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Abstract: Internet of Everything (IoE) indicates a fantastic vision of the future,
where everything is connected to the internet, providing intelligent services
and facilitating decision making. IoE is the collection of static and moving
objects able to coordinate and communicate with each other. The moving
objects may consist of ground segments and �ying segments. The speed of
�ying segment e.g., Unmanned Ariel Vehicles (UAVs) may high as compared
to ground segment objects. The topology changes occur very frequently due
to high speed nature of objects in UAV-enabled IoE (Ue-IoE). The routing
maintenance overhead may increase when scaling the Ue-IoE (number of
objects increases). A single change in topology can force all the objects of
the Ue-IoE to update their routing tables. Similarly, the frequent updating
in routing table entries will result more energy dissipation and the lifetime
of the Ue-IoE may decrease. The objects consume more energy on routing
computations. To prevent the frequent updation of routing tables associated
with each object, the computation of routes from source to destination may
be limited to optimum number of objects in the Ue-IoE. In this article, we
propose a routing scheme in which the responsibility of route computation
(from neighbor objects to destination) is assigned to some IoE-objects in the
Ue-IoE. The route computation objects (RCO) are selected on the basis of
certain parameters like remaining energy and mobility. The RCO send the
routing information of destination objects to their neighbors once they want to
communicate with other objects. The proposed protocol is simulated and the
results show that it outperform state-of-the-art protocols in terms of average
energy consumption, messages overhead, throughput, delay etc.

Keywords: UAV; �ying sensor network; IoT; IoE; optimization; routing

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014102


322 CMC, 2021, vol.67, no.1

1 Introduction

Recent advances in information and communication technology (ICT) have further expanded
into the Internet of Things (IoT) from simply ‘things’ to features “the link of smart things”. In
the meantime, the notion of the Internet of Things (IoE) is being expanded as an extension of
the IoT. Though, the use of IoE is beginning to become a major challenge, including Ue-IoE
coverage and the limited capacity of integrated technologies.

The use of IoE depends on the integration of new technologies such as sensor and imag-
ing/embedded technology, low-power communication and large-scale data analysis [1]. Over the
years, more and more ideas have been brought forward with the new bricks for developing IoE.
First, improvements in sensor and embedded technology have made Internet of Things (IoT)
objects more portable, ef�cient and use less power [2,3]. Second, the invention of Wireless Power
Supply (LPWAN) devices enables the integration of low-voltage IoT objects [1]. In addition,
intelligent solutions and the large amount of large IoT data have motivated the intelligence of
IoE. Thus, IoE can be used in a wide range of applications such as intelligent manufacturing,
smart farming and intelligent logistics.

Unmanned aerial vehicles (UAVs) have recently gained traction due to their excellent trans-
portation, low cost and easy delivery. UAVs can therefore overcome the challenges of IoE. Ue-IoE
consist of vehicle moving in the air in any direction and are able to share information with
each other even in the absence of ground segment. Unmanned aerial vehicles (UAVs) have gained
traction in recent years by both industry and education because of their �exibility and mutable
services. With high performance and elastic placement, UAVs can encompass the coverage of
IoE [4,5]. Compared to ground and satellite transmission lines, wireless connectivity can be used
super-fast and adaptable to improve Ue-IoE coverage and capability [5]. The simple conversion of
UAVs also empower many IoE applications. Due to their dedication to setting up and designing
control systems, UAVs have a wide range of applications including agricultural management [6],
mammalian inspection [7], and medical applications for military [8]. Conversely, the use of UAVs
in IoE also presents new challenges in the perception of dynamic Ue-IoE connectivity, top-of-
the-line Ue-IoE optimization, controllability, and brilliant intelligent algorithms. To meet these
challenges, we need to develop legitimate communication models, �exible exchange of resources,
optimization of UAVs trajectory, and intelligent strategies in IoE.

Research on multi-UAV (mUAV) Ue-IoEs focuses on improving the performance of A2A
connections on multiple UAVs. The use of A2A in special features wireless connection and
interference with data. Because of the movement of several UAVs simultaneously, the channel
quality of A2A connections is not stable, making the topology of the Ue-IoE very dynamic. The
routing information of each UAV is updated once a topology change occur. The frequent changes
in topology bring extra challenges like congestion, delay, energy consumption, control messages
overhead etc.

