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Abstract: The substitution box (S-box) is a fundamentally important com-
ponent of symmetric key cryptosystem. An S-box is a primary source of
non-linearity in modern block ciphers, and it resists the linear attack. Various
approaches have been adopted to construct S-boxes. S-boxes are commonly
constructed over commutative and associative algebraic structures includ-
ing Galois fields, unitary commutative rings and cyclic and non-cyclic finite
groups. In this paper, first a non-associative ring of order 512 is obtained by
using computational techniques, and then by this ring a triplet of 8×8 S-boxes
is designed. Themotivationbehind the designing of these S-boxes is to upsurge
the robustness and broaden the key space due to non-associative and non-
commutative behavior of the algebraic structure under consideration. A novel
color image encryption application is anticipated in which initially these 3
S-boxes are being used to produce confusion in three layers of a standardRGB
image. However, for the sake of diffusion 3D Arnold chaotic map is used in
the proposed encryption scheme. A comparison with some of existing chaos
and S-box dependent color image encryption schemes specs the performance
results of the anticipatedRGB image encryption and observed as approaching
the standard prime level.

Keywords: Block cipher; s-box; nonlinearity; color image encryption; 3D
chaotic map

1 Introduction

Cryptology is the science dealing with storage and data communication in secure and typically
secret form. There are two further subdivisions of cryptology viz; cryptography and cryptanal-
ysis. Cryptography is the method of keeping the information confidentiality using mathematical
tools. Cryptanalysis is the art of cracking encrypted information by the means of mathematical
and computational devices. It is powerful enough to breach the cryptographic security systems,
without accessing the cryptographic key, and it obtains permissions to the content of encrypted
communications. Although, both cryptography and cryptanalysis aim at the same target, however
the methods and techniques for cryptanalysis have been modified radically throughout the history
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of cryptography. Among several the Differential cryptanalysis is frequently used for block ciphers.
It is based on the analysis of the concern of specific difference in plaintext pairs on the difference
of the consequent cipher text pairs. These differences are used to allocate probabilities to the
practicable keys and to find the virtually all possible keys [1].

A repetitive arrangement from the concept of single output Boolean function is the extension
of that idea to multiple output Boolean functions, along with denoted as a substitution box
(S-box) [2]. The linking between the input and output bits in standings of dimension and exclu-
sivity gives upsurge to several S-boxes. A k × l S-box is a mapping ϕ : Fk2 → Fl2 from k input

to l output binary bits, whereas, there are 2k and 2l number of inputs and outputs, respectively.
Formerly, an S-box is just a set of m single output Boolean functions combined in a static order.
The dimension of an S-box has an outcome on the exclusiveness of the output and the input,
which might disturb the characteristics of S-box. If there is an S-box with dimension k × l,
l < k such that the number of input bits is greater than output bits, then certain entries in the
S-box unquestionably be repeated; where, an k×k S-box might whichever contain different entries,
where each input is mapped to dissimilar output, or replication of several entries of the S-box.
Bijective S-boxes are the ones which are both injective and surjective and they are reversible [3,4].
S-box is the backbone of almost all the cryptosystems, which makes the system nonlinear. In
the improvement of symmetric cryptosystems, which are constructed as substitution-permutation
networks (DES and AES-like systems), most of the nonlinearity is found in the S-boxes portion
of the algorithm. Modest softness in the S-boxes might hence lead to cryptosystems, which are
just cracked. S-boxes are used as an exasperating scheme to allow the strength of cryptographic
algorithms. So, the design of S-boxes must be cryptographically sound in order to acquire secure
cryptosystems [2,3,5]. In contemporary cryptography, the S-boxes are commonly constructed over
finite Galois fields (GF(2n) for 2≤ n≤ 8). For instance S-boxes; AES, Residue Prime [6], Gray [7],
APA [8], S8 AES, Skipjack [9], and Xyi [10].

It is concluded from the literature review that differential attack is the only attack which
applies on such S-boxes that are constructed by finite Galois field extension of binary field Z2. The
S-boxes are typically constructed over Galois field and some other commutative and associative
structures. In [11], a novel design of S-boxes is introduced over the elements of inverse property
loop and the attractive features of the structure are; it is non-associativity and the existence of the
inverse of zero elements. These properties increase the availability of the number of structures of
IP-Loops. This motivated us to initiate this study to size 8×8 S-boxes through a non-commutative
and non-associative ring of order 512. The purpose of these S-boxes is to increase the robustness
due to non-associative and non-commutative behavior of the ring structure under consideration
and increase 65,536 times the key space. Thus, the obtained S-boxes having significant level of
resistance against existing crypt analyses attack.

In last two decades, the notion of chaos has found several applications in various scientific.
In Cryptography 8× 8 S-boxes are also been produced by using chaotic maps [12,13]. Because of
its low non-linearity, they do not get much significance like S-boxes constructed through algebraic
structures. Cryptography, which might be supposed to be a branch of arithmetic and technology,
has clutched a tremendous deal of consideration and an oversize variety of analysis work, is
devoted to the experience of chaos-based cryptologic algorithms [13,14]. The qualities of chaotic
maps stand after their use within the smartness of such algorithms. These main options comprise
highly sensitive dependence on initial conditions and controlling parameter, ergodicity, random-
ness, mixing, etc., that are alike the confusion and diffusion properties of Claude Shannon [15].
Precisely, the random-like behavior of the outputs of chaotic maps brands them suitable bases to
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be used in cryptographs. A lot of image encryption algorithms are built on chaotic systems, for
instance [16–18]. Whereas Liu et al. [19], anticipated a chaos-based color image block encryption
scheme using S-box. A novel color image encryption application is foreseen in which primarily
newly obtained 3 S-boxes are being castoff to crop confusion in three layers of a standard RGB
image. Though, for diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.
A comparison with some of current chaos and S-box reliant color image encryption schemes
spectacles the performance results of the estimated RGB image encryption and pragmatic as
approaching the standard principal level.

