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Abstract: Tomato production is affected by various threats, including pests,
pathogens, and nutritional de�ciencies during its growth process. If control
is not timely, these threats affect the plant-growth, fruit-yield, or even loss of
the entire crop, which is a key danger to farmers’ livelihood and food security.
Traditional plant disease diagnosis methods heavily rely on plant patholo-
gists that incur high processing time and huge cost. Rapid and cost-effective
methods are essential for timely detection and early intervention of basic
food threats to ensure food security and reduce substantial economic loss.
Recent developments in Arti�cial Intelligence (AI) and computer vision allow
researchers to develop image-based automatic diagnostic tools to quickly and
accurately detect diseases. In this work, we proposed an AI-based approach to
detect diseases in tomato plants. Our goal is to develop an end-to-end system
to diagnose essential crop problems in real-time, ensuring high accuracy. This
paper employs various deep learning models to recognize and predict differ-
ent diseases caused by pathogens, pests, and nutritional de�ciencies. Various
Convolutional Neural Networks (CNNs) are trained on a large dataset of
leaves and fruits images of tomato plants. We compared the performance of
ShallowNet (a shallow network trained from scratch) and the state-of-the-
art deep learning network (models are �ne-tuned via transfer learning). In
our experiments, DenseNet consistently achieved high performance with an
accuracy score of 95.31% on the test dataset. The results verify that deep
learning models with the least number of parameters, reasonable complexity,
and appropriate depth achieve the best performance. All experiments are
implemented in Python, utilizing the Keras deep learning library backend
with TensorFlow.
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1 Introduction

Damages and losses in crop production due to natural threats impact the livelihood of
smallholder farmers as well as the economy and food security worldwide. Crop losses due to
pests, pathogens (fungi, bacteria, and viruses), and nutritional de�ciencies are responsible for
losing 20%–40% of global agriculture productivity [1]. Usually, the occurrence of these problems is
greatly related to the climate-change, and variation of the regional environment, such as humidity,
temperature, precipitation, and salinity, which serve as a vector in which pathogens and pests
can grow and thus adversely impact on the local community economic, health and farmers’
livelihood [2].

Generally, farmers use manual methods for plant disease diagnosis. Such diagnosis meth-
ods are conducted by experts such as plant pathologists, botanists, and agricultural specialists
through visual inspection follow by laboratory tests. Such approaches are not suitable in local
farming practices due to low human infrastructure capacity and high cost. Real-time and cost-
effective disease recognition methods are required for the timely detection and diagnosis of
tomatoes crop disorders. For these reasons, it has become essential to develop tools for the
automatic diagnosis of plant disorders utilizing image processing and computer vision technology.
Rapid disease diagnosis with early interventions will reduce impacts on the entire crop and food
supply chains.

Studies have previously used traditional machine learning approaches such as K-Means [3],
Support Vector Machines, Logistic Regression, and Multi-Layer forward prorogation [4] neu-
ral networks for plant disease classi�cation and proven useful in image classi�cation. However,
these techniques are highly dependent on complex hand-crafted feature extraction and dimension
reduction techniques, which need to be adapted whenever the underlying problem or dataset
changes [5–8]. Hence, these techniques require extensive human effort and do not generalize well.

Recently, Arti�cial Intelligence (AI) has found widespread applications in agriculture. Mainly,
deep learning has been widely applied to classify plant diseases, crop management, pests control,
weed detection, and farmland management [6]. Convolutional Neural Network (CNN) based
deep learning architectures such as AlexNet [9], VGG-16 [10], and Inception-ResNet [11] gained
popularity in image classi�cation tasks over the years. The AlexNet model won the ImageNet
Large Scale Visual Recognition (ILSVR-2010) challenge and accurately predicted 1000 categories
of images using a 1.2 million training image set. Ever since, multiple methods and frameworks
have been proposed for image processing (object detection and classi�cation), and applied to
solving various problem-solving domain as an example of end-to-end learning [12–15]. Several
recent studies have targeted to solve problems in the agricultural domain using deep learning
models. Kamilaris et al. [12] conducted a survey of 40 studies for the application of deep learning
in agriculture including several CNNs (e.g., AlexNet, VGG-16, and Inception-ResNet), the Long
Short-Term Memory (LSTM) model, the Differential Recurrent Neural Network (DRNN) model,
and Support Vector Machines (SVM).

