
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014446

Article

Timing and Classi�cation of Patellofemoral Osteoarthritis
Patients Using Fast Large Margin Classi�er

Mai Ramadan Ibraheem1, Jilan Adel2, Alaa Eldin Balbaa3, Shaker El-Sappagh4,
Tamer Abuhmed5,* and Mohammed Elmogy6

1Faculty of Computers and Information, Kafrelsheikh University, Egypt
2Faculty of Physical Therapy, Kafrelsheikh University, Egypt
3Faculty of Physical Therapy, Nahda University, NUB, Egypt

4Universidade de Santiago de Compostela, Santiago de Compostela, Spain
5College of Computing, Sungkyunkwan University, Seoul, 06351, Korea

6Faculty of Computers and Information, Mansoura University, Mansoura, 35516, Egypt
*Corresponding Author: Tamer Abuhmed. Email: tamer@skku.edu

Received: 21 September 2020; Accepted: 03 November 2020

Abstract: Surface electromyogram (sEMG) processing and classi�cation can
assist neurophysiological standardization and evaluation and provide habi-
tational detection. The timing of muscle activation is critical in determining
various medical conditions when looking at sEMG signals. Understanding
muscle activation timing allows identi�cation of muscle locations and feature
validation for precise modeling. This work aims to develop a predictive model
to investigate and interpret Patellofemoral (PF) osteoarthritis based on fea-
tures extracted from the sEMG signal using pattern classi�cation. To this end,
sEMG signals were acquired from �ve core muscles over about 200 reads from
healthy adult patients while they were going upstairs. Onset, offset, and time
duration for the Transversus Abdominus (TrA), Vastus Medialis Obliquus
(VMO), Gluteus Medius (GM), Vastus Lateralis (VL), and Multi�dus Mus-
cles (ML) were acquired to construct a classi�cation model. The proposed
classi�cation model investigates function mapping from real-time space to a
PF osteoarthritis discriminative feature space. The activation feature space
of muscle timing is used to train several large margin classi�ers to modulate
muscle activations and account for such activation measurements. The fast
large margin classi�er achieved higher performance and faster convergence
than support vector machines (SVMs) and other state-of-the-art classi�ers.
The proposed sEMG classi�cation framework achieved an average accuracy
of 98.8% after 7 s training time, improving other classi�cation techniques in
previous literature.

Keywords: Muscle activation onset time; LS-SVM; surface electromyogram;
patellofemoral osteoarthritis; the timing of core muscles

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014446


394 CMC, 2021, vol.67, no.1

1 Introduction

Biomedical signals are common electrical signals from a speci�ed organ used to detect physical
changes. These biomedical signals generally represent neuromuscular activity during constriction.
The nervous system controls the contraction and relaxation activities of muscle. The muscle
tissue carries electrical signals (myoelectric activity) through nerves. These electrical signals indicate
potential muscle movement [1]. Muscle activity can be detected via electromyography (EMG)
devices in the form of a signal [2]. The acquisition of the signal is achieved by reading EMG
signals generated in the form of analog measurements. Acquiring electromyograms from active
muscles is done in two ways. The electrode utilized for obtaining these muscle signals can
be an invasive and non-invasive electrode [3]. sEMG is preferable in clinical and physiological
applications and can be used for obtaining the desired data simply and painlessly [4]. Several
problems may in�uence the detected surface electromyogram (sEMG) signal and, consequently, the
accuracy of the detected activation timing [5]. The most obvious problem is any noise added to
the EMG, resulting in signi�cant errors in the detected EMG. Another problem is the interference
of neighboring muscles in the form of crosstalk. Other problems, i.e., measurement inaccuracies,
affect the �nal EMG signal’s nature recorded [6]. Patellofemoral Pain (PFP) is a common but
complex illness that affects both athletes and the general population. Functional movements are
produced by contributing a chain of muscles around the hip and knee regions working in unison.
The pain itself generally result from excessive increases in running mileage or the addition of
strength exercises. The pain may get worse with excessive use, climbing, or going upstairs [7].
Patellofemoral Osteoarthritis (PF OA) affects the underside of the kneecap (patella) and thighbone
in the (femur) that the patella rests in [8]. PF OA typically affects patients with in�ammation of
the joints, patellofemoral laxity, or a high-riding patella [9]. The knee joint has a complex structure
with three main parts called compartments, as shown in Fig. 1. Each compartment has individual
functions and structures within it. The inner compartment and the outer compartments are
formed by joining the lowest part of the thighbone (femur) and the highest part of the shinbone
(tibia) [10]. The inner and the outer compartment are known as medial and lateral compartments,
respectively. The third compartment of the knee consists of the kneecap (patella) and the front
part of the femur called the patellofemoral joint [7]. The patella protects the knee and gives
control to muscles by sliding within the knee [11]. This helps shock absorption and allows the
knee joint to move smoothly [12,13]. However, arthritis in the knee affects more than four million
Americans annually. It is more frequently seen in women [14]. PF OA patients need progressive
rehabilitation exercises in order to recover full muscle function [8]. Understanding the timing
of muscle activation will guide clinicians to incorporate exercises correctly in a rehabilitation
program [13]. Exercises targeting the correct musculatures will bene�t patients suffering from PFP
and improve their strength and motor control in these regions [9].

