respectively. Since the proposed method combines
kernel imputation and clustering, we can get new imputed kernel matrices and clustering results
at the same time. In order to verify the degree of recovery of AMKC for absent kernel matrices,
we measure the average relative error (ARE) [35,46] between the complete missing values and the
original value among all views.

4.2 Recovery of the Absent Kernels
To validate the degree of recovery achieved by the proposed AMKC, when the base kernels

are diverse, our results are compared with several state-of-the-art kernel matrix completion meth-
ods, namely, Multi-view Kernel Completion (MVKC) [35] and MKKM with incomplete Kernels
(MKKM+ IK) on the Iris dataset with various kernels. We generated three sets of kernel matrices
with various kernels and different parameters. In more detail, as shown in Fig. 2, KH1, KH2 and
KH3 are denoted those combined with three Gaussian kernels, one linear kernel and two Gaussian
kernels, and three linear kernels, respectively. We then randomly generated the missing matrices
based on KH1, KH2, and KH3 and applied the comparison methods to them. Finally, the average
relative error (ARE) (Eq. (11)) [35,46] is taken to measure the error between the predicted kernel
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matrix and the original matrices KH1, KH2 and KH3. The average relative error is computed
over all missing data points for all views, as follows:

ARE=
1
m

m∑
p=1

 1
np

∑
j∈I(p)

‖K̂(cc)
pj −Kpj‖

‖Kpj‖

 (13)

where np is the number of missing samples in the p-th view, I(p) is the set of indices of all missing

data in the p-th view, K̂(cc)
p and Kp refer to the learned imputed kernel matrix and the original

complete one.

(a) (b) (c)

Figure 2: ARE comparison on various kernels. (a) KH1, (b) KH2, (c) KH3

(a) (b) (c)

(d) (e) (f)

Figure 3: ACC comparison of different methods on six datasets. (a) Iris, (b) Lib, (c) Seed,
(d) Isolet, (e) Cifar, (f) Caltech256
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The ARE values for the comparison methods are presented in Fig. 2. We can see from the
�gure that the proposed method generally predicts missing values more accurately than MVKC
and MKKM + IK on the Gaussian kernel. When the base kernel contains a non-linear kernel
(Gaussian kernel), the MVKC performs no better than MKKM+IK and MVKC (see Figs. 2a and
2b) due to the prior assumption on the linear assumption. Since the proposed method considers
connection among kernels and clustering guidance, regardless of the type of the composed kernel,
the proposed method is able to recover the absent kernels more ef�ciently, as in Fig. 2.

(a) (b) (c)

(d) (e) (f)

Figure 4: NMI comparison of different methods on six datasets. (a) Iris, (b) Lib, (c) Seed,
(d) Isolet, (e) Cifar, (f) Caltech256

4.3 Clustering Performance Analysis
The clustering results of different clustering methods for incomplete data are shown in

Figs. 3–5. Respectively, they present a comparison of the ACC, NMI, and Purity of six clustering
methods on each dataset. It can be seen that the proposed method outperforms other comparison
methods on six datasets. And the clustering performance of the proposed AMKC remains robust
as the missing ratio grows larger, while the clustering performance of the other comparison
methods, especially ZI+MKKM, MI+MKKM, KNN+MKKM, exhibits a quick downward. As
the term ACC can measure the distance between the learned clustering pseudo-labels and actual
ones to some extent, the higher ACC for large missing ratios can prove that the proposed method
is able to effectively restore datasets through its iterative process.

In order to investigate comprehensively the effectiveness of the proposed method, the aggre-
gated ACC, NMI and Purity along with their standard deviations (mean ± std) are listed in
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Tabs. 2–4, respectively. It is clear that the proposed method obtained the best performance shown
in bold. Namely, the proposed method performs better than other comparison methods in all
datasets, which is consistent with the conclusion from Figs. 3–5. The superiority of the proposed
method can be attributed to joint optimization on clustering, combination coef�cients and kernel
imputation. In the three-stage procedure of the proposed method, the clustering information are
employed to guide the kernel imputation into an optimum, while the good imputed uni�ed kernel
prompts the clustering result. Thus, the clustering performances of the proposed method can be
greatly improved.

(a) (b) (c)

(d) (e) (f)

Figure 5: Purity comparison of different methods on six datasets. (a) Iris, (b) Lib, (c) Seed,
(d) Isolet, (e) Cifar, (f) Caltech256

4.4 Comparison with Baseline Algorithm
Since the proposed method can simultaneously achieve clustering and kernel imputation as

the extend of the unsupervised multiple kernel extreme learning machine (UMK-ELM) [21], we
provide TUMK-ELM (the two-stage UMK-ELM) [37] as a baseline and compare the cluster-
ing performance of the proposed method with four aforementioned imputation methods: ZI,
MI, KNN, and AF imputation (They referred to as ZI + TUMKELM, MI + TUMKELM,
KNN+TUMKELM, and AF+TUMKELM).
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Table 2: Comparison of aggregated ACC (±std) on six datasets