In this article, a routing optimization protocol based on honey bee algorithm named “A bio-
inspired �ying sensor network routing optimization in UAV-enabled internet of everything (BIUe-
IoE)” is proposed to overcome the issues discussed above. The algorithm select a set of optimum
objects to perform the routing computation on behalf of their neighbors. The routing path from
source to destination is given to the object once an object want to transmit its data. In this way,
the frequent changes in Ue-IoE topology do not in�uence the routing tables of all objects in Ue-
IoE. The routing tables of designated objects are updated. The topology maintenance overhead
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can be reduced and the IoE objects transmit data with smaller delay. The simulation results show
that the proposed scheme outperform state-of-the-art routing protocols.

The rest of the article is structured as: Section II examines UAV-related activities: UAV
communication and routing schemes. In Section III, we propose the solution for UAV-enabled
IoE (Ue-IoE) for routing to increase the Ue-IoE lifetime. Section IV discuss to experimental
evaluation, in which we show that BIUe-IoE can greatly enhance Ue-IoE lifetime, packet delivery
ratio and decrease end-to-end delay. Finally, Section V concludes the article.

2 Related Work

The research involves two approaches: Multiple UAVs �ight optimization and dynamic routing
schemes. Both studies have shown signi�cant attention to a wide range of UAV networks, as seen
in several studies [4,9,10]. Compared to unmanned aerial system (UAS) that have control over the
UAV target, the UAV communication system has only a stable communication among the UAVs or
among the UAVs and the ground segment. Recent research on UAVs provided two classes of UAV
communication systems: MUAV ad hoc networks (MUANET) and UAV enabled communication
networks (UeCNET).

MUAV ad hoc Networks: MUANET functionality is self-con�guring with high performance
and is largely independent of current mobile networks. The MUANET can facilitate cell phone
connection and coverage in some situations such as emergency communication, aircraft surveil-
lance, and aerial sensor network. The authors in [11], for example, describe a similar situation,
in which multi-UAV support vehicles-to-vehicle communications in areas with poor network con-
nection to ground segment. In addition, multi-UAV networks can process data and become key
players in large sensor networks [4,12,13].

Research on MUANETs focus on improving the performance of A2A connections among
multiple UAVs. The performance of A2A generally consist of data communication and wireless
connectivity. Due to the movement of multiple UAVs, the channel quality of A2A connections
is not stable, making the topology of the network more dynamic. The research involves two
approaches: MUAV trajectory �ne-tuning and routing. Both studies have been well-reviewed for
MUANETs, as found in several papers [4,9,10]. For example, [9] provides an overview of the
routing schemes for MUAV communications, including self-regulation, interference tolerance, SDN
control, delivery, and energy saving. At this time, [10] compared the performance of the current
routing schemes are divided into two categories: a single-hope and a multi-hop. The compari-
son criteria include, energy ef�ciency, load balancing, loop-free capability, route update process
and so on.

Moreover, earlier studies have examined the trajectory optimization of MUAVs when a speci�c
routing algorithm, i.e., single-hop or multi-hop, is chosen. For example, the authors in [14,15]
examined the trajectory optimization with energy management. References [14,15] considered
single-hop routing protocol, in which each ground object had access to only one UAV and several
UAVs working together for a group of ground objects. In addition, the authors in [16–18] exam-
ined the trajectory optimization of multi-hop routing algorithms, where many UAVs providing
connectivity to a group of ground objects, with the goal of ’being an end-to-end throughput
maximization. UeCNET is the extension network of current networks. Unlike the self-organized
independent architecture of MUANETs, UeCNETs are an infrastructure based topology networks,
dependent on the access points of the existing network.
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In a UeCNET, UAVs can be used as border objects with network functions such as �ying
base stations (e.g., [19,20]), relay objects [21,22] or terminal objects such as the aerial surveillance
camera [23,24]. The purpose of UeCNETs is to deliver elastic communication services in regions
that lose link to existing networks. In this, UAVs play a title role as relay or terminal objects
which are connected to the disconnected nodes and thus establish the communication links.

