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Abstract: Spatially Constrained Mixture Model (SCMM) is an image segmen-
tation model that works over the framework of maximum a-posteriori and
Markov Random Field (MAP-MRF). It developed its own maximization step
to be used within this framework. This research has proposed an improvement
in the SCMM’s maximization step for segmenting simulated brain Magnetic
Resonance Images (MRIs). The improved model is named as the Weighted
Spatially Constrained Finite Mixture Model (WSCFMM). To compare the
performance of SCMM and WSCFMM, simulated T1-Weighted normal
MRIs were segmented. A region of interest (ROI) was extracted from seg-
mented images. The similarity level between the extracted ROI and the ground
truth (GT) was found by using the Jaccard and Dice similarity measuring
method. According to the Jaccard similarity measuring method, WSCFMM
showed an overall improvement of 4.72%, whereas the Dice similarity mea-
suring method provided an overall improvement of 2.65% against the SCMM.
Besides, WSCFMM signi�cantly stabilized and reduced the execution time by
showing an improvement of 83.71%. The study concludes that WSCFMM is
a stable model and performs better as compared to the SCMM in noisy and
noise-free environments.

Keywords: Finite mixture model; maximum aposteriori; Markov random
�eld; image segmentation

1 Introduction

Image segmentation is a cardinal area in the domain of computer vision [1–5]. Its employ-
ment is found in almost all walks of life, ranging from environment-machine interaction to
computer-aided diagnosis [6]. It has numerous applications in neurological diagnostics such as
in functional imaging, operational planning and quantitative analysis. The segmentation task
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becomes challenging due to the presence of noise, low contrast, blur boundaries, poor spatial
resolution, partial volume effect and inhomogeneity [7]. Usually, the issues are encountered in an
unsupervised segmentation, which is inevitable since gathering larger sets of manually segmented
images is practically impossible [6].

A number of robust image segmentation algorithms such as level sets, mean shift, normalized
cuts, region splitting and merging, were introduced to deal with this issue. The statistical algo-
rithms were also introduced for the purpose of clustering. Out of all these methods, a statistical
method Finite Mixture Model (FMM) is frequently relied upon.

FMM assumes that the density of the observed data is a weighted sum of a parametric
template distribution. It belongs to the family of unsupervised learning methods and is found
highly suitable for solving unsupervised clustering problems. It groups the data by investigating
the statistical coherence. In actual practice, it was observed that the topology of the data plays
a vital role in providing improved segmentation results. For example, it was seen that spatially
neighboring pixels are combined to form the same cluster by augmenting the generative model
with ad hoc topology or by heuristic smoothing [8].

The model is tractable and also became a source for producing important variants, like
Student’s-t Mixture Model (SMM) and Gaussian Mixture Model. The limitation of these models
is that they are noise sensitive models and produce unacceptable results with noisy images.
Since FMM is constructed over the assumption that image pixels are not statistically dependent
on each other, therefore, spatial information about pixels forming various objects in an image
is unavailable. Later research compensated this de�ciency by including Markov Random Field
(MRF) model into the framework. This new arrangement turned out to be an impressive element
for de�ning the relationship among image pixels. These relationships are de�ned by considering
the corresponding labels of the image pixels. The inclusion of MRF facilitated in producing
appreciative results, but its computational cost was found to be higher. This computational cost
was subsequently reduced by approximating Gibbs energy function.

Spatially Variant Finite Mixture Model (SVFMM) also belongs to the family of FMM.
The model brought a convincing improvement over the conventional FMM by imposing spatial
smoothness prior to contextual mixing proportion. The model assumes that the contextual mixing
prior is a random variable. In SVFMM’s con�guration, the contextual mixing proportion is
a probabilistic vector due to which it becomes essential that its value should be positive and
secondly the total probability of the system should be equal to 1. By adding a gradient projection
algorithm in the M-Step of EM-algorithm, a close form solution for contextual mixing proportion
is achieved.