2 Fundamentals on Order 512 Non-Associative Algebraic Structure

A left almost semigroup (LA-semigroup) (or AG-groupoid) is a groupoid S satisfying the left
invertive law; (ab)c= (cb)a for all, a,b, c in S [20]. It is a structure mid-way amongst a groupoid
and a semigroup and it is a generalization of a commutative semigroup. The extended notion of
LA-semigroup to LA-group or AG-group is given in [21]. An LA-group is an LA-semigroup with
a left identity e in S, such that ea= a, for all a in S; and for each a in S, its inverse exists, i.e.,
there exists a−1 such that aa−1 = a−1a= e. In case of an additive LA-group the left identity would
be called left zero element. Accordingly, the notion of a non-associative structure with respect to
the two binary operations ‘+’ of LA-group and ‘·’ of LA-semigroup was the natural consequence.
Therefore, an LA-ring is a non-empty set R with at least two elements such that (R,+) is an LA-
group and (R, ·) is an LA-semigroup and both left, and right distributive laws hold. Fundamental
properties are given in [22], while in [23] the existence of non-associative LA-rings is documented
and a special case of LA-ring is launched.

Using a special LA-ring Rn of order n, a set R= ∑m
k=0 u

kRn can be constructed where m is

a positive integer and um+1 = 0. There are nm+1 elements in R of the form
∑m

k=0 aku
k, where all

ak belong to Rn. R is a special LA-ring. The operations in R follow from the operations in Rn
are defined as:

∑m
k=0 aku

k+∑m
k=0 bku

k =∑m
k=0(ak+ bk)uk and

∑m
k=0 aku

k ∑m
k=0 bku

k =∑m
k=0 cku

k.

In R,
∑m

k=0 aku
k,

∑m
k=0 bku

k, ck =
∑

i+j=k aibj.
∑m

k=0 aku
k is a unit in R if and only if a0 is unit

in Rn.

3 For S-Boxes Pairs Generating Algorithm

Take LA-ring R8 = {0, 1, 2, 3, 4, 5, 6, 7} with identity. Addition and multiplication are defined
in Tab. 1.

Table 1: Operations on R8

+ 0 1 2 3 4 5 6 7 · 0 1 2 3 4 5 6 7

0 6 5 0 2 7 4 3 1 0 4 0 2 1 3 7 6 5
1 5 6 1 7 2 3 4 0 1 3 4 2 0 1 5 6 7
2 0 1 2 3 4 5 6 7 2 2 2 2 2 2 2 2 2
3 2 7 3 6 5 1 0 4 3 1 3 2 4 0 7 6 5
4 7 2 4 5 6 0 1 3 4 0 1 2 3 4 5 6 7
5 4 3 5 1 0 2 7 6 5 5 7 2 5 7 6 2 6
6 3 4 6 0 1 7 2 5 6 6 6 2 6 6 2 2 2
7 1 0 7 4 3 6 5 2 7 7 5 2 7 5 6 2 6



4 CMC, 2021, vol.67, no.1

Here the element 0 is 2 and the left identity element is 4. Units in R8 are: 0, 1, 3, and 4. The
set R = R8 + uR8 + u2R8 (with u3 = 0) is a special LA-ring with 512 elements. The left identity
element in R is 422. An element a+ bu+ cu2 is a unit in R = R8 + uR8 + u2R8 if and only if
a is a unit in R8. So, there are 256 units in R = R8 + uR8 + u2R8. The scheme of the S-boxes
triplets is based on two substructures of the special LA-ring R. One of the substructures is the sub
LA-module M = {200, 201, . . . , 277, 500, 501, . . ., 577, 600, 601, . . ., 677, 700, 701, . . ., 777} of LA-ring
R, which is decimal equivalent to {128, 129, . . . , 191, 320, 321, . . ., 511} and the second is the mul-
tiplicative group U(R) = {000, 001, . . . , 077, 100, 101, . . ., 177, 300, 301, . . . , 377, 400, 401, . . ., 477} of
unit elements of the ring R which is decimal equivalent to {0, 1, . . . , 127, 192, 193, . . ., 319}. The first
one has two operations; addition and scalar multiplication, the last one holds only multiplication.
Actions of group PGL(2,GF(28)) to the Galois field GF(28) yield the ultimate S-boxes.

3.1 Case I: Generating S-Boxes Over Sub LA-Module of R-LA-Module R
As M is R-sub LA-module of R-module R, we can define an affine mapping θ : M →M,

θ(s)= rs+m, where r= 342 and m= 653 are fixed elements in U(R) and M respectively. As the
elements of M are 9 binary bits representation, so we define a bijection σ :M→GF

(
28

)
by

σ (x)=
{
x+ 64, if 128≤ x≤ 191;
x− 320, if 320≤ x≤ 511.

Finally, the linear fractional transformation is given as; ψ : PGL(2,GF(28)) × GF(28) →
GF(28) defined as: ψ (x) = ax+b

cx+d , where a = 158, b = 54, c = 20, d = 92 in GF(28) such that
ad−bc �= 0. For the construction of this S-box, the algorithm begins with the sub LA-module M
of a special LA-ring R and use of GF(28). Eventually, the function. purposes the S-box with the
action of PGL(2,GF(28) on GF(28). The newly constructed S-box, using the suggested algorithm
is given in Tab. 2. This is a 16× 16 look up table and it can be used to process eight binary bits
of data.