For UeCNETs, majority of the readings are primarily allied to the optimization of UAV tra-
jectory. In preceding research, the trajectory has been optimized by optimizing several performance
metrics, including QoS communication, adequate coverage, time and energy ef�ciency, probability
of failure, etc. For example, an iterative procedure that minimize disconnected nodes to cover
multiple isolated sensor nodes is presented in [25]. Similarly, [19] proposed an optimal positioning
scheme for UAV base stations by maximizing the number of users covered. Furthermore, [22]
designed the path of a single relay UAV to maximize energy ef�ciency. In addition, [21] opti-
mized the orbit of the UAVs by minimizing the likelihood of failure, where the UAVs acted as
amplify-and-forward relay.

The research of UAVs usually focuses on two main issues: Firsty, to examine the UAS
for the management of UAVs, and the other is to study the UeCNET to guarantee reliable
interconnections (including A2A, A2G and G2A links). These two issues share a common research
problem—UAV design capabilities (i.e., trajectory optimization). According to a latest research on
UAVs [26], UAVs take the opportunity to enable IoE. In the following articles, we will discuss the
routing issue in IoE settings using UAV.

The deployment and routing of UAVs for different applications is not easy because they
require not only large resources, but also high reliability. Due to the lack of UAVs onboard
resources, dynamics in applications and the environment, it is dif�cult to get a system in place
that addresses the need for uniform policy in the online environments. To address these issues, [27]
propose an online solution for UAV swarms work together in an edge-cloud environment to
optimize both computation of�oading and multi-hop routing. First, they introduce the UAV edge
cloud computation model to encounter the requirement of delay and computation capability.
Formulation of a joint optimization of work�ow assignment and multi-hop routing is carried out
to reduce the computation cost and delay. To solve this non deterministic hard problem, a model
based on the Markov estimation process was designed to �nd near optimum solutions.

The cost of data communication is wireless sensor networks (WSNs) is particularly high. To
solve this problem, the collection of data can be carried out via UAVs is a favorable alterna-
tive [28]. Here, the UAV-enabled WSN is considered, where UAVs are sent to collect data from
sensors deployed at different locations in WSN. The optimization problem is addressed to achieve
the minimum power consumption goal of the WSN after data communication for energy ef�cient
UAV routing conditional on data gathering and UAV traveling distance restrictions.

The route optimization can enhance the ef�ciency of the FANET using arti�cial neural
networks. In highly dynamic FANET, the strength of the route determines the stability of the
network. According to CHNN [29], the DSR has been upgraded and branded as the CHNN-
DSR, which has received better and more stable routes that improve the stability of FANET and
network communication. The authors focus on the optimization of multiple metrics during the
design of routing algorithms.

Findings and solution: The routing schemes discussed above have one common agenda i.e.,
the data transmission of data on shortest routes to prolong the network life time and minimize
delay. The �ying nature of some IoE-objects in UAVs-enabled IoE, it is dif�cult to synchronize the
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routing paths due to frequent topology changes. All the schemes discussed above consume most
of the energy on updating their routing tables after a single change in topology. One solution
is the cluster based routing but the control messages overhead may increase with high dynamic
topology and quality of service may compromise. A routing scheme is required that does not need
updating routing tables of all Ue-IoE objects with topology changes. The next section elaborate a
routing scheme which minimize the control overhead messages by assigning the route computation
to some IoE-objects in Ue-IoE.

3 Proposed Bio-Inspired Bee Routing Optimization for Ue-IoE

In this proposal, the BRUe-IoE is assumed a graph G (V, E) initially. The vertices V in graph
G represents the IoE-objects and the edges E denote the connections among these IoE-objects.
The objective is to discover the shortest route from the source IoE-object to sink when an IoE-
object needs to share information with the destination IoE-object (may be base station (BS) on the
ground or air). The time required and consumption of energy may be high to compute shortest
route from every IoE-object to BS. It is very tough job and sometimes not possible that each
IoE-object should compute the shortest route because of restricted resources such as energy and
computation. Calculation of shortest route from source to destination is given to some IoE-objects
named OB/RCO in the Ue-IoE. Each time an IoE-object needs to share information with the
sink, the shortest route information is acquired from these nominated OB/RCOs. In this way, the
routing tables of all IoE-objects will not be updated on each topology change and the Ue-IoE
resources will be saved. The task of OB/RCO is rotated among all IoE-objects in Ue-IoE in order
to distribute the load.