An improvement over SVFMM was proposed by Spatially Constrained Finite Mixture Model
(SCFMM) which replaces the gradient projection algorithm with the convex quadratic program-
ming. However, both of these models were unable to directly obtain contextual mixing proportions
from the given data. To address this issue, a prior distribution is imposed on contextual mixing
proportions. This prior distribution depends upon MRF. SCFMM turned out to be a more
ef�cient model when compared with the SVFMM because it facilitates in obtaining closed-form
equation through the EM algorithm. To improve computational ef�ciency, contextual mixing
proportion is explicitly modeled as a probabilistic vector. The model is comparatively ef�cient but
its application is limited to grayscale images. Likewise, a detail-preserving mixture model was also
proposed. The model picks up a pixel, investigates its neighborhood, and then assigns different
weight values to different pixels according to the contextual arrangement of the surrounding
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pixels. Due to this arrangement, the log-likelihood function of the model becomes complex and
enhances the computational complexity [9].

2 Mathematical Foundations for Spatially Variant Finite Mixture Model

Fig. 1 taken from [10] provides an overview of the proposed model. SVFMM assumes that xi

is an observation at ith pixel of an image (i ∈ {1, 2, 3, . . . ,N}) modeled by supposing that its data
is independent and is identically distributed (i.i.d). It proposed a modi�cation for pixel labeling
approach in conventional FMM. SVFMM supposes a mixture model which is characterized by
K number of components such that each component possesses its vector of density parameters
θ j. The model also includes π ij = P

(
j | xi

)
into the list of previously existing parameters. π ij

are the probabilities or labels which describe the belonging of ith pixel to the jth cluster. The

model works under the in�uence of two constraints, i.e., 0 ≤ π ij ≤1 and
∑K

j=1 π
i
j = 1. Let us

suppose that 5= {π1,π2,π3, . . . ,πN} represents the probability vector for pixel ‘i’ and the set of
component parameters, i.e., mean and variance {µ,σ } are represented by 2= {θ1, θ2, θ3, . . . , θK},
then according to the proposed SVFMM the probability density function at the observation xi

can be described in Eq. (1).

f
(
xi |5,2

)
=

K∑
j=1

π ij∅
(
xi | θ j

)
(1)

where ∅
(
xi | θ j

)
follows Gaussian distribution as shown in Eq. (2) under the in�uence of the given

parameters, i.e., the mean and the variance.
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Figure 1: Overview of the proposed model

The parameters of the model are updated by using the Expectation Maximization (EM)
algorithm. The algorithm does not takes into account the spatial information of pixels. This is
because the data is assumed to be independent and identically distributed. The gap was addressed
by considering Maximum a Posteriori (MAP) approach and by integrating the Markov Random
Field (MRF) model into the framework. The proposed SVFMM manages to have a prior distri-
bution for the set of parameters 5 which make use of Gibbs function as shown in Eq. (3) for
incorporating a spatial description of pixels.
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Primarily, the Gibbs function as described according to Eq. (3) facilitates in making proba-
bilistic calculations about a pixel’s label for its relationship with a speci�c cluster. Fig. 2 taken
from [11] illustrates the idea of pixel labels representing distinct clusters of image.

p (5)=
1
Z

exp

(
−β

N∑
i=1

VNi (5)

)
(3)

Z=
∑
5

exp (−E(5)) (4)

where E(5)= β
∑N

i=1VNi (5), −β represents regularization parameter whereas, Z serves as par-
tition function and is described according to the Eq. (4). For pixel label vectors πm, VNi (5)

describes the clique potential by looking into the neighborhood characterized by Ni where ‘i’
represents the ith pixel. The Ni was described with the help of Eq. (5).

VNi (5)=
∑
m∈Ni

g
(
ui,m

)
(5)

Figure 2: Example of pixel labels. (a) An image, (b) A labeling

How Gibbs Distribution Ensures Spatial Continuity?