Table 2: S-Box 1 designed over LA-sub-module of LA-ring R

136 12 95 103 137 169 92 101 158 198 128 6 44 195 171 152

247 162 217 253 255 78 133 86 14 49 161 105 225 214 130 182
165 237 254 164 246 151 102 199 93 230 150 190 179 70 176 94
219 229 117 18 50 143 157 248 146 184 45 30 224 110 228 159
187 173 239 96 118 73 116 25 31 41 227 232 201 226 8 91
178 156 154 3 56 68 7 9 209 43 180 125 106 17 62 191
39 244 54 84 10 149 40 11 81 218 66 99 177 203 27 71
170 202 135 55 167 147 207 129 109 189 13 181 186 126 47 172
245 0 175 5 61 76 82 72 75 85 231 64 144 174 107 213
249 32 240 132 33 153 215 204 139 205 148 193 210 252 212 24
236 221 97 15 59 134 200 74 155 192 98 100 20 19 123 197
16 35 194 120 242 108 28 113 34 79 38 36 211 58 42 46
60 67 89 222 90 111 216 168 69 208 88 104 238 22 52 185
140 183 234 141 1 2 220 29 142 87 163 114 206 166 112 138
48 223 124 21 23 188 37 26 251 65 122 121 241 63 77 4
80 233 51 235 160 127 115 196 243 250 57 131 119 53 145 83
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3.2 Case II: Generating S-Boxes over U(R)
We define the inverse and affine linear mappings ϕ′, θ ′ : U(R)→ U(R) by ϕ′(t) = t− 1 and

θ ′(t) = r′t + m′, where r′ = 436 and m′ = 275 are fixed elements in U(R) and MM respectively.
Accordingly, the composition θ ′ ◦ ϕ′ : U(R) → U(R) of mappings is defined by θ ′ ◦ ϕ′(t) =
(r′t+m′)−1. As the elements of U(R) are 9 binary bits representation, so we define a bijection
σ ′ : U(R)→GF(28) by

σ ′ (z)=
{
z, if 0≤ z≤ 255;
Rm+ 128, if 320≤ z≤ 511

,

Rm is the remainder when divided by 256. So, in the end, the linear fractional transformation
is given as; ψ ′ : PGL(2,GF(28)) × GF(28) → GF(28), ψ ′ (z) = a′z + b′/c′z + d ′, where a′ = 210,
b′ = 17, c′ = 84, d ′ = 60 in GF(28) such that a′d ′ − b′c′ �= 0. For the construction of this
S-box, the algorithm activates with the LA-group U(R) of unit elements in the special LA-ring
R and use of Galois field GF(28). Ultimately, the function τ ′ designs the S-box with the action
of PGL(2,GF(28)) on GF(28). Tab. 3 shows the new S-box constructed through the proposed
algorithm, a 16× 16 look up table that can be used to process eight binary bits of data.

Table 3: S-Box 2 designed over LA-group of units in LA-ring R

234 242 36 111 151 240 12 171 129 125 78 19 9 43 255 98

220 70 116 69 73 92 61 65 208 181 7 22 155 83 143 138
101 25 249 13 8 4 123 246 68 33 159 152 26 190 117 168
31 58 245 212 149 164 174 85 235 247 100 178 127 74 50 44
52 56 229 137 134 204 239 27 102 10 142 28 87 172 96 57
91 97 195 38 150 66 105 41 194 218 49 154 199 227 132 86
81 53 55 148 51 23 145 109 210 237 17 48 147 191 182 223
11 252 193 238 62 29 236 185 128 217 82 5 179 250 71 133
167 202 216 79 197 94 241 251 136 214 157 226 206 131 201 75
126 76 139 60 120 144 1 118 224 254 183 122 93 243 90 80
88 107 184 231 166 54 219 112 30 192 209 124 230 104 14 162
198 188 2 15 59 42 3 228 46 156 253 158 205 37 146 119
163 89 21 203 20 34 211 215 108 106 207 140 24 161 72 95
18 114 222 169 244 121 176 170 160 200 130 77 35 99 39 232
248 135 221 141 165 45 153 225 177 40 180 103 6 189 187 16
115 64 213 84 0 47 233 67 173 110 175 196 113 186 32 63

To synthesize another S-box, we take the composition of above generated S-boxes. The S-box
obtained by the composition is given by Tab. 4. Fig. 1 illustrates the flow chart for S-boxes pairs
generation over the special LA-ring R.

4 Key Space Analysis

In case when we consider the special LA-ring R=R8+uR8+u2R8, the affine map g : U(R)→
U(R) such that g(x) = ax + b for all x in U(R) results 256 possible choices of the fixed unit
element a in U(R) and 256 choices of the element b in M. Hence, we obtained 256 × 256 =
65,536 possible affine mappings. Accordingly, we get 65,536 number of 9× 9 pseudo S-boxes of
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dimension 16× 16. These 9 × 9 pseudo S-boxes are transforming into byte based 65,536 vague
random sequences by using the bijective maps σ . Thus we are able to get a huge number of 8×8
S-boxes with their diversified strength.

Table 4: S-Box 3 obtained by composition of S-boxes 1,2

144 247 250 195 18 215 217 105 187 228 196 92 78 188 211 177

254 47 126 226 136 185 63 87 100 171 84 227 205 167 32 24
213 88 206 115 122 141 66 3 133 253 135 77 95 182 161 82
120 119 81 208 111 222 189 131 165 39 19 85 158 154 156 16
130 89 231 97 53 238 145 212 174 255 46 112 192 146 178 128
106 6 180 73 246 147 116 127 251 98 207 56 194 83 25 200
168 80 234 142 50 248 43 235 96 118 17 150 72 124 58 223
203 209 186 151 233 45 162 113 199 35 44 140 160 52 129 34
93 70 20 61 101 11 10 62 252 28 37 210 225 163 49 202
201 68 90 110 33 40 197 230 244 104 153 15 79 157 94 149
219 1 91 74 4 175 30 29 103 59 41 38 138 7 239 2
143 152 42 229 224 86 31 55 159 236 117 26 241 8 125 9
123 48 179 144 71 218 76 21 191 216 5 132 107 22 240 99
169 108 166 176 220 65 60 245 121 102 64 51 14 67 109 170
36 139 204 155 181 232 190 164 75 237 137 27 243 13 193 69
172 184 12 54 0 134 23 198 183 214 249 173 148 242 221 57

Figure 1: Flow chart for S-boxes pairs generation over the non-associative ring R

The key space is the total number of unlike keys cast-off in the encryption or decryption
process. For an efficient cryptosystem, the key space must be sufficiently large to repel brute-force
attacks. In the first case of proposed algorithm 256! Number of choices for affine function and
from the action of PGL(2,GF(28)) on σ(U(R))=GF(28), we could design 16776960 number of
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S-boxes [24]. Though due to step 2 of the algorithm 256 choices for Affine functions could be
considered and thus 256× (16776960) will be the possible choices in computing 8 × 8 S-boxes.
Consequently, combining all possibilities, we have large enough key space to armor contrary to
brute force attack.