3.1 Route Computation Objects Selection
The main objective of this research is to select the OB/RCOs at different time intervals. The

selection of OB/RCOs is based on multiple factors including residual energy, degree and mobility.
The IoE-objects having enough energy, high degree and relative mobility are the ideal candidates
for OB/RCOs. A modi�ed version of honey bee algorithm is used to compute the OB/RCOs in
Ue-IoE. The role of a bee is determined by its type in bee intelligence algorithm.

In this research, the bees are allocated into two types. First, employed bees (ordinary IoE-
objects or EBs) and onlooker bees (OBs). Here, the bees denote IoE-objects in the Ue-IoE. The
job of OBs (RCOs in BRUe-IoE) is the discovery of the shortest routes from its neighbors (source)
to the sink IoE-objects. The IoE-objects acquire the shortest path information from the OB/RCOs
in its neighborhood and transmit information to the sink on that route. The IoE-objects having
high nectar value are ideal candidates for the OB/RCOs. The quantity of nectar is computed on
the basis of IoE-object energy, IoE-object degree and the relative mobility such as:

IoE− objectnectar =EIoE−object+DIoE−object+SIoE−object+DiIoE−object (1)

In the Eq. (1) above, IoE-object nectar is the quantity of nectar in a IoE-object, EIoE-object
denote the residual energy of an IoE-object, D IoE-object represent the neighbors of IoE-objects,
S IoE-object denote the speed of a IoE-object and Di IoE-object indicate direction of IoE-object.
The OB/RCOs must be nominated from every part of the Ue-IoE.

The Euclidian distance of IoE-objects must be considered during the selection of OB/RCOs.
The group of OB/RCOs designated in this way have roughly equal distance from each other.
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Principally, the problem is presented using Eq. (2):

R (IoEnectar,A)=

IoEnectar∑
i=1

k∑
j=1

IoEnectarij
(
Ni−Aj

)2 (2)

Subject to
∑k

j=1 IoEnectar = 1 for i= 1, . . . , v and j= 1, . . . ,k

IoEnectar = 0 or 1

In the above Eq. (2), IoE-objectnectar is the total number of IoE-objects in Ue-IoE, k is the
total no of OB/RCOs, Ni ∈ v, (i = 1, . . . , v) denote the live position of IoE-object i in Ue-IoE,
Aj ∈ k, (j = 1, . . . , k) signify the mean value for checking the �tness of a IoE-object to perform
OB/RCO role. The Eq. (3) below can be used to compute the mean value Aj:

Cj =
1
Ni

k∑
j=1

IoE− objectnectarij (3)

In Eq. (3), the number of neighbors of the jth OB/RCO is denoted by Nj, IoE-objectnectar
is the weight factor with respect to its relation of IoE-object i with OB/RCO j, if the IoE-object
i is a neighbor of a IoE-object j, the value of IoE-objectnectar will be assigned 1 or 0 if not in
the neighborhood.

When a group of OB/RCOs are selected, the OB/RCOs are now accountable to compute the
shortest routes for all its neighbors (employed bees). The routes are updated after certain interim.
The OB/RCO broadcast these computed routes to their neighbors as a result of the frequent
topology updating in the Ue-IoE. The functioning of the OB/RCOs selection is presented using an
algorithm and will guide the readers in easy way. Tab. 1 presents the notations used in Algorithms
1 and 2.

Table 1: Notations used in Algorithm 1 and Algorithm 2

Symbol De�nition

N Total number of IoE-objects
k Total number of OB/RCOs
A Average value of Ue-IoE IoE-objects degree
v[n] IoE-object IDs vector
fv Fitness value of OB/RCOset
ObjectTD Summation of all IoE-objects degree
ObjectDegi Degree of IoE-object i
RCOs Route computation objects
ObjectWf [3] [n] Weighting factor array of all IoE-objects
eb EBs
aij Size of patch
var Random uniform variable may be [−1 or 1]
pi Probability of a food source i
IoE-objectAE Object average energy
IoE-objectAD Object average degree
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Algorithm 1: Psuedo code of IoE− objects nectar computation
1: Procedure IoE_object nectar_computation
2: Input: n, k
3: Output: RCOs
4: for (i= 1; i≤ n; i++) do
5: if ObjectREi > ObjectAEithen// selection of weighting factor value with respect to