According to [12], a digital image is de�ned by the �nite rectangular grid of size M × N.
Formally, it can be described according to Eq. (6).

L= {(i, j) : 1≤ i≤M, 1≤ j ≤N} (6)

Usually, these images consist of k number of �nite classes. These classes are represented
by Q = {q1,q2,q3, . . . ,qk}. The classi�cation process, i.e., X =

{
Xij : Xij ∈Q

}
aims to allocate a

corresponding unique index from the user-de�ned class to each pixel in the image, i.e., Xij = qk
where qk ∈ Q, which means that each pixel at (i, j) belongs to class qk. If at location (i, j),
the neighborhood of a pixel is denoted by ηi,j then the following two conditions are taken
into account.
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a) (i, j) /∈ ηi,j and (7)

b) if (m,n) ∈ ηi,j, then (i, j) ∈ ηn,m,∀ (m,n) ∈L (8)

Here Eq. (7) describes that a pixel cannot be a neighbor to itself whereas, Eq. (8) de�nes
criteria for de�ning neighborhood of a speci�c pixel within the above mentioned 2D grid and
additionally it represents a collection of subsets of L. With this understanding, the formal
description of neighborhood system η of L can be given according to Eq. (9).

η=
{
ηi,j : (i.j) ∈L,ηi,j ⊆L

}
(9)

Neighborhood system has its roots in cliques. Formally, a clique C is a subset of the 2D grid,
such that C ⊆ L. The set of clique C may consist of a single pixel or a group of pixels which
are neighbors to each other under the in�uence of a speci�c neighborhood system. Therefore,
for the pair (L,η) the set of all such cliques is de�ned by Eq. (10). For image segmentation, a
homogeneous neighborhood system plays an important role. This system can be described with
the help Eq. (10).

ηi,j =
{
(m.n) ∈L : (m− i)2+ (n− j)2 = d2

≤ c
}

(10)

The values m,n, i, j,d and c are of type integer. Therefore, the �rst order neighborhood, η1
which takes into account the four nearest neighbors can be de�ned by putting c= 1. Similarly, the
second-order neighborhood which considers eight nearest neighbors can be obtained by putting
c = 2. The growing order of neighborhood supports the growth of corresponding clique types.
However, generally, the �rst or second-order neighborhood system is employed. This con�guration
is found suf�cient for ensuring spatial continuity among the image pixels. Each clique type holds
a positive parameter. The clique potential for one point clique is described by

Vc (x)=−αk if x= qk

The two-point clique is de�ned as

Vc (x)=

{
−β, if xmn = x and (m,n) ∈C

β, otherwise

Both αk , β are positive constants and x is the index of the input image class to be determined
for the pixel being considered and may take any value from Q. For making a practical decision,
the entire set of probabilities for a pixel belonging to each class is computed and from this set a
maximum probability is picked up for associating a speci�c pixel with a speci�c class.

Vc (x) |x=qk =

{
−β, if xmn = qk and (m,n) ∈C

β, otherwise

p
(
xij = x

)
|x=qk =

1
Z

exp

{
−

1
T

∑
Cεc

V (x) |x=qk

}
(11)
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where

Z=
K∑
k=1

exp

{
−

1
T

∑
Cεc

V (x) |x=qk

}
(12)

Z represents normalization, constant T is a temperature parameter and
∑

CεcV (x) |x=qk is a
potential function.

At this stage, by observing the events and the given model, there is a need to have the
probability that can describe the unknown model parameter. For obtaining this description, a
posterior probability is computed by using Eq. (13).

p (5, θ |X)=
N∑
i=1

log f
(
xi |5,2

)
+ logp(5) (13)

The unknown parameters of the mixture model are estimated by using the EM algorithm.
The algorithm consists of E-step and M-step. The values of hidden variables are computed at
E-step according to the Eq. (14).

zi(t)j =
π
i(t)
j ∅(xi|θ tj )∑K

l=1 π
i(t)
l ∅(xi|θ tj )

(14)

The expected values according to SVFMM are maximized by using M-Step as described
by Eq. (15). This step primarily aims to compute the log-likelihood function and provides a
complete dataset.