For a precise diagnosis of PF OA, the number of related muscle have been synchronously
estimated in an experiment [8]. This research adopted the �ve most generic asymptomatic controls
for the diagnosis of PF OA. The sEMG research tool was used for obtaining readings from the
target muscles. EMG activities for the Transversus Abdominus (TrA), Vastus Medialis Obliquus
(VMO), Gluteus Medius (GM), Vastus Lateralis (VL) and Multi�dus Muscles (ML) were acquired
for further analysis. The timing of muscle activation is an important factor in predicting joint stiff-
ness and in measuring joint stability. Joint stability balance depends on several muscle activation
values [15]. A new approach is therefore needed to distinguish sEMG signals in different patients.
The proposed approach is comprised of three steps. In the pre-processing step, electromyogram
signaling is enhanced to overcome the interference problems that result from neighboring muscles
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in terms of crosstalk. In the second step, we extract key factor variables, i.e., burst onset, duration,
and offset. Finally, a classi�cation model is constructed using the features extracted from different
patients to perform the classi�cation task. This work aims to develop a more precise diagnostic
framework for muscle activities measured using sEMG signals for PF OA patients. The order
of muscle activation is determined to allow the clinician to incorporate exercises correctly in the
rehabilitation program.

Figure 1: The knee joint structure, including the patellofemoral compartment, which is located
behind the kneecap (patella)

The rest of this paper is comprised of four sections. Section 2 reviews different literature in
the classi�cation of sEMG signals. Section 3 describes electromyogram acquisition in this work
and the proposed framework. Section 4 presents the classi�cation results of the predictive model,
along with discussion and comparisons. Conclusions and future work are outlined in Section 5.

2 Literature Review

Numerous studies have analyzed and classi�ed sEMG signals acquired from the different
muscles responsible for controlling different body movements. This section presents similar tech-
niques utilized in this area, along with some of the other relevant works using different methods.
For example, Cene et al. [16] proposed a classi�cation framework based on a logistic regres-
sion algorithm to identify the sEMG signal movement. They used a gradient-descent adaptive
method that was implemented to generate the proper equations for each movement. After testing
their proposed logistic regression classi�cation algorithm with the case study movement database,
they achieved an average accuracy of 90.2 ± 3.8%. Sadikoglu et al. [2] demonstrated a binary
classi�cation system for diagnosing a healthy individual or a neuropathy patient. The system
received two different EMG signals from different patients. The results were obtained in terms
of comparative �gures for both healthy and neuropathy EMG signals in the time domain. Veer
et al. [17] presented a classi�cation system for sEMG signals from different upper arm muscles.
They investigated muscle force relationships by applying statistical techniques for amplitude esti-
mation. They reported an average classi�cation accuracy of 92.50% using the ANN classi�er.
Khowailed et al. [18] introduced real-time muscle activity detection based on deep learning.
They used a recurrent neural network (RNN) that gave the network the ability to process



396 CMC, 2021, vol.67, no.1

time sequences. They observed a reasonable difference between the true and detected onset time.
Liu et al. [19] presented an unsupervised learning framework based on a sequential Gaussian mix-
ture model to detect EMG muscle activation. They evaluated their approach on a simulated sEMG
signal whose activation was known previously. Rane et al. [20] suggested using supervised learning
in building an approximate prediction model for muscular force magnitude. They evaluated their
system on widely known benchmark data (International Grand Challenge Competitions) [21].
They reported the average accuracy for predicting the forces of major muscle groups as 84%.
Morbidoni et al. [22] proposed an sEMG classi�cation approach to predict foot-�oor-contact
during natural walking. They adopted a deep learning approach for characterizing muscu-
lar recruitment during walking. They experimented with optimization using stochastic gradient
descent (SGD) and optimal learning rate. After an extensive evaluation, they achieved an average
classi�cation accuracy of 94%.