remaining energy
6: ObjectWf[1][i]= 1
7: else if ObjectREi ≈ObjectEi then
8: ObjectWf[1][i]= 0
9: else
10: ObjectWf[1][i]=-1
11: end if
12: if ObjectDegi > ObjectAD then// selection of weighting factor value with respect to

degree
13: ObjectWf[1][i]=1
14: else if ObjectDegi ≈ObjectAD then
15: ObjectWf[1][i]= 0
16: else
17: ObjectWf[1][i]=−1
18: end if
19: if(mobility≈ relative or static) then// selection of weighting factor value with respect

to mobility
20: ObjectWf[2][i]= 1
21: else
22: ObjectWf[2][i]=−1
23: end if
24: end for
25: for (i= 1; i≤ n; i++) do// calculation of weighting factor values
26: for (j= 1; i≤ 4; i++) do
27: Object_nw[i]=Object_nw[i]+ObjectWf[i][j]
28: end for
29: end for
30: return Object_nw[n], k// all the weights and number of OB/RCOs are returned to

the calling procedure
31: end procedure

In Algorithm 1, the values of selection parameters are accumulated. The summation of all
IoE-objects remaining energy and degree is computed in the procedure on lines 5–8. The average
of energy and degree is calculated in the succeeding lines. The IoE-object weight factor value
with respect to remaining energy is assigned to the vector in lines 12–19. Similarly, the weight
factor on the basis of IoE-object degree is assigned to the vector in lines 20–26. The relative
mobility composed of IoE-object speed and direction is considered an important parameter in the
selection of OB/RCOs. The weight factor w.r.t relative mobility is assigned to the vector in lines
27–32 of Algorithm 3.1. All the weight values are summed in the next lines and the resultant
vector contains all IoE-objects weight values is returned to the calling procedure. To calculate the
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�tness value of an IoE-object for the role of OB/RCO, the pseudo code of Algorithm 3.2 below
is presented.

Algorithm 2: Psuedo code of honey bee algorithm based OB/RCOs selection
1: procedure OB/RCOs_selection
2: Input: Object_wn[n], k
3: Output: OB/RCOs
4: call procedure IoE_object_nectar_calculation (n)
5: for (j= 1; i≤ k; j++) do // initialize food sources (OB/RCOs) randomly
6: RCOs[j]= rand (Object_wn)
7: end for
8: while (max!= true) do
9: for (i= 1; i≤ n; i++) do // Calculate �tness using a minimization function
10: if (i in RCOs) then
11: fv= fv+ 1(Object_wn[i]+ cj)
12: end if
13: end for
14: if (fv < previous_fv) then
15: replace fv
16: end if
17: if (optimal_RCOs!= true) then
18: while(eb!= 0) do // traverse all EBs
19: fs(x+ 1)= fs(x)+ aijx var // select new food sources in neighborhood
20: for (i= 1; j≤ k; j++) do // compute nectar quality
21: T=T+ distance(x, RCOj)
22: end for
23: cf =T/k
24: Qnec= 1/1+ cf // Select food sources (IoE-objects) with high nectar

quantity
25: end while
26: pi=Qnec/sum(all RCOs Qnec) // Compute the probability pi for the food

source fs
27: while (OBs!= null)do
28: select a solution OB/RCOs depending on pi
29: end while
30:
31: else
32: return RCOs
33: end while
34: end procedure

The preceding Algorithm 2 works in a way that a set of IoE-objects are designated as
OB/RCOs (k) from all the IoE-objects (n) in Ue-IoE. The IoE-objects are designated for the role
RCOs or OB based on its weights computed by Eq. (1) in the early stage. The �tness of designated
OBs is assessed by Eq. (2). The IoE-objects are given the role of OBs for speci�c interim if the
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investigation via Eq. (2) quali�ed. Alternatively, another group of OBs nominated arbitrarily is
assessed and this procedure will continue till an optimum group of OBs is sought out.

With the aim of equally distributing the load on the Ue-IoE, the OBs/RCOs are released after
some time and an alternative set of IoE-objects is designated from EBs to accomplish the role
of OBs.