QMAP
(
5, θ |5tθ t

)
=

N∑
i=1

K∑
j=1

zi(t)j

{
log(π ij + log(∅(xi|θ j))

}
−β

N∑
i=1

∑
mεNi

g (ui,m) (15)

where g (ui,m)=
(
π ij −π

m
j

)2
, t describes the iteration step. The parameter of the model, i.e., the

mean and the variance
{
µ
(t+1)
j ,

[
σ 2
j

](t+1)
}

are updated according to Eqs. (16) and (17)

µ
(t+1)
j =

∑N
i=1 z

i(t)
j xi∑N

i=1 z
i(t)
j

(16)

[
σ 2
j

](t+1)
=

∑N
i=1 z

i(t)
j

[
xi−µ(t+1)

j

]2

∑N
i=1 z

i(t)
j

(17)

Though QMAP with respect to label parameter {π ij } can be maximized but the model has

certain limitations. It is primarily unable to provide a closed-form of update equations. Secondly,
the maximization procedure was supposed to work under the in�uence of certain constraints,

i.e., 0≤ π ij ≤1 and
∑K

j=1 π
i
j = 1. To overcome this dif�culty, SVFMM makes use of the Gradient



CMC, 2021, vol.67, no.1 177

Projection Algorithm for �nding the label parameters which maximizes QMAP function [13]. The
authors in [13] and [14] further improved the maximization step by differentiating Eq. (15) with
respect to π ij , and equating the result to zero reached to Eq. (18) [14].

π i
(t+1)

j =

[∑
mεNi

ġ
(
ui,m

)
πmj

]
±

√[∑
mεNi

ġ
(
ui,m

)
πmj

]2
+ 2 ∗

1
β
zi
t

j

[∑
mεNi

ġ
(
ui,m

)]
2
[∑

mεNi
ġ
(
ui,m

)] (18)

According to [15], the segmentation results are inconsistent if the value of the regular-
ization parameter is close to 0, but with the value more than or equal to 2, the results are
consistent. Therefore, the second half of the Eq. (18) suggests that the part of the equation

1
β
zi
t

j

∑
mεNi

ġ
(
ui,m

) is twice as big as that of the part proposed in SCMM. This is a signi�cant

difference which notably impacted the segmentation results. The accuracy level was raised by using
a weight factor with the new M-step. This weight factor was included according to the multiplica-
tive property of equality. According to this property, suppose that if v= w, then αv= αw, which

implies that v =
αw
α

. For segmenting T1-Weighted simulated brain MR Images, this weighting

factor, through trial and error method was 0.25. Therefore, the proposed weighted maximization
step can be given according to the Eq. (19).

π i
(t+1)

j =

α

[[∑
mεNi

ġ
(
ui,m

)
πmj

]
±

√[∑
mεNi

ġ
(
ui,m

)
πmj

]2
+ 2 ∗

1
β
zi
t

j

[∑
mεNi

ġ
(
ui,m

)]]
α
[
2
[∑

mεNi
ġ
(
ui,m

)]] (19)

The above-shown maximization step was used in WSCFMM. This model outperformed the
conventional SCMM and ensured reliability both in terms of time and precision.

3 Algorithm for SCFMM

The algorithm used in this study consists of the following steps [16].

3.1 Initialization

Put t= 0 and initialize
{
µ0
i ,σ

0
i ,π i(0)j

}
mean-variance and initial mixing probability.