5 Performance Analyses of S-Boxes

An efficient S-box should satisfy some specific cryptographic criteria; bijectiveness, nonlinear-
ity, outputs bit independence, strict avalanche and linear approximation probability. We device
diverse analyses to test their strong suit and standing with respect to few other well-known
S-boxes.

5.1 Nonlinearity
The distance between the Boolean function f and the set of all affine linear functions is

said to be nonlinearity of f . This means the nonlinearity of a Boolean function f represents the
number of bits which changed in the truth table of f to touch the nearby affine function. The

upper bound of nonlinearity (NL) is NL= 2n−1 − 2
n
2−1 [10], thus, for n= 8, the maximum value

of nonlinearity is 120. Followed Tab. 5 that average nonlinearity of S-boxes 1and 2 are 103.25
and 104.75, and better than Prime S-box.

Table 5: Performance Indexes for proposed S-Box

Analysis for
S-box 1 and
S-box 2

Max. Min. Average Square
Deviation

Differential
approximation
probability (DP)

Linear
approximation
probability
(LP)

Nonlinearity 106 100 103.25
106 100 104.75

SAC 0.625 0.40625 0.504883 0.0218748
0.59375 0.375 0.498047 0.0216392

BIC 98 103.571 2.79577
96 102.714 3.08055

BIC-SAC 0.476563 0.500558 0.0139369
0.464844 0.498535 0.0155518

DP 0.0390625
0.0390625

LP 164 0.140625
160 0.132813

5.2 Strict Avalanche Criteria
The SAC was first familiarized in 1895 by Webster et al. [2]. The SAC constructs on the

notions of completeness and avalanche. It is satisfied if, whenever a single bit of input changed,
each of the output bits changes with a 0.5 probability that is, while one bit of input is altered, half
of its corresponding output bits will change. Tab. 5 shows that the proposed S-box successfully
satisfied SAC.
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5.3 Bit Independent Criterion
The BIC was also first introduced in [2] which is another required property for any crypto-

graphic methods. Tab. 5 shows the results of BIC analysis of proposed S-box and in the sense of
encryption strength; the BIC of the proposed S-box is adequate. Tab. 5 shows that the rank of
designed S-box is comparable with S-boxes in literature and its BIC is adequate.

5.4 Linear Approximation Probability
The maximum value of the imbalance of an event is said to be the linear approximation

probability. The parity of the input bits selected by the mask Gx is equal to the parity of
the output bits selected by the mask Gy. By [25], LP of a given S-box is defined as: LP =
maxGx,Gy �=0{x ∈X |x.Gx = S(x).Gy}/2n− 1

2 ,Gxand Gy is input and output covers, respectively, “X”
the set of all possible inputs; and 2n is the number of elements of X . From Tab. 5, we see that
the average value of LP of the proposed S-boxes is 0.132813 and it is appropriate against linear
attacks and better from Xyi S-box and S-box on residue of prime numbers.

5.5 Differential Approximation Probability
The differential approximation probability (DP) of S-box is a measure for differential uni-

formity and is defined as: DP (Δa→Δb) = {a ∈ X |S(a) ⊕ S(a ⊕ Δa) = Δb}/2m. This implies, an
input differential Δai, should uniquely map to an output differentialΔbi, thus ensuring a uniform
mapping probability for each i. The average value of differential approximation probability for
proposed S-boxes are 0.140625 and (see Tab. 5), whereas the Tab. 6 shows the comparison of
differential approximation probability of new S-box with AES, APA, Gray, S8 AES, Skipjack, Xyi
and residue prime S-boxes and we observed that the results of DP of proposed box are relatively
better from skip jack, Xyi, prime and Lui S-boxes. As there are 256× (16776960) possible S-boxes
depending on the choice of defined parameters, so after variety of options one can obtain the
best S-boxes having optimal strength against statistical attacks.

Table 6: Comparison of performance indexes of proposed S-Box

S-boxes Nonlinearity SAC BIC–SAC BIC DP LP

AES S-box 112 0.5058 0.504 112.0 0.0156 0.062
APA S-box 112 0.4987 0.499 112.0 0.0156 0.062
Gray S-box 112 0.5058 0.502 112.0 0.0156 0.062
Skipjack S-box 105.7 0.4980 0.499 104.1 0.0468 0.109
Xyi S-box 105 0.5048 0.503 103.7 0.0468 0.156
Residue Prime 99.5 0.5012 0.502 101.7 0.2810 0.132
LuiS-box 105 0.499756 0.500698 104.071 0.0390625 0.128906
Proposed S-box 1 103.25 0.504883 0.500558 103.571 0.0390625 0.140625
Proposed S-box 2 104.75 0.498047 0.498535 102.714 0.0390625 0.132813

6 RGB Image Encryption

The Arnold map is one the most important 2D Chaotic map [26,27], specifically in image
encryption algorithms. The following equation signifies the 2D Arnold cat map. For xi, yi in the
interval [0,1),
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(
xi+1
yi+1

)
=

(
1 1
1 2

)(
xi
yi

)
mod1 (1)

The determinant of the matrix A =
(
1 1
1 2

)
is 1. Thus, the map is area preserving. The Eigen

values λ1 = ln
(
3+√

5
)
/2 and λ2 = ln

(
3−√

5
)
/2 of the matrix A represents the two Lyapunov

exponents. The positive Lyapunov exponent spectacles the chaotic behavior in Eq. (1) hence its
exponential sensitivity to its initial conditions is observed. In [26], the generalized form of Eq. (1)
is given as(
xi+1
yi+1

)
=

(
1 a
b ab+ 1

) (
xi
yi

)
mod1 (2)

Furthermore, the map of Eq. (2) is transformed to a 3D cat map described as

Xi+1 =
⎛
⎝xi+1
yi+1
zi+1

⎞
⎠ =A

⎛
⎝xi
yi
zi

⎞
⎠mod1 (3)

where the matrix A is answerable for producing chaotic behavior, here A=
⎛
⎝3 1 4
8 3 11
6 2 9

⎞
⎠ .