3.2 Formation of Routes and Data Communication
Route computation is carried out by designating the next optimum IoE-object from other

segments. RCOs in the suggested method act as leader IoE-objects; therefore, the key duty of the
ordinary nodes is to request route information from the bordering aerial IoE-object that keeps
a higher weight value. Formerly, these aerial IoE-objects choose paths to the BS. The routing is
based on the broadcasting range and �ight of the aerial IoE-objects. The entire Ue-IoE prototype
make broadcasts about the weight factor of IoE-objects. The HELLO messages are broadcasted
for the purpose. Then, in the subsequent phase, IoE-objects are sorted in order of their weight
factor, provided that the conditions in line 6 and line 6.g are meet by the IoE-object to be
designated next. Moreover, it is taken into consideration that the next hop is not selected as
of the similar segment during the deployment of the procedure. On the other hand, there may
be cases when no IoE-object is available in the succeeding segment with a greater weight value.
Therefore, the IoE-objects from the similar segment are designated till the disposal of an IoE-
object as of the subsequent segment on condition that the IoE-object of the similar segment
has not utilized formerly in lieu of routing throughout the loop in progress. UAVs are selected
using the weight factor analogous to IoE-objects to IoE-objects routing. The procedure runs in
diverse environments subject to the numeral of UAVs placed in every segment. While suggested
methodology, one UAV is placed in each segment, however, the procedure is �exible and may be
utilized with different amount of UAVs in a speci�c segment.

3.3 Routing Loop Problem
When an IoE-object is selected on basis of weight, the value of weight may change after

each rotation, hence eliminating the chance of selecting the same IoE-object which may arise the
looping issue in Ue-IoE. A routing spanning tree contains the IoE-objects having high weight
factors is designed which mostly chooses the IoE-objects from the diverse segments, therefore
transferring data to the sink IoE-object. Moreover, if the IoE-objects lies in same segment,
choosing the non-repetitive IoE-objects regardless of being the second highest in weight factor
offers a non-redundant IoE-object selection for pro�cient data transfer. On the other hand, this
choice is subject to the limitations de�ned in 6 and 6.g. Similarly, the suggested method selects
optimal IoE-objects by objective function on the basis of weight factor, offers stable data transfer,
provide high accuracy and balance the load.

3.4 Route Restoration and Repair
There is a common occurrence that IoE-objects do not have the same power consumption

simultaneously because of long connections. The energy consumption should be consistent so to
balance the load in optimum way among the IoE-objects and area of interest. In addition, the
route will face inaccuracies because the non-overwriting original messages. Such false alarms in
the Ue-IoE, recon�guration and constant maintenance are used to provide a continuous and stable
model for the transmission of data.
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4 Performance Evaluation

The proposed bio-inspired routing for Ue-IoE uses weight factor as an optimization function
to select RCOs (onlooker bees). The model was examined in the area with BS, UAVs, IoE-objects
and IoE-objects placed using the Poisson distribution area of 50× 50 m2. The initial power of
IoE-objects is considered 150 J, and for UAVs it is considered that the power is greater than
the demand of all Ue-IoE. For the convenience of the simulations, however, the initial power of
UAVs is 2000 J. Segments varies between 3 m and 5 for each BS. The IoE-objects in Ue-IoE
varies among 100 and 350. Using the standard method, the power consumption for an IoE-object
is 0.5 J. The IoE-objects radio frequency is between 5 and 10 m and the output voltage of UAV
is 500 m. The classi�cation of the different measures applied to the assessment of requirements
are outlined below as:

Throughput: IoE-objects play a signi�cant role in communication among the BS and IoE-
objects. These metrics are responsible for the actual load of Ue-IoE across the connection lines.
In addition, throughput is correspondingly responsible for the traf�c rate of the whole Ue-IoE.
The Ue-IoE with high throughput will have better performance.

Medium hop: The greater the intermediate IoE-objects will result the greater energy consump-
tion. This measure provides an investigation of all IoE-objects used in the mean simulation step
of the Ue-IoE structure.

Delivery ratio: Effective broadcast ensure improved communicating. The high delivery ratio
of packets from one IoE-object to another IoE-object is the real indication of effective
data transmission.

Delay: There may be a delay with a large number of intermediate IoE-objects and re-routing
may increase. Delay is measured as the response time regarding communication load offered.