3.2 E-Step

The latent variable zi(t)j is computed at E-step with the help of Eq. (14).

zi(t)j =
π
i(t)
j ∅

(
xi | θ tj

)
∑K

l=1 π
i(t)
l ∅

(
xi | θ tj

)
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3.3 M-Step: Re-Estimation of Model Parameters
{
µi,σ

2
i ,π j

}
3.3.1 Updating Mean µi

µ
(t+1)
j =

∑N
i=1 z

i(t)
j xi∑N

i=1 z
i(t)
j

(20)

3.3.2 Updating Variance σ 2
j

[
σ 2
j

](t+1)
=

∑N
i=1 z

i(t)
j

[
xi−µ(t+1)

j

]2

∑N
i=1 z

i(t)
j

(21)

3.3.3 Updating Mixing Probabilities Eq. (19)

π i
(t+1)

j =

α

[[∑
mεNi

ġ
(
ui,m

)
πmj

]
±

√[∑
mεNi

ġ
(
ui,m

)
πmj

]2
+ 2∗ 1

β
zi
t

j

[∑
mεNi

ġ
(
ui,m

)]]
α
[
2
[∑

mεNi
ġ
(
ui,m

)]]
3.3.4 Evaluating Posterior Probability Eq. (13)

p (5, θ |X)=
N∑
i=1

log f
(
xi |5,2

)
+ logp(5))

Here, convergence for parameter values and log-likelihood function is investigated. If the
observed error is not less than 0.0001, then return to step 2 and set t= t+ 1.

4 Experimental Data

The proposed model was used for segmenting T1-Weighted simulated brain MRIs. These
MRIs are the specimen of complex multispectral images and can be downloaded from [17]. These
images contain different levels of noise and different levels of intensity non-uniformity (INU). The
noise levels vary from 0% to 9% comprising of only odd levels, whereas, the INU level varies from
0% to 40% with an increment of 20% respectively. For making different possible combinations
of data, one factor was kept constant and the other was gradually varied. For example, by
keeping the noise at 0%, INU was varied from 0% to 20% and then to 40%. This arrangement
provided three images. Subsequently, the noise level was raised to 1% and INU level was again
varied from 0% to 20% and then to 40%. This step provided another set of three images. The
process was repeated for all levels of noise and all levels of INU. Eventually, a dataset with six
different combinations of T1-Weighted normal brain MRIs was collected. Afterwards, this dataset
was segmented through both models, i.e., SCMM and WSCFMM, one by one. To investigate
the preciseness in the segmented images, ROIs from these segmented images were extracted. The
Dice [18] and Jaccard [19] similarity measuring methods were used to compute the degree of
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similarity between the extracted ROI and GT segment. A higher degree of similarity indicates a
higher level of accuracy and a lower degree of similarity indicates a lower level of accuracy.

5 Results

Both the models, i.e., SCMM and WSCFMM were used to segment the test data. The
results produced by both the models were analyzed from three different angles including the
visual inspection of the results, the similarity between segmented ROI and the corresponding GT
segment. The GT is obtained from the image with 0% noise and 0% INU.

5.1 Human Visual Inspection
The visual comparison between the results produced by both the models showed that

WSCFMM was able to control the outliers and gave an appreciative level of performance in
ideal conditions and in conditions where the candidate image is affected from intensity INU
and/or noise.

Figs. 3 and 4 show the performance of WSCMM in comparison to SCMM. The results shown
in the �gures were obtained from the images affected with a higher level of noise, i.e., 7% and 9%,
combined with different levels of INU. The visual investigations of these results show that besides
outliers, SCMM is also unable to provide a well-de�ned segment. The circled region in Figs. 3
and 4 provides important observations which led us to the conclusion that a substantial portion
of the information is missing. However, at the same settings of noise and INU, WSCFMM not
only controlled the outliers but it also captured that missing information.