The general form of matrix A is

A=
⎛
⎝ 1+ axazby az ay+ axaz+ axayazby
bz+ axby+ axazbybz azbz+ 1 aybz+ axayazbybz+ axazbz+ axayby+ ax

axbxby+ by bx axaybxby+ axbx+ ayby+ 1

⎞
⎠

In matrix A all ax, ay, az, bx, by, bz are considered to be the positive integers. It is trivial
to verify that matrix A is area preserving, that is |A| = 1. The Eigen values of A are λ1 =
14.3789,λ2= 0.4745 and λ3 = 0.1466. As the larger Eigen value is greater than 1, so Eq. (3) shows
chaotic behavior and thus holds all the characteristics of chaos. To generate the chaotic sequence
Xi+1, the initial values used in this work are x0 = 0.9557, y0 = 0.3494 and z0 = 0.6789.

S-boxes are considered as a main part of a block cipher, the only component of a cipher that
produces non-linearity and hence surety the resistance against linear and differential attacks. Cur-
rently, advancement in techniques of cryptanalysis and in computer technology, which enhances
correspondingly support, generating S-boxes of good quality is the subject of core attention. Due
to uncertainty in communication and in storage of RGB images, a need for the encryption is
preferred. One of the aims of this article is to encrypt RGB images using 3 S-boxes originated
by a non-associative structure of LA-ring. For the need of the RGB image encryption each layer
is passed through the different 8 × 8 S-box. In the subsequent step, the 3D Arnold cat map
is functional not to correlate the adjacent pixel of the image.The image encryption scheme is
illustrated below. Following are the steps for encrypting the image: Substitute the S-boxes S1,S2
and S3 in Red, Green and Blue channels of the color image. Thus, instead of a single S-box used
for encryption our proposed scheme provides three different S-boxes S1,S2and S3. Use the 3D
Arnold cat map to produce non-correlated behavior between adjacent pixels of the image.
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7 Texture Analysis of Image Encryption

Texture is one of the further most significant parameters of a material that enlightens the
physical appearance of a material surface except its chromatic character. Texture may be analyzed
in diverse approaches but Fourier methodology among these techniques is the most operative.
A fascinating analysis, however, is intriguing as it relates to how the human visual system realizes
the texture, the first line of the texture, and is extensively used in the segmentation of photograph.
Over and done with this method we can calculate 5 diverse characteristics of image which are:
Contrast, Homogeneity, Correlation, Energy and Entropy to elucidate texture.

7.1 Energy
Through energy analysis we can measure the energy of an encrypted image which discards the

gray-level co-occurrence matrix (GLCM). The energy is defined as the sum of squared components
in GLCM and is given as E = ∑

m
∑

n f
2(m,n), where m and n are the image pixels and p(m,n)

gives the number of gray-level co-occurrence matrices. Remark that for constant image the energy
value is unity.

7.2 Entropy
The entropy is the measure of level of disorder and randomness in a system. The maximal

level of randomness makes the image difficult to recognize and the randomness of an image can
be amplified by considering its non-linear components which is defined as H = ∑n

i=0 f (xi)logbfxi,
where xi defines the Histogram calculations.

7.3 Contrast
To differentiate the objects of an image the observer has to contrast it is used. Owed to image

encryption process, a robust encryption can be realized from the high level of contrast. This factor
is directly linked to the confusion created by the S-box. Mathematically, the contrast is obtained
by the formula: C = ∑

m
∑

n (m− n)2 f (m,n) .

7.4 Homogeneity
In Homogeneity analysis, the closeness of distributed pixels of Gray Level Co-occurrence

Matrix (GLCM) to GLCM is tested. Mathematical equation is H∗ =∑
m

∑
n f (m,n) /1− |m− n|.

7.5 Correlation
To analyse the adjacent pixel correlation of an image, correlation analysis is performed. Nor-

mally, three different types of correlation are performed to ensure the strength of the encrypted
image. These are: the horizontal, the vertical, and the diagonal correlation. The following equation
shows how to calculate the correlation: K = (m − αm)(n − αn)f (m,n)/σmσn. For a healthier
correlation value we need to achieve the number 1 or −1. Whereas uncorrelated data this figure is
round about 0. Tab. 7 realizes that the new encryption algorithm has robust upright cryptographic
properties, and succeeds for encryption.

Tab. 8 signifies the entropy of Lena color image. Obviously, the proposed encryption proce-
dure displays opposition to all the well-known attacks. Analyses reveal that the entropy score of
our proposed scheme is close to the optimal values. In analogy, the comparison with chaos-based
encryption scheme is also provided. Entropy of the proposed scheme is nicer than the rest. In
Tab. 9, the result for correlation coefficient of Lena 256× 256 color image is presented. Results
ensure the potency of the proposed encryption technique. It is apparent from analyses that the
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correlation results are up to the mark and can be matched with other chaos-based encryption
techniques. Information images transmitting via digital communicating media has great similarity
amongst their neighboring pixels. For an incredibly well-connected image the estimated correlation
coefficient is ±1, while for an extra ordinary non-correlated image its values move toward 0. The
pixels correlation among original and encrypted Lena image is displayed in Tab. 9. The correlation
score shows that the pixels are good non-correlated as its value are more equally 0. Hence, the
proposed algorithm gives extra ordinarily de connections the nearby pixels of the encrypted image
and meet on hopes of an effective encryption structure.