Ue-IoE Lifetime: As Ue-IoE performing its operations, the energy will be consumed and
�nally the total energy of Ue-IoE is used. A Ue-IoE with better lifetime have long lifetime.
Therefore, examining the degree up to which the Ue-IoE works is known as the lifetime of
the Ue-IoE.

Ue-IoE coverage: This parameter can be used for the total region covered using the live IoE-
objects w.r.t the total region over which the IoE-objects are positioned.

Unnecessary repetitions per segment: In a Ue-IoE working over IoE-objects having limited
energy and high mobility, the re-routing may be high, and hence need more calls to the shortest
path calculation procedure. Frequent calls to shortest route computation algorithm may increase
the energy consumption. The routing loop issue may arise due to large number of repetitions.

BRUe-IoE performance is assessed for the above de�ned metrics and the results are com-
pared with Traf�c routing for UAV swarms (TR-UAVswarms) [27], UAV enabled WSN (UAVe-
WSN) [28] and optimized routing protocol for FANET (ORP-FANET) [29]. Two autonomous
metrics assumed for investigation are energy consumption of IoE-objects at different time intervals
and active IoE-objects. All the four models including our proposed BRUe-IoE are evaluated for
the same metrics and con�guration. The simulation results show that the control overhead is
minimized and the delivery ratio is increased. Simulation results also prove that BRUe-IoE is
pro�cient of discovering optimum routes.

The proposed BRUe-IoE gives 13.7%, 9.7% and 5.75% improved throughput compared to
TR-UAVswarms, UAVe-WSN and ORP-FANET respectively, as shown in Fig. 1.
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Figure 1: Energy consumption vs. throughput

An effective approach accountable for precise transfer of information. This concept is outlined
above and known as packet delivery ratio. With minimum repetitions and improved connectivity
among the IoE-objects and the UAVs, the BRUe-IoE gives 17.1%, 18.03%, and 31.6% better
delivery than the TR-UAVswarm, UAVe-WSN, and ORP-FANET, respectively, as presented in
Fig. 2. The additional repetitions will require extra intermediary IoE-objects; hence, will increase
the energy consumption. Conversely, the use of energy, average hop requisite in communication
of data amongst the IoE-objects and the BS through UAVs will increase. Outcomes demonstrate
that the BRUe-IoE needs 52%, 60.5%, and 68.7% fewer intermediary hops than TR-UAVswarm,
UAVe-WSN, and ORP-FANET, respectively, as displayed in Fig. 3.
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Figure 2: Energy consumption vs. packet delivery ratio of Ue-IoE
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Figure 3: Ue-IoE energy consumption based on average hops count
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With further energy ingestion, likelihood of IoE-objects going into dead state will increase
resulting into smaller number of live IoE-objects, therefore, reducing the area covered by IoE-
objects. The simulation results presented in Fig. 4 demonstrate that BRUe-IoE provides 18.9%,
21.3%, and 31.45% improved coverage as compared toTR-UAVswarm, UAVe-WSN, and ORP-
FANET, respectively. Ue-IoE operations are easily understandable when we know the end to
end delay at speci�c time. Ue-IoE with higher delays may die very soon. Delays may not
be totally avoided in Ue-IoE; though, delay under an some threshold will not disturb the
Ue-IoE performance.
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Figure 4: Comparison of Ue-IoE coverage and energy consumption

The simulation experiment demonstrate that the delay in BRUe-IoE is somehow low-slung
and will not in�uence the performance of Ue-IoE. Graphs shown in Fig. 5 demonstrate that
BRUe-IoE causes 11%, 27.6%, and 41.7% fewer delay as compared to TR-UAVswarm, UAVe-
WSN, and ORP-FANET, respectively. Increasing the numbers of intermediary IoE-objects will
cause the routing loop problem; moreover, the extra repetitions will also increase. These extra
computations result more energy and other resources consumption that �nally affect the Ue-IoE
operations. Graphs shown in Fig. 6 demonstrate that BRUe-IoE need 60.5%, 70.5%, and 82.99%
fewer computations as compared to TR-UAVswarm, UAVe-WSN, and ORP-FANET, respectively.