In summary, some of the previous studies focused on measuring muscle activation timing
in real-time [2,18,19]. Other relevant work used different techniques for the analysis and classi-
�cation of EMG signals [16,17,20,22]. The studies that measured muscle activation investigated
characterizing the occurrence of active muscle from baseline in terms of the onset of muscle
activation only using simulated signals [18,19]. The other EMG signal classi�cation techniques
relied on extracting statistical characteristics for the recognition process [17,22]. This work aims
to develop a classi�cation technique based on muscle activation characteristics. The proposed
muscle activation-based classi�cation model can help by giving a more precise diagnosis for PF
OA patients. The extracted features can also help determine the order of muscle activation to help
clinicians incorporate suitable exercises into rehabilitation programs correctly [23–26].

3 The Proposed Framework

3.1 Surface Electromyography (SEMG) Acquisition
The placement of electrodes on the muscle of interest helps in acquiring a healthy signal. The

most PF OA related muscles, i.e., TrA, VMO, GM, VL, and ML, were synchronously monitored
for the experiment. In this section, the steps of our muscle activation-based classi�cation model
in terms of onset, offset, and duration of muscle activation are discussed in detail. The proposed
PF OA diagnosis framework consists of the following steps, as shown in Fig. 2.

For a better understanding of the sEMG signal properties, several steps, such as pre-
processing, feature extraction, and classi�cation, are required. During the �rst phase, several �lters
are applied for better separation of the signal corresponding to movements from the subject.
Several possible ways to perform this pre-processing stage, recti�cation, and �ller techniques,
along with a high pass �lter, were applied in this framework. Once the electromyography sig-
nal is �ltered, some key feature characteristics are extracted from the signal to serve as input
parameters for the classi�cation phase. Finally, in the last stage of sEMG signal recognition,
classi�cation is implemented based on the input characteristics provided, and the classi�cation
model is constructed. The fast large margin and SVM classi�cation algorithms were used in
this work.

3.2 Signal Pre-Processing
Several problems may affect the acquired sEMG signal formation and, consequently, the

accuracy of the detected activation timing [2]. The �rst problem is the added noise to the
sEMG that results in a signi�cant error margin in the detected EMG [27]. The second problem
is the crosstalk that results from the interference of neighboring muscles. Other problems, i.e.,
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measurement inaccuracies, affect the nature of the sEMG signal [28]. In the pre-processing step,
electromyogram signaling is enhanced to overcome the problems mentioned above, i.e., noise and
interference problems. The processing stages that are applied to the sEMG signal are summarized
in the following.

Figure 2: The PF OA diagnosis framework

3.2.1 Replace Outliers in sEMG Signal
Various background noise is received during the acquisition of the sEMG signal due to

electronic equipment and other physiological factors. Proper techniques are required to eliminate
noise and possible artifacts. The replace outliers method mostly �nds the outliers for each of the
�ve detected muscles and replaces them according to a �ller [6]. The �ller in terms of a method
can be speci�ed by each of the following ways: median, which return elements more than 3 scaled
MADs (Median Absolute Deviations) from the median. mean, previous and next methods [28].

3.2.2 Recti�cation of the Full Wave
The sEMG signal is time and strength dependent whose amplitude takes random values

above and below zero. Normalization of the sEMG signal is essential to de�ne any characteristic
properties of the signal then. The normalizing signal can be constructed by wave recti�cation to
a scale that is common to all measurement occasions [17].

Full-wave recti�cation is applied by taking the absolute value of the signal. This recti�cation
step is essential for getting a linear envelope shape for the sEMG signal [29]. Recti�cation turns
the negative swings into positive swings. Recti�cation should be performed before low-passing the
signal to smooth it [27]. The linear envelope of the signal can be obtained by performing �ltering
in both directions to eliminate any phase shift of the signal [28]. Constructing a low pass �lter is
also needed with order 4, and a cutoff frequency of 10 Hz. The combination of recti�cation and
low pass �ltering forms a “linear envelope” for the signal [27]. Converting the recorded sEMG
signal into a linear envelope makes it easier to display and prepares it for any associated decision.
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3.2.3 Root Mean Square (RMS) Envelope
When investigating the electromyogram signals detected from the surface electrode system,

estimating the amplitude variation of the sEMG signal is most appropriate. The time-domain
parameters in terms of RMS value can be used for identifying the proper timing of muscle
activation [17]. The RMS value for the signal is plotted at the window center to avoid any
envelope time shifts relative to the signal [28].