Noise7% INU 0%(SCMM) Noise 7% INU 20% (SCMM) Noise7%INU 40% (SCMM)

Noise 7% INU 0% (WSCFMM) Noise 7% INU 20% (WSCFMM) Noise7%INU40% WSCFMM)

Figure 3: Visual comparison of images with 7% noise and INU varying from 0% to 40%
segmented by SCMM and WSCFMM
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Noise 9% INU 0% (SCMM) Noise 9% INU 20% (SCMM) Noise 9% INU 40% (SCMM)

Noise 9% INU 0%(WSCFMM) Noise 9% INU 20%(WSCFMM) Noise 9% INU 40%( WSCFMM)

Figure 4: Visual comparison of images with 9% noise and INU varying from 0% to 40%
segmented by SCMM and WSCFMM

5.2 Computational Comparison with Ground Truth Segment
An ROI was extracted by using both the models one by one. The extracted ROI by each

model was compared with the GT. The degree of similarity of this extracted ROI was found by
using Jaccard and Dice similarity measuring methods. These methods can be described with the
help of the Eqs. (22) and (23).

jaccard=

∣∣∣∣Ground Truth Segment ∩Candidate Segment
Ground Truth Segment ∪Candidate Segment

∣∣∣∣ (22)

Dice=
2∗ |Ground Truth Segment ∩Candidate Segment|
|Ground Truth Segment| + |Candidate Segment|

(23)

The stability of the proposed model was investigated by considering all the available levels of
noise and INU. The arrangement of test data used for completing this critical analysis is shown
in Tab. 1. These tables provide a detailed description of the results obtained by using SCMM and
WSCFMM. Both of these tables present and compare the mutual performance of the models on
the individual slices. The percentage of accuracy of each slice with three different levels of INU
was calculated by using Eq. (24).(

maxValue−minValue
maxValue

)
∗ 100 (24)

Results presented in Tab. 1 con�rmed that WSCFMM outperformed SCMM in the noisy and
noise-free environment. It can be observed that the performance of WSCFMM is appreciative
either in a situation where there is no noise and/or in a situation where there is a mild noise.
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When the accuracy of the results was observed slice by slice, it was found that the Jaccard
gave a higher average accuracy as compared to the Dice similarity measuring method, as shown
in Fig. 5.

Table 1: Similarity and average similarity of ROIs segmented by SCMM and WSFMM

SCMM Similarity methods WSCFMM Similarity methods

Jaccard Dice Jaccard Dice

Noise
level (%)

INU
level (%)

Sim Avg.
Sim

Sim Avg.
Sim

Noise
level (%)

INU
level (%)

Sim Avg
Sim

Sim Avg
Sim

0 0 0.6228 2.4591 0.7675 2.682 0 0 0.892 2.7985 0.9429 2.8949
20 0.9331 0.9654 20 0.9658 0.9826
40 0.9032 0.9491 40 0.9407 0.9694

1 0 0.7634 2.3664 0.8658 2.6451 1 0 0.8373 2.4922 0.9114 2.7226
20 0.8222 0.9024 20 0.8323 0.9085
40 0.7808 0.8769 40 0.8226 0.9027

3 0 0.4323 1.2901 0.6036 1.8042 3 0 0.4456 1.3272 0.6165 1.8401
20 0.4316 0.6029 20 0.4458 0.6166
40 0.4262 0.5977 40 0.4358 0.607

5 0 0.6202 1.8396 0.7656 2.2806 5 0 0.616 1.8528 0.7624 2.2909
20 0.6148 0.7614 20 0.6211 0.7663
40 0.6046 0.7536 40 0.6157 0.7622

7 0 0.5269 1.5897 0.6902 2.0781 7 0 0.5357 1.6046 0.6977 2.0909
20 0.5408 0.702 20 0.5398 0.7012
40 0.522 0.6859 40 0.5291 0.692

9 0 0.4803 1.4278 0.649 1.9348 9 0 0.4846 1.4461 0.6528 1.9514
20 0.4781 0.6469 20 0.4849 0.6531
40 0.4694 0.6389 40 0.4766 0.6455

0
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0% 1% 3% 5% 7% 9%
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Figure 5: Average improvement achieved by WSCFMM

Similarly, to see an overall contribution of WSCFMM, an overall average accuracy of both
the models was computed. This computation highlighted the signi�cance of WSCFMM. It con-
�rmed that according to the Jaccard similarity measuring method, WSCFMM has contributed
an overall improvement of 4.76%, whereas, according to the Dice similarity measuring method,
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WSCFMM introduced an overall improvement of 2.65%, as shown in Fig. 6. This is a substantial
improvement and it is expected to signi�cantly affect the segmentation accuracy during the process
of MRI analysis.