0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

D
E

L
A

Y
 (

M
S)

ENERGY CONSUMPTION (%)

BRUe-IoE ORP-FANET UAVe-WSN TR-UAVswarm

Figure 5: Delays vs. energy consumption

A comprehensive study of the BRUe-IoE on energy model recommends that BRUe-IoE offer
19.17%, 31.45%, and 50.3% improved lifetime as compared to TR-UAVswarm, UAVe-WSN, and
ORP-FANET, respectively, as shown in Fig. 7 when we consider the Ue-IoE iterations. The BRUe-
IoE will not arise any routing loop problem, so permitting the Ue-IoE to work deprived of
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some dif�culty. This extension results better connectivity plus prolong lifetime. Live IoE-objects
also in�uence the performance of the Ue-IoE to a huge level. The Ue-IoE having more active
IoE-objects will perform �ne. Experiments are conducted to check the packet delivery ratio and
energy consumption w.r.t. the percentage of live IoE-objects. With growing amount of IoE-objects,
the BRUe-IoE delivers 5.75%, 12.01%, and 25.76% more packets as compared to TR-UAVswarm,
UAVe-WSN, and ORP-FANET, respectively, as presented in Fig. 8 and consumes 21.75%, 24.15%,
and 34.5% fewer energy compare to TR-UAVswarm, UAVe-WSN, and ORP-FANET, respectively,
as presented in Fig. 9.

0
2
4
6
8

10
12
14

105 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

E
X

T
R

A
 C

O
M

P
U

T
A

T
IO

N
S

ENERGY CONSUMPTION (%)

BRUe-IoE ORP-FANET UAVe-WSN TR-UAVswarm

Figure 6: Extra iterations vs. energy consumption

0
20
40
60
80

100
120
140
160
180

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0L
IF

E
T

IM
E

 (
N

U
M

B
E

R
 O

F
 

R
O

U
N

D
S)

ENERGY CONSUMPTION (%)

BRUe-IoE ORP-FANET UAVe-WSN TR-UAVswarm

Figure 7: Lifetime vs. energy consumption
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Figure 9: Energy consumption vs. active IoE-objects

Tabs. 2 and 3 show the comprehensive percentage progress using BRUe-IoE as com-
pared to TR-UAVswarm, UAVe-WSN, and ORP-FANET on energy depletion as well as active
IoE-objects, respectively.

Table 2: Mean percentage progress of BRUe-IoE as compared to TR-UAVswarm, UAVe-WSN,
and ORP-FANET w.r.t energy consumption

Parameter TR-UAVswarm (%) UAVe-WSN (%) ORP-FANET (%)

Packet delivery ratio 17.1 18.03 31.6
Number of packets to BS 5.6 13.7 9.7
Average hops 52 60.5 68.7
IoE-objects Coverage 18.9 21.3 31.45
Transmission Delay 11 27.6 41.7
Extra computations 60.5 70.5 82.99
Ue-IoE duration 19.17 31.45 50.3

Table 3: Mean percentage progress of BRUe-IoE as compared to TR-UAVswarm, UAVe-WSN,
and ORP-FANET w.r.t IoE-objects

Parameter TR-UAVSWARM (%) UAVE-WSN (%) ORP-FANET (%)

Packet delivery ratio 5.75 10.03 25.76
Energy consumption 21.75 24.15 34.5

5 Conclusion

In this article, the frequent updation of IoE-objects routing tables issue that arise due to
the dynamic nature of Ue-IoE is addressed. In this proposal, the routing tables of selected IoE-
objects are updated once a topology change occur and the whole Ue-IoE will not be affected.
The IoE-objects known as routing computation objects are responsible to compute the routes
from the source objects (neighbors) to destination once an IoE-object move from one location
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to another location. Once an IoE-object want to communication with another IoE-object, the
routing information is obtained from the nearest RCO. The selection of RCOs is carried out on
the basis of multiple metrics like residual energy, number of neighbors and relative mobility. The
bee intelligence algorithm is used to get the optimal RCO from a set of all IoE-objects. The
role of RCOs is rotated among all the IoE-objects of the Ue-IoE. The route maintenance and
re-routing is minimized up to a large extent. The control messages overhead is decreased and
the lifetime of the Ue-IoE is increased. The simulation results demonstrate that the proposed
BRUe-IoE outperform state-of-the-art routing protocols for UAV-enabled internet of everything.
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