DataSet ZF+MKKM MF+MKKM KNN+MKKM AF+MKKM MKKM+ IK Proposed

Iris 72.99± 0.79 69.81± 0.45 78.06± 1.81 78.61± 1.50 79.74± 1.09 93.61 ± 1.57
Lib 35.96± 0.56 37.05± 0.14 37.65± 0.34 41.36± 0.91 43.89± 1.92 46.73 ± 0.35
Seed 79.10± 0.11 75.10± 0.90 80.33± 0.14 88.36± 0.29 88.98± 0.71 89.80 ± 0.24
Isolet 48.89± 0.77 48.91± 0.63 50.37± 0.57 57.33± 0.51 59.78± 0.21 61.54 ± 0.78
Cifar 17.27± 0.62 17.45± 0.43 17.91± 0.55 18.46± 0.15 20.82± 0.69 23.84 ± 0.92
Caltech256 14.37± 0.59 14.42± 0.69 15.07± 0.39 15.04± 0.29 15.20± 0.23 16.48 ± 0.55

Table 3: Comparison of aggregated NMI (±std) on six datasets

DataSet ZF+MKKM MF+MKKM KNN+MKKM AF+MKKM MKKM+ IK Proposed

Iris 50.67± 3.26 41.10± 2.97 58.68± 2.27 60.88± 2.02 62.70± 1.14 82.87 ± 2.86
Lib 41.68± 0.80 44.11± 0.71 44.02± 0.42 49.11± 0.35 54.44± 0.35 58.02 ± 0.97
Seed 54.21± 0.64 43.71± 0.98 54.56± 0.16 66.12± 0.84 67.75± 0.22 68.36 ± 0.49
Isolet 60.71± 0.58 60.73± 0.41 62.82± 0.37 68.06± 0.16 71.95± 0.73 73.67 ± 0.51
Cifar 5.69± 0.12 6.40± 0.89 6.82± 0.56 6.73± 0.65 8.21± 0.08 11.21 ± 0.49
Caltech256 57.02± 0.73 57.50± 0.44 59.00± 0.27 58.55± 0.18 58.26± 0.16 59.53 ± 0.13

Table 4: Comparison of aggregated purity (±std) on six datasets

DataSet ZF+MKKM MF+MKKM KNN+MKKM AF+MKKM MKKM+ IK Proposed

Iris 73.39± 2.10 69.49± 1.90 78.37± 1.61 79.09± 1.61 79.74± 1.09 93.16 ± 1.19
Lib 37.23± 0.07 39.45± 0.71 38.59± 0.42 42.94± 0.35 45.86± 0.35 48.40 ± 0.28
Seed 79.63± 0.89 75.10± 0.90 80.43± 0.05 88.36± 0.50 89.04± 0.29 89.89 ± 0.24
Isolet 50.86± 0.70 50.90± 0.61 52.59± 0.57 59.01± 0.39 62.03± 0.39 63.65 ± 0.57
Cifar 18.02± 0.71 18.67± 0.79 19.31± 0.23 19.45± 0.52 21.97± 0.83 24.38 ± 0.75
Caltech256 14.80± 0.57 14.81± 0.72 15.48± 0.40 15.52± 0.21 15.72± 0.59 17.13 ± 0.62

Figure 6: ACC comparison of the baseline with different imputation algorithms. (a) Iris,
(b) Lib, (c) Seed
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Here, we carry out the experiments only on the Iris, Lib, and Seed datasets. Moreover, taking
the ACC for example, the corresponding ACC values of each method in each appointed dataset
with a variety of missing ratio are calculated. Our experimental results (see Fig. 6) demonstrate
that the performance of the proposed method (line in black) is the closest to that of TUMK-
ELM (line in red), where the datasets used in TUMK-ELM are complete. This indicate that
the proposed method can not only obtain good clustering results, but is also able to achieve
outstanding imputation performance.

4.5 Convergence Speed Analysis
In order to investigate the convergence speed of the proposed AMKC method, additional

experiments are carried out on three main datasets (Iris, Lib and Seed). The results of the
objective value (obj in Algorithm 1) in each iteration for the �xed missing ratio 0.9 are shown in
Fig. 7. From Fig. 7, we can observe that the objective value tends to converge quickly. As the
convergence speed of the objective value determine AMKC’s convergence speed, the experimental
results demonstrate AMKC can converge within only a few iterations on these three datasets.
Thus, the proposed method has a fast convergence speed.

Figure 7: The objective value of the proposed method per iteration with missing ratio of 0.9.
(a) Iris, (b) Lib, (c) Seed

5 Conclusion

As the multiple-kernel clustering method has promising and competitive performance, it can
be widely employed in various applications. In order to cope with incomplete data or base kernels,
we proposed a new multiple-kernel clustering method with absent kernels, which jointly cluster
and impute the incomplete kernels to achieve clustering performance. Our method iteratively
performs three stages utilizing an optimization strategy to obtain optimal clustering information,
combination coef�cients and imputed kernels, so better clustering for the absent kernels are
gained. Extensive experiments on six datasets have veri�ed the improved performance of the
proposed method.
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