3.2.4 High Pass Filter
The number of muscle �bers, depth, amount of tissue, and location of active �bers all affect

the quality of the sEMG signal recorded. These factors superimpose unwanted signals or cancel
out the signal from the target muscle we are attempting to record. High-pass �ltering permanently
removes the effect of maintaining a constant force on or of repetitive �uctuation in the intensity
from the sEMG signals [27]. A high-pass �lter is well suited for eliminating the oscillation caused
by superimposed artifacts. This step constructs a high pass �lter using a design function with
order 4, a passband frequency of 75 kHz, and a sampling frequency of 1000Hz. The designed
high pass �lter ef�ciently transforms the signals with �exible resolution in the time domain.

3.2.5 Recti�cation for the Final Result
The pre-processed sEMG signal is ready to be utilized in the subsequent steps of the proposed

framework. Algorithm 1 shows the pre-processing steps of the proposed framework.

Algorithm 1: Pre-processing steps
Input: raw sEMG signal for the �ve core muscles.
Output: Enhanced sEMG signal free from any noise, offset or possible artifacts, with �exible
resolution in the time domain

a. Replace Outliers in sEMG Signal using the nearest �ller.
b. Rectify the Full Wave (linear envelope shape) of the sEMG signal by taking the absolute

value of the signal. Then, a low pass �lter is applied with order 4, and a cutoff frequency
of 10 Hz.

c. Compute the Root Mean Square Envelope to estimate the amplitude variation of the
sEMG signal.

d. Construct a high pass �lter using a design function with order 4, a passband frequency of
75 kHz, and a sampling frequency of 1000 Hz.

e. Rectify the �nal result.

3.3 Feature Extraction
The temporal characteristics of speci�c muscle activities can be investigated by analyzing

sEMG signals during movement. The recorded sEMG signals during muscle movements should
mainly cover activity level (activation timing) [25]. Every group of muscles works in a sequential
order to perform a speci�c physical activity. The timing parameters of muscular activity are signi-
�cation factors in the determination of the electromechanical delay under different conditions [5].
The timing parameters can be extracted from the recorded sEMG, including onset and offset
times, to identify the duration of sEMG bursts [4]. Onset and offset values are de�ned as follows.
The time point where muscle activity begins is the onset, whereas the time point where muscle
activity ends is the offset. Determination of onset and offset times enables identifying the duration
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of each muscle’s activity [3]. Aminaka et al. [9] de�ned duration as the time between muscle
activation onset and offset. The detecting of timing parameters, i.e., onset, offset, and duration,
also enable the determination of the order of activation for each of the �ve muscles. The values of
onset and offset allow physicians to identify the physiological activity characteristics of the target
muscle in the recorded sEMG [4]. The selection strategy is mainly based on the determination of
a speci�c threshold value. The threshold choice lacks an agreement between the researchers [30].
Our approach adopts a threshold where the targeted muscle is considered to have reached the
start time (onset) when its activity exceeds a threshold equal to three SDs above its baseline level.
The activity must stay above the threshold for a minimum of 25 ms to be considered. At the same
time, the muscle is considered to have reached the end time (offset) if its activity drops below
the threshold equal to 3× SDs for at least a 25 ms period [31]. Algorithm 1 lists the main steps
of the feature extraction stage. The proposed algorithm is used for computing muscle activation
parameters, i.e., onset duration, offset duration, and order of activation. The suggested algorithm
�rst computes SDs for each of the �ve involved muscle signals. Then, it checks for muscle start
time (onset) where the signal value exceeds the speci�ed threshold of 3× SDs. The signal value
must exceed the speci�ed threshold for 25 ms or more. In the same way, the algorithm checks for
muscle end time (offset) where the signal value drops below the speci�ed threshold of 3× SDs
for at least 25 ms. The algorithm calculates these values for each of the �ve involved muscles
and each signal length. Consequently, the duration can be measured by subtracting onset from
offset for each muscle signal. The signal for each muscle of interest was measured several times
for each patient to overcome the problem of inaccurate measurements. Net values for key feature
parameters, along with their matched muscle names, are concatenated in the table below.

Algorithm 2: Feature extraction

Input: enhanced sEMG signal for the �ve core muscles.
Output: Obtaining onset, offset, and duration for each active muscle.
Begin For j= 1: no. of muscles of interest

For i= 1: muscle signal length

Compute SDs for each of muscles of interest;

If (signal (i, j) > 3× SDs && duration (j) > 25 ms)

onset (j)= t(i);

If (signal (i, j) < 3× SDs && duration (j) > 25 ms)

offset (j)= t(i);

duration= offset-onset;

For all trials:

Match column of signal with string muscle name �eld

mean_onset=mean(onset);

mean_offset=mean(offset);

mean_duration=mean(duration);

% Get order of activation for �ve-muscles

Order= sort(mean_onset);
(continued.)
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% Save feartures extracted in to cells

net_results= {mean_onset, mean_offset, mean_duration, Order};

% Convert cell to tables then export it into CSV �le

Tableoforder= cell2table(net_results);

writetable(Tableoforder,’order-activation.csv’)

End

3.4 Classi�cation
3.4.1 Post-Processing

The muscle characteristics features i.e., onset, offset, and duration are extracted for each of
the �ve core muscles (TrA, VMO, GM, VL, and ML). The model was constructed using �fteen
feature descriptors along with a labeling �eld to mark patients separate from healthy cases, as
shown in Fig. 3.