4.76%

2.65%

0.00% 1.00% 2.00% 3.00% 4.00% 5.00%

JSM

DSM

Percentage of Improvement

Figure 6: Overall average accuracy of WSCFMM according to the dice similarity method (DSM)
and jaccard similarity method (JSM)

6 Time Optimization

During MRI’s examination, ‘time’ is a critical issue. As chances for the accumulation of a
large MRI dataset for a single subject cannot be completely ruled out, so it is highly desirable to
work with a model that has a predictable nature. WSCFMM is one such model that uses a small
amount of processing time without compromising the accuracy.

The case of SCMM is weak in terms of its processing time. It utilizes a variable amount of
time for processing the same dataset under similar experimental conditions. By introducing the
derivational �xture and by adding a weight factor, WSCFMM has ef�ciently controlled the issue
of variable execution time. Besides, it has stabilized the model and has signi�cantly enhanced the
segmentation accuracy.

The mutual comparison of SCMM and WSCFMM for the processing time is presented in
Fig. 7. The results were obtained by considering all levels of noise, i.e., from 0–9%, and all level
of INU, i.e., from 0–40%.
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Figure 7: Mutual comparison of the execution time

According to the results presented in Fig. 7, WSCFMM has displayed a predictable behavior
by utilizing the approximately constant amount of processing time for each image. Whereas,
SCMM processes the same data by using a different amount of time.
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Fig. 8 presents the mutual comparison of the average performance of both the models for
segmenting every single combination of data. As mentioned earlier, this dataset consists of six
different combinations. Every single combination, which in turn consists of three different images,
is represented by one anchor point. Fig. 8 shows a mutual comparison of the average time used
by both the models for segmenting every single combination of data. In terms of ef�ciency, it has
depicted a marked improvement of WSCFMM over the SCMM.
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Figure 8: Mutual comparison of the average execution time utilized by both the models

The overall contribution of WSCFMM in terms of processing time utilization is presented in
Fig. 9. The WSCFMM not only made the model predictable and reliable but was also instrumen-
tal in bringing down the execution time from 1272.04 s to 207.17 s. This leads to WSCFMM’s
achievement of 83.71% improvement. This is an encouraging improvement and broadens the
chances for comfortably handling large MRI datasets.
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Figure 9: Cumulative average execution time utilized by both the models

7 Conclusions

The segmentation results produced by the WSCFMM enjoy an excellent superiority when
compared to the segmentation results produced by the SCMM. The comparison made over
the basis of human visual system undoubtedly con�rmed that the WSCFMM has displayed an
appreciative level of stability and has produced convincing results even under abnormal conditions,
i.e., in the presence of various levels of noise and INU. The strength of the proposed WSCFMM
was judged by �nding the similarity of the segmented ROI with the GT. For that matter, Dice
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similarity and Jaccard similarity measuring methods were used. Both of these methods supported
the claim that WSCFMM is a stable, reliable and ef�cient method. According to the Jaccard
similarity measuring method, the proposed model has shown an overall improvement of 4.76%,
and according to the Dice similarity measuring method, it has shown an overall improvement of
2.65%. Moreover, the proposed WSCFMM was found to be exceptionally ef�cient as it reliably
brought down the processing time from 1272.04 s to 207.17 s. This leads to an overall ef�ciency of
83.71%. The proposed WSCFMM would be bene�cial for the �eld of medical imaging, mainly due
to its ability to maintain consistency and reliability in the segmentation procedures. It is expected
to be highly desirable by the experts especially working in the areas of brain imaging as any loss
of the relevant details or inaccurate results can be extremely fatal for the patients under treatment.
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