Table 7: Second order texture analyses for plain and encrypted Lena image

Plain color components of image Cipher color components of image

Red Green Blue Red Green Blue

Contrast 0.445343 0.659896 0.483655 9.96034 10.0962 10.2181
Homogeneity 0.857543 0.831937 0.845328 0.411186 0.404886 0.403524
Entropy 7.27958 7.63153 6.98912 7.99712 7.99725 7.99744
Correlation 0.910667 0.887815 0.804591 0.0516558 0.0379861 0.0239547
Energy 0.135318 0.0838048 0.156122 0.0157684 0.0157087 0.0157107

Table 8: Comparing entropy for Lena (256 × 256) image

Images Red Green Blue RGB Image

Proposed 7.99712 7.99725 7.99744 7.9990
Ref. [19] 7.9901 7.9898 7.9899 7.9899
Ref. [28] 7.9913 7.9914 7.9916 7.9914
Ref. [29] 7.9808 7.9811 7.9914 7.9844
Ref. [30] 7.9901 7.9912 7.9921 7.9113
Ref. [31] 7.9949 7.9953 7.9942 7.9948

Table 9: Horizontal, vertical and diagonal correlations between different layers of original and
encrypted images

Image Horizontal Vertical Diagonal

R G B R G B R G B

Plain image 0.9491 0.9175 0.8561 0.9602 0.9528 0.8962 0.9025 0.8984 0.8715
Encrypted image 0.0569 0.0658 −0.0014 0.0036 −0.0180 0.0132 −0.0499 0.0123 −0.0210

Figs. 4–9 show the correlation distribution of horizontally, vertically and diagonally adjacent
pixels of a color image. Figs. 4, 6, 8 (a,b, c) signifies the correlation of the adjacent pixels of
Lena original image whereas Figs. 5, 7, 9 (a,b, c) looks from the nearby pixels of encrypted
image. It is clear from the figure that there is a great dispassion between nearby pixels of the
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encrypted image. The approving correlation coefficient is computed for Lena encrypted image and
are shown in Tab. 9.

(a) (b) (c) (d)

Figure 2: (a) represents Lena original image. (b), (c) and (d) represent the histogram of red(R)
green(G) and blue(B) layer of (a)
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(a) (b) (c) (d)

Figure 3: (a) Encrypted Lena image. (b), (c) and (d) show the histogram layers of R, G and B
channel of the encrypted image (a)

(a) (b) (c)

Figure 4: (a–c): represent horizontal correlation pixels for R, G and B layers of original 256×256
Lena image respectively

(a) (b) (c)

Figure 5: (a–c): Shows the horizontal Correlation pixels for R, G and B channel of encrypted
Lena image

8 Analyses of Experimental Work

Experimental analyses of the image encryption technique are given here. A standard Lena
image of size 256× 256× 3 is chosen for encryption as shown in Fig. 2. Where Fig. 3, represents
the encrypted Lena image. Histogram of RGB layers of the original and encrypted image are also
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shown in parallel. Tab. 8 enlists the image quality measures of the encrypted and original image
using one round encryption by 3 S-boxes and AC 3D map. The performance of the proposed
notion is shown in Tab. 9.

(a) (b) (c)

Figure 6: (a–c): represent vertical correlation pixels for R, G and B layers of original 256 × 256
Lena image respectively

(a) (b) (c)

Figure 7: (a–c): shows the vertical correlation pixels for R, G and B channel of encrypted
Lena image

(a) (b) (c)

Figure 8: (a–c): represent diagonal correlation pixels for R, G and B layers of original 256 × 256
Lena image respectively
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(a) (b) (c)

Figure 9: (a–c): shows the diagonal correlation pixels for R, G and B channel of encrypted
Lena image

8.1 Mean Square Error (MSE)
In statistics, the mean square error (MSE) or mean square deviation (MSD) of an image

measures the common of the squares of the errors. This means the arithmetic mean square
distinction between the calculable values and what’s estimated. MSE is a risk function, comparable
to the mean of the squared error loss. Followed [26], it judges quality of an encrypted image. It

is calculated as MSE = ∑M
y=1

∑N
X=1 [I (x,y)−C (x,y)]2 /M ×N, where I (x,y) is the plain image,

C (x,y) is the ciphered version and M,N are the dimensions of the images, respectively. A higher
value for MSE can be understood as the better first-rate.

8.2 Peak Signal-To-Noise Ratio (PSNR)
Signal representation dependability may be affected by corrupting noise [32]. Thus the ratio

defined amongst the power of a signal and the power of corrupting noise is designated as Peak
signal-to-noise ratio (PSNR). It is expressed in terms of the logarithmic decibel gauge due to the
diverse dynamic range of signals. Occasionally, the PSNR is used for to evaluate the quality of
restoration of the encrypted image. In this study, signal is characterized by plain image and noise
is the distortion created by encryption. The PSNR value is directly proportional to the rate of
rebuilding of an image. It is defined as PNSR= 10log10MAX2

1 /
√
MSE.

8.3 Normalized Cross-Correlation (NK)
The correlation function also gives the idea that how much two digital images are

closed to each other as shown in [33]. The normalized cross-correlation (NK) measures

the resemblance amongst two images and is calculated by as: NK = ∑M
y=1

∑N
X=1(I (x,y) ×

C (x,y))/
∑M

y=1
∑N

X=1 [I (x,y)]
2 , where I (x,y) is the plain image, C (x,y) is the ciphered version

and M, N are respectively the dimensions of the images.