Figure 3: The arrangement of sEMG features fed as input to the classi�er

The �rst row of entries in the given table shows the three discriminative features that were
extracted for each of the �ve core muscles. The last row of entries in the table shows the three
discriminative features; onset, offset, and duration, that were extracted for each muscle from
healthy adults. The labeling �eld uses {1} to mark patients from {0} healthy cases in order to
construct the training model. The extracted features are used as input data to train the linearly
separable classi�er. All feature matrices resulting from all trials were concatenated to form a single
large matrix representing the whole dataset for the extensive margin classi�ers, where each row
represents a single input.

Before feeding data into the classi�er, some prepossessing steps are applied to the �nal form
of the dataset. Post-processing steps are needed to prepare, transform, and clean the data to
emphasize any strong patterns in the dataset and summarize the information content. A min-
max normalization for each muscle signal was performed to unify individual samples. The data
cleansing helps in detecting irrelevant parts of the data, such as duplicates or coarse data. Low-
quality data were removed by applying data cleansing methods. Dimensionality reduction using
principal component analysis (PCA) technique is then performed to obtain the most signi�cant
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judgment variables [32]. Thus, the model was built using discriminative muscle features to evaluate
the ability of the trained model to produce precise predictions. The following algorithm shows the
post-processing steps.

Algorithm 3: Post-processing steps
Input: The extracted features, i.e., onset, offset, and duration for each of the �ve core muscles
along with means of trials for each patient.
Output: The discriminative muscle features input data to train the linearly separable classi�er.

a. Concatenated the extracted features in terms of the mean of muscle trials for the PF OA
patients and healthy cases, where each row represented a single input.

b. Label each instance as {1} to mark patients and {0} for healthy in a labeling �eld.
c. Data normalization to unify data samples.
d. Cleansing data to detect and remove any irrelevant parts of the data, duplicates, or coarse

data by applying data cleansing methods.
e. Dimensionality reduction using adaptive data analysis PCA technique for increasing the

interpretability of the datasets while minimizing information loss.

3.4.2 Classi�cation
Support vector machines

SVM is a machine learning algorithm for classi�cation. The SVM’s main objective is to �nd
a dependency description between a set measured variables from an object and speci�c properties
of these variables. Estimating the function mapping f: RN→ {±1} can be done in determining
the corresponding values for new [33]. Using hard SVM, the hyperplane cannot separate in all
cases. As such, in certain cases, the promotion of soft margin SVM is needed. Soft margin
SVMs can �nd separation hyperplanes using positive slack variables, ξi, that can be used to
adapt the constraints in Eq. (2) [34]. Slack variable adaptation gives SVM �exibility to reduce
the optimization in�uence by allowing some cases to lie inside the margin or within the cases of
another class.

∀i


w∗xi+ b≥+1− ξi y=+1

w∗xi+ b≤−1− ξi y=−1

ξi ≥ 0

(1)

Fast large margin classi�er

The concept of a large margin has been identi�ed as a principle for classifying data based
on the margin of classi�cation (i.e., a scale parameter) rather than a raw training error [35].
The margin of the classi�cation is mainly determined by locating the decision function far away
from any data points [36]. Fast large margin approaches are looking to achieve large margin
decision solutions by solving a constrained quadratic optimization problem and boosting with
early stopping techniques [37].

The fast large margin classi�er considers the above optimization and convergence techniques
to reduce generalized errors and maximize the margin of separating hyperplanes. Such algorithms
can save time and resources when optimizing training processes [37]. Let the quantity ρ denote the
margin, the quantity which determines how well two classes can be separated and, consequently,
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how fast the learning algorithm converges. Using the real-valued mapping f : X→R for classifying
the pattern x; the margin can be given by Eq. (2) [35].

ρf (x,y) := yf (x) (2)

De�ne the margin cost function ϕ : : R→R+ and ϕ risk of f given by Eq. (3).

Rϕ (f )=Eϕρf (x,y) (3)

Minimizing empirical ϕ risk gives Eq. (4).

R̂ϕ (f )= Êϕρf (x,y) (4)

The AdaBoost algorithm uses the margin cost function ϕ(α) = exp(−α); minimizes R̂ϕ (f )
using greedy basis selection, line search [35].

Classi�ers should achieve a large margin ρf for reliable training and also to perform well on
unseen instances. These algorithms can perform training more robustly concerning patterns and
parameters. The maximum margin hyperplanes f ∗ can be given by Eq. (5) [35].

f ∗ := arg max
f

ρf : = argmax
f

min
i

yi f (xi) (5)

The maximum margin f for the optimal hyperplane can be given such that the weight vector
and threshold satisfy Eq. (6).

w∗, b∗ = arg max
w,b

m
i=1min

(w · xi)+ b
‖w‖

(6)

The maxi–min optimization problem can be transformed into a constrained optimization task
by maximizing the subject to the margin lower bound ρ as in Eq. (7) [35].

w∗, b∗,ρ∗ = arg max
w,b,ρ

ρ subject to
(w · xi)+ b
‖w‖

≥ ρ for 1≤ i≤m (7)

w∗, b∗,ρ∗ = arg max
w,b,ρ

ρ subject to ‖w‖ = 1 and yi ((w · xi)+ b)≥ ρ for 1≤ i≤m

High noise cases result in a signi�cant overlap within the classes. The previous maximum
margin algorithms perform poorly in this case because the maximum-minimum margin achieves
negative values. A standard approach to overcome the sensitivity to noisy training patterns is by
introducing slack variables (Eq. (8)). The relaxed constraints take the form of Eq. (9) [36].

ξi ≥ 0, for all i= 1, . . . , m (8)

yi ((w · xi)+ b)≥ 1− ξi, for all i= 1, . . . , m (9)

By controlling both the size of w and the number of training errors, we can minimize the
following objective function, where the constant C > 0, a classi�er that generalizes well, can then
be found by Eq. (10) [35].

τ (w, ξ)=
1
2
‖w‖2+C

m∑
i=1

ξi (10)
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Incorporating kernels k for the dot products k(x, xi) and Lagrange multipliers αi, subject to
the constraints leading to decision functions of the more general form.

f (x)=
∑
i=1

αik(x, xi)+ b (11)

A fast large margin algorithm has several advantages. First, it converges in a �nite number of
updates. Second, the solution is optimized to give the maximum possible margin [35]. Experimen-
tal results using a fast large margin algorithm show higher performance and faster convergence
compared to SVMs and other state-of-the-art classi�ers.

4 Experimental Results

4.1 Dataset
The dataset was synchronously captured form �ve PF OA related muscles: TrA, VMO,

GM, VL, and ML. The data from the �ve muscles were acquired for each activity, such as
going upstairs. The dataset was acquired at the Outpatient Clinic, Faculty of Physical Therapy,
Cairo University using quantitative EMG with surface electrodes. The sEMG data signal of
the dataset was recorded at the Department of Biomedical Engineering, Faculty of Engineering,
Cairo University.

This dataset has a total of 186 records for PF OA patients and 66 records for healthy
individuals. This dataset is comprised of training cases along with corresponding clinical label
diagnosis cases. Different pre-processing steps, i.e., normalization, cleansing, and dimensionality
reduction, were performed to prepare the data to be fed into the classi�er. Different evaluation
metrics were adopted to check the signi�cance of the proposed PF OA diagnosis framework.

4.2 Performance Evaluation
The four outcomes of positive instances (P) and negative instances (N) formulates a 2 × 2

confusion matrix for the experiment. The area under the ROC (receiver operating characteristics)
curve (AUC) is an important evaluation metric for checking the performance of the classi�cation
model. The ROC curve is plotted with the TPR (True Positive Rate) against the FPR (False
Positive Rate), where TPR is on the y-axis, and FPR is on the x-axis [38]. The accuracy (ACC)
measure is used to check the capability of the classi�cation model. Accuracy can be calculated
using Eq. (12). The sensitivity (Sen.) or recall measure is used to check the capability of our
classi�er to recognize the positive class patterns. The Sen of the classi�er can be determined
using Eq. (13). The speci�city (Spec.) measure is used to check the capability of the classi�er to
recognize the negative class patterns. It can be calculated using Eq. (14). The F-measure or dice
similarity coef�cient (DSC) considers both precision and recall to measure the accuracy of the
test. DSC ranges from 0, the worst score, to 1, the best score, as a weighted average of precision
and recall. The DSC measure can be calculated using Eq. (15) [39].