8.4 Average Difference
The difference between reference signal and test image is given the name of Average difference

(AD) [32]. AD is calculated by the formula: AD= ∑M
y=1

∑N
X=1 [I (x,y)−C (x,y)] /M ×N, where

I (x,y) is original, C (x,y) is the encrypted version and M,N are the dimensions of the images.
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8.5 Structural Content
One of the correlation based measure is the structural content (SC) [32] and it measures the

resemblance among two images. SC is premeditated as C = ∑M
y=1

∑N
X=1 [I (x,y)]

2 /
∑M

y=1
∑N

X=1 ·
[C (x,y)]2 , where I (x,y) is the plain image, C (x,y) is the encrypted version and M,N are
respectively the dimensions of the images.

8.6 Maximum Difference (MD)
Scheming maximum of the error signals gives what we call maximum difference (MD) (dif-

ference between the test image and reference signal) (see [34]) and it is attained by MD =
max |I (x,y)−C (x,y)| , where I (x,y) is the plain image, C(x, y)C (x, y)) is the encrypted version
and M,N are respectively the dimensions of the images.

8.7 Normalized Absolute Error
By [31], the Normalized absolute error between the plain and ciphered image is calculated

as NAE = ∑M
y=1

∑N
X=1 |I (x,y)−C (x,y)|/∑M

y=1
∑N

X=1 |I (x,y)| , where I (x,y) is the plain image,
C (x,y) is the encrypted version and M,N are the dimensions of the images.

8.8 Root Mean Square Error (RMSE)
It is the square root of the mean of the square of all the errors [31]. RMSE is a regularly

times used method to measure the variations between original image and the cipher image.

RMSE =
√
(
∑M

y=1
∑N

X=1 [I (x,y)−C (x,y)]2 /M ×N), where I (x,y) represents the plain image,

C (x,y) is the encrypted version and M,N are respectively the dimensions of the images.

8.9 Universal Quality Index (UQI)
According to [35], the UQI breaks the comparison between original and distorted

image into three comparisons: Contrast, luminance and structural comparisons. The UQI
for original image “O” and encrypted image “E” might be defined as UQI (O,E) =
4μIμCμIC/

(
μI

2−μC
2
) (
σI

2− σC2
)
, where μI ,μC represents the mean values of plain and dis-

torted images and σI ,σC denote the standard deviation of plain and distorted images.

8.10 Mutual Information (MI)
To obtain the amount of information from encrypted image for the agreeing plain image is

termed as MI given in [35]. The MI of two images “O” and “E” can be defined as MI (O,E)=∑
y∈C

∑
y∈I p (x,y) log2p(x,y)/p(x)p(y), where p(x,y) is the joint probability function of I and C,

further p(x) and p(y) are the marginal probability distribution functions of O and E respectively.

8.11 Structural Similarity (SSIM)
By [36], the structural similarity index is an enhanced edition of the universal quality index.

Through this technique we determine the similarity between two images. The structural simi-
larity index is calculated on various frames of an image. The measure between two frames X
and Y of common size N × N is SSIM (X,Y) = (2μXμY+ c1) (2σXσY+ c2) /

(
μX

2 +μY
2+ c1

)
(
σX

2+σY
2+ c2

)
, where average of Y and X is represented by μYμY and μxμX the variance of

Y and X by σ2
Y and σ2

X respectively. Whereas σXY is the covariance of X and Y, c1 = (k1L)2 and
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c2 = (k2L)
2 are the variables to soothe the division with weak denominator. L Lis the range of

the pixel values and (k1, k2)= (0.01, 0.03) by default. The SSIM index lies between −1 and 1. For
similar images this value is 1. Tab. 10 shows that through our proposed RGB image encryption
scheme the optimal values of Image Quality Measures can be achieved.

Table 10: Image quality measures for proposed RGB image encryption of Lena image

No. Quality
measure

Encryption by 3 S-boxes and 3D
Arnold chaotic map

Optimal values

Red Green Blue Red Green Blue

8.1 MSE 10626.4 9224.93 7162.78 10057.2 9898.89 6948.19
8.2 PSNR 7.86695 8.48117 9.57999 8.1060 8.1749 9.7120
8.3 NCC 0.66015 0.993966 1.09709 0.6725 1.0031 1.0923
8.4 AD 52.1404 −28.6657 −22.7034 50.0448 −31.4276 −19.7989
8.5 SC 1.59967 0.582213 0.562247 1.5787 0.5582 0.5711
8.6 MD 250 234 216 236 210 210
8.7 NAE 0.467414 0.796259 0.671177 0.4537 0.8310 0.6628
8.8 RMSE 103.084 96.0465 84.6332 100.286 99.4932 83.3558
8.9 UQI −0.00013497 −0.000714523 −0.0011433 −0.0050 −0.0077 0.0107
8.10 MI 0.491086 0.689748 0.394636 5.6534 7.2283 6.0723
8.11 SSIM 0.00982045 0.0084672 0.00937046 0.0078 0.0053 0.0187

9 Security Measurement

9.1 Histograms
A uniform histogram for an image is the calmest and supreme approach to measure the

security strength of an encryption procedure against various attacks. Here, we analyze an RGB
Lena image of size 256 × 256 × 3. The histogram of the three channels of ciphered image
under the proposed scheme is likewise matching though for plain Lena image they are dissimilar.
Figs. 2 and 3 show histogram of different layers of plain image and encrypted image. A perfect
encrypted image comprises of uniform histogram trickles to sphere the opposing of separating
any supportive data from the rocky histogram. Subsequently, no statistical attack can die out this
proposed encryption scheme.

9.2 Differential Analyses
To exploit the strong suit of differential analyses on an image encryption arrangement the

NPCR (Number of Pixels Change Rate) and UACI (unified average changing intensity) analyses
are implemented. It measures the normal power of contrast between the two images, i.e., original
and encrypted image. To compare the encrypted images cryptanalysts realize the bond among the
plain image and ciphered image. Attack of this kind is famous for differential attack.The NPCR
and UACI are the two typically used tests to ensure the strength of the encrypted scheme against
differential analysis. For more details, see [35]–[37].
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9.2.1 Number of Pixels Change Rate (NPCR)
By [36], the impact of one-pixel change on the whole image ciphered by the suggested scheme

has been verified by NPCR. The number of pixels change rate of encrypted image when one
pixel of original image is changed is measured by NPCR. Take an encrypted image “Img1”
of dimension M×N, whose corresponding original image “Img2” has only one-pixel difference.