Accuracy=
TP+TN

(TP+FP+TN+FN)
× 100 (12)

Sen.=
TP

TP +TN
(13)
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Spec.=
TN

TN+FP
(14)

DSC= 2×
Precision ×Recall
Precision+Recall

(15)

4.3 Results
Large margin classi�ers were used to evaluate the performance of the proposed model, i.e.,

fast large margin and SVM classi�ers. Signi�cant evaluation metrics were used to check the capa-
bility of the model at distinguishing between classes. ACC, AUC, DSC, Sen, and Spec are used
as performance indicators. These evaluation metrics are considered along with total time spent in
training to indicate the convergence rate. The proposed framework achieved higher performance
results using the fast large margin and SVM classi�ers. The higher performance from using the
fast large margin classi�er was achieved in shorter computing time than with SVM. The proposed
system achieved an average ACC equal to 98.8%, AUC equal to 0.999, DSC equal to 99.1%, Sen
equal to 99.9%, and Spec equal to 96.0% in 7 s using the fast large margin classi�er and an
average ACC equal to 98.8%, AUC equal to 0.999, DSC equal to 99.1%, Sen equal to 99.9%, and
Spec equal to 96.0% using the SVM classi�er in 21 s.

To evaluate the results of the proposed system, the computed results were compared with
other state-of-the-art classi�ers. These classi�ers are the generalized linear model (GLM), logistic
regression, Naïve Bayes, deep learning, decision trees, random forest, and gradient boosted trees
(GBT). The comparison measurements are listed in Tab. 1, as follows GLM, logistic regression,
Naïve Bayes, deep learning, decision trees, random forest, and GBT achieved ACC equal to 97.4%,
96.1%, 97.4%, 96.1%, 80.6%, 79.3%, and 91.0%, respectively. They achieved average AUC equal to
0.996, 0.992, 0.996, 0.999, 0.689, 0.943 and 0.732, respectively. They achieved average DSC equal
to 98.2%, 97.4%, 98.2%, 97.3%, 88.0%, 83.4%, and 94.0%, respectively. They achieved average
Sen equal to 99.9%, 99.9%, 98.5%, 98.0%, 96.9%, 72.3%, and 96.9%, respectively. They achieved
average Spec equal to 92.0%, 82.0%, 96.0%, 89.3%, 36.7%, 99.9%, and 74.0%, respectively. The
training time of these classi�ers was 3, 4, 7, 7, 7, 38, and 125 s, respectively. The proposed
system, using the fast large margin and SVM classi�ers, outperformed the other state-of-the-
art techniques in terms of accuracy. When it comes to convergence time, the fast large margin
classi�er outperforms SVM and the other tested classi�ers in the comparative evaluation.

Table 1: The performance evaluation of the proposed technique with other classi�ers

Model ACC. (%) AUC DC (%) Sen. (%) Spec. (%) Total time (s)

GLM 97.4 0.996 98.2 99.9 92.0 3
Logistic regression 96.1 0.992 97.4 99.9 82.0 4
Naïve Bayes 97.4 0.996 98.2 98.5 96.0 7
Deep learning 96.1 0.999 97.3 98.0 89.3 7
Decision trees 80.6 0.689 88.0 96.9 36.7 7
Random forest 79.3 0.943 83.4 72.3 99.9 38
GBT 91.0 0.732 94.0 96.9 74.0 125
SVM 98.8 0.999 99.1 99.9 96.0 21
Fast large margin 98.8 0.999 99.1 99.9 96.0 7
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The convergence and robustness are illustrated by the training time in seconds, as shown in
Tab. 1. To visualize the performance of the proposed model, the ROC curve was constructed
along with the other comparative classi�ers. The ROC curve was created by plotting the TPR
against the FPR. Fig. 4 shows the relationship between Sen and Spec for all comparative
techniques. The results show the superiority of the proposed framework’s predictions vs. the
other techniques.

Figure 4: The ROC curve for the tested classi�ers

4.4 Discussion
sEMG based research considered in the comparison can be divided into two major categories.

Some of them investigated measuring muscle activity, and other relevant work explored the classi-
�cation of EMG signals using various approaches. Khowailed et al. [18] and Liu [19] investigated
measuring muscle activation and characterized the active muscles from their baseline state in terms
of the onset of muscle activation. Other sEMG based techniques are concerned with the analysis
and classi�cation of EMG signals [2,16,17,20,22]. Most EMG signal classi�cation techniques are
based on real time-domain features. The classi�cation studies in recent literature have been carried
out based on extracting statistical characteristics for the recognition process [17,22].

To provide a comparison with feature-based methods, a classi�cation technique based on
muscle activation characteristics was developed. The proposed classi�cation model investigates
extracting core muscle activation in terms of onset, offset, and duration of muscle activation for
a more precise diagnosis for PF OA arthritis patients. The extracted feature space is used to
construct the classi�cation model. Large margin classi�ers were used for training the model to
discriminate the labeled PF OA arthritis patients vs. healthy cases. The fast large margin classi�er
utilized the LS-SVM solver type in this method. The penalty parameter of the error term was
C = 10, the tolerance of the termination criterion ξ , class weights w, intercept value bias was
set as optimal parameters. The penalty parameter values over the training processes, along with
error terms, are given in Tab. 2. It can be seen that the optimal penalty parameter value over the
training processes is 10, which corresponds to the smallest error shown in Fig. 5.

Several comparative classi�ers converged in a short time but with lower performance, i.e.,
logistic regression, Naïve Bayes, deep learning, and decision trees. The proposed fast large margin
classi�er achieves higher accuracy in shorter convergence time, as shown in Fig. 5.
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Table 2: The penalty parameter values over the training processes along with error terms

C Error rate (%)

0.001 13.7
0.010 23.8
0.100 8.1
1 5.0
10 2.5
100 2.5
1000 6.3

97.40% 96.10% 97.40% 96.10%

80.60% 79.30%

91.00%
98.80% 98.80%

3s 4s 7s 7s 7s

38s

2 min 5 s

21 s 7s
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ACC Total Time

Figure 5: Comparison in terms of accuracy with convergence time

Some of the previous studies evaluated their approach using a real-time domain compari-
son [2,18,19]. Other studies on classi�cation techniques evaluated their work in terms of accuracy.
Cene et al. [16] proposed a classi�cation framework based on a logistic regression algorithm
to identify the sEMG signal movement. Their system achieved an average accuracy equal to
90.2%. Veer et al. [17] introduced a classi�cation model that discriminated against the strength
of the movement as high or low from the sEMG signal. The model was trained using an ANN
with pre-de�ned arm motions and achieved an average classi�cation accuracy of 92.5%. Rane
et al. [20] proposed a supervised model for predicting muscular force-based EMG movement
signals as inputs to a hierarchical model. Their system achieved an average accuracy equal to
84%. Morbidoni et al. [22] proposed a deep learning approach to predict foot-�oor-contact during
natural walking for sEMG signals. The sEMG signals were acquired from eight lower-limb muscles
of 23 healthy subjects during walking, and the model achieved an average classi�cation accuracy
of 94%.The proposed fast large margin classi�cation model based on muscle activation features
extracted is compared with the sEMG signal feature-based classi�cation techniques in the litera-
ture. The proposed fast large margin classi�cation model based muscle activation features achieved
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98.8% classi�cation accuracy. The presented model uses muscle activity timing as a feature space,
while others carried out a classi�cation task based on statistical characteristics. The extracted
feature space can also help in determining the order of muscle activation to help clinicians to
incorporate suitable exercises into a rehabilitation program correctly. The results of the proposed
model were evaluated using the acquired sEMG signals from PF OA arthritis patients vs. healthy
cases. However, in some studies, the experiments were carried out using a simulated signal. The
implemented framework shows promising results in sEMG signal analysis since the accuracy rate
outperforms other studies with similar techniques in this area. The trained fast large margin
classi�er allows the system to automatically learn relevant features and determine the modi�cation
of muscular activation patterns to compensate for the muscle disorders ef�ciently. The proposed
PF OA arthritis classi�cation model provides novel insights to approximate the accurate timing
of core muscles in designing treatment exercises.

5 Conclusion

This work proposed a precise diagnosing approach for PF OA arthritis patients. The devel-
oped predictive model investigates PF OA arthritis muscle timing features. sEMG signals were
acquired from �ve core muscles over 252 reads from PF OA patients and healthy adults while
stepping upstairs. Onset, offset, and duration times for TrA, VMO, GM, VL, and ML muscles
were acquired to construct the classi�cation model. PF OA arthritis muscle timing features were
extracted using function mapping from real-time space to a PF OA arthritis discriminative feature
space. The extracted features helped determine the order of muscle activation for a clinician
to incorporate suitable exercises into a rehabilitation program correctly. The fast large margin
classi�er results based on the muscle timing activation features achieved higher performance and
faster convergence than SVM and other state-of-the-art classi�ers. The implemented framework
shows promising results in sEMG signal analysis since the accuracy rate outperforms other similar
techniques in this area. In future work, more analysis of the signal and expanding the dataset is
required. Hierarchical networks can also be used for deep training.
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