NPCR=∑
I,j D(I, j)M×N, where D (I, j)=

{
0, if Img1 (I, j)= Img2(I, j)
1, if Img1 (I, j) �= Img2(I, j)

9.2.2 Unified Average Changing Intensity (UACI)
By [36], the unified average changing intensity of the given two (plain and ciphered) images

measures the average intensity of the images. Take two encrypted images Img1 and Img2 of
dimension M×N. UACI= ∑

i,j
[∣∣Img1 (i, j)− Img2(i, j)

∣∣255]
/M×N.

Tab. 11 gives the NPCR and UACI measures of different channels of the color Lena
encrypted image. The comparison is taken with encryption schemes based on Chaos and S-
box. It verifies the strength of the proposed Image encryption scheme via S-boxes 1, 2 and 3.
Clearly, analyses show that the NPCR and UACI values of our novel encryption technique give
optimal values.

Table 11: A comparison of differential analyses 256 × 256 Lena image

Schemes NPCR UACI

Red Green Blue Red Blue Green

Proposed 0.995819 0.9961 0.995926 0.339945 0.338623 0.336869
Ref. [28] 0.9960 99.5895 0.9961 0.3343 0.3350 0.3343
Ref. [32] 0.9964 0.9962 0.9959 0.3353 0.3327 0.3343
Ref. [37] 0.9468 0.9568 0.9868 0.3346 0.3450 0.3549
Ref. [38] 0.9850 0.9850 0.9850 0.3210 0.3210 0.3210
Ref. [19] 0.9960 0.9963 0.9959 0.3343 0.3346 0. 3347

10 Randomness of Test for Cipher

Uniform distribution, Long period and high complexity of the output are the main properties
to observe the security strength of a cryptosystem. By a definite end objective to attain these
prerequisites, we used NIST SP 800–22 [39] for testing the randomness of digital images. A part
of these tests involve copious subclasses. The distorted Lena digital image is cast-off to clasp all
NIST tests. The ciphered data is produced by the proposed RGB image encryption scheme of a
colored Lena plain image of dimension 256× 256× 3 and 3D a chaotic map. Tab. 12, shows the
outcomes of the tests.

Noticeably our proposed digital image encryption tool proficiently passes the NIST tests.
Thus, due to the proficient outcomes, the designed random cryptosystem used for RGB Image
Encryption constructed via S-boxes from a non-commutative and non-associative finite ring and
3D chaotic map might be professed that are very irregular in its crop.
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Table 12: NIST test results for proposed encrypted image

Test P-values for color encryptions
of ciphered image

Results

Red Green Blue

Frequency 0.32694 0.80028 0.82481 Pass
Block frequency 0.74131 0.54713 0.97235 Pass
Rank 0.29191 0.29191 0.29191 Pass
Runs (M= 10,000) 0.084845 0.09393 0.52759 Pass
Long runs of ones 0.67514 0.7127 0.7127 Pass
Overlapping templates 0.85988 0.85988 0.85988 Pass
No overlapping templates 1 0.9994 0.24017 Pass
Spectral DFT 0.77167 0.56166 0.38399 Pass
Approximate entropy 0.84462 0.85692 0.11867 Pass
Universal 0.99437 0.99976 0.99498 Pass
Serial p values 1 0.0083409 0.13423 0.34362 Pass
Serial p values 2 0.12342 0.5943 0.15727 Pass
Cumulative sums forward 0.14445 0.24644 0.24227 Pass
Cumulative sums reverse 0.89099 1.16 0.79042 Pass
Random excursions X =−4 0.79553 0.98021 0.66539 Pass

X =−3 0.37236 0.88823 0.16569 Pass
X =−2 0.57859 0.9465 0.41097 Pass
X =−1 0.22905 0.9464 0.78375 Pass
X = 1 0.48349 0.8282 0.44466 Pass
X = 2 0.13673 0.32154 0.33772 Pass
X = 3 0.6194 0.020103 0.39284 Pass
X = 4 0.70227 0.34143 0.62245 Pass

Random excursions variants X =−5 0.39287 0.0016344 0.46138 Pass
X =−4 0.66407 0.026809 0.59298 Pass
X =−3 0.96847 0.12819 0.52709 Pass
X =−2 0.44399 0.10171 0.91871 Pass
X =−1 0.33092 0.18588 0.92957 Pass
X = 1 0.65853 1 0.25054 Pass
X = 2 0.54029 1 0.30743 Pass
X = 3 0.81252 0.6726 0.40648 Pass
X = 4 0.50404 0.31731 0.59298 Pass
X = 5 1 0.37782 0.76828 Pass

11 Conclusion and Future work

In this paper we constructed S-boxes through non-associative and non-commutative structures
of rings having order 512. The main resolution of these S-boxes designing was to produce
256 times more 8× 8 S-boxes created through linear fractional transformations having excellent
robustness. This study provides 256× (16776960) choices in constructing 8× 8 S-boxes of diverse
strength. Thus, combining all possibilities, we have a large enough key space to defend brute force
attack. As a futuristic perspective, a successful development in constructing 256 elements LA-field
will be more helpful in designing 8× 8 S-boxes over it. A new color image encryption usage is
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estimated in which firstly these 3 S-boxes were used in producing confusion in each layer of a
standard RGB color image. Nevertheless, for the purpose of diffusion 3D Arnold chaotic map is
utilized in the newly introduced encryption scheme. A comparison with some of existing chaos
and S-box dependent color image encryption schemes were given and the performance outcomes
of the estimated RGB image encryption and noted as approaching the standard main level.
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