Early investigation has validated deep-learning-based recognition of crop diseases in
apple [16], banana [17], wheat [18], Alfalfa [19], tomato [20–22], and the dataset of multiple crops
of healthy and diseased leaves [23,24]. However, existing crop disease detection models are mostly
focusing on leaf symptoms to differentiate between healthy and diseased leaves. Numerous disease
symptoms also appear in other body parts of the plant, such as stem and fruits. Furthermore,
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current work focuses on plant pathogens, pests, or nutrient de�ciency; therefore, farmers need
different tools to identify each type of problem. Thus, it is essential to integrate possible threats
of a single crop to develop a comprehensive diagnostic system for accurate identi�cation of a
wide variety of disorders caused by various sources of a problem.

Inspired by the deep learning breakthrough in image recognition, this study aims to apply
state-of-the-art deep learning architecture to detect visual symptoms of tomato plants for the
instant classi�cation of disease caused by pathogens and pests and nutritional disorders. We used
a large dataset of healthy and infected parts of leaves and fruits of tomato plants to train the
deep learning models. The labeled images of tomato leaves and pests are taken from openly
available datasets.1,2 We further extended these datasets with tomato fruit and leaf images taken
from agriculture farms of King Faisal University using high-resolution cameras. Moreover, we
prepared a dataset of four macronutrient de�ciencies, including Nitrogen, Potassium, Calcium,
and Magnesium, and labeled them with the help of pathogens experts and botanists. We used the
extended dataset to train a deep Convolution Neural Network (CNN) of different depth from
scratch in the �rst case and then �ne-tuned the pre-trained state-of-the-art deep learning architec-
ture, i.e., VGGNet 16, ResNet with 50 and 152 layers, and DenseNet 121. Each model’s ability to
correctly predict different classes of diseases, pests, and nutritional de�ciencies is compared. The
best model, i.e., DenseNet 121, achieved 95.31% accuracy on the held-out dataset. This study is
the �rst step towards the smartphone-assisted disease diagnosis App for tomato plants. In the next
step, we plan to add other crops such as cucumber, eggplants, green chilies, and date palm in the
Kingdom of Saudi Arabia to support local farmers and to ensure food security and environmental
sustainability in the Kingdom.

The rest of the paper is structured as follows: Section 2 reviews the literature on deep
learning-based disease detection models for plant disease classi�cation problems. Section 3 presents
the end-to-end deep learning model for tomato plant diseases, pests, and nutritional de�ciencies
detection. The results achieved are discussed in Section 4. Finally, Section 5 concludes the paper
with future work.

2 Related Work

Deep learning-based image recognition models have been widely applied to address automated
plant recognition and disease identi�cation problems. For instance, Mohanty et al. [25] used a
deep learning-based plant disease recognition model to detect 26 diseases for 14 types of crop
species using the PlantVillage [26] dataset of 54,306 images of diseased and healthy plant leaves.
They trained CNN to predict crop-disease pair on a given image of a leaf. They trained two
deep learning architecture, i.e., AlexNet [9] and GoogLeNet [27], from scratch and compared
results with a pre-trained version of the same models. The best model based on CNN architecture
achieved an accuracy of 99.35% on a held-out test dataset. Wang et al. [16] utilized the same
dataset to identify the disease severity by further annotating the apple leaves with four stages of
disease severity, i.e., healthy, early, middle, and end-stages. In their experiments, VGG 16 with
transfer learning achieved the highest accuracy of 90.5% on the test dataset.

Sladojevic et al. [28] also used CNN to develop plants disease recognition model using
leaf images taken from the Internet. By discriminating the plant leaves from their surroundings,

1 https://data.mendeley.com/datasets/s62zm6djd2/1.
2 https://plantvillage.psu.edu/diseases.

https://data.mendeley.com/datasets/s62zm6djd2/1
https://plantvillage.psu.edu/diseases
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13 common types of plant diseases were recognized by the proposed CNN-based model with
96.3% accuracy. Similarly, deep learning is also applied to plant species identi�cation. For example,
Dyrmann et al. [29] developed a CNN model to recognize 22 different types of weed and crops.
The model was tested on 10,413 images and was able to achieve an accuracy of 86.2%. The model
had a problem recognizing some plant species, and the study claimed that low accuracy is due to
a small number of training instances for those species.

While the above studies have validated deep learning-based image recognition models on
datasets of multiple crop classi�cation and disease identi�cation, there is a growing interest in
developing deep image-based disease diagnostic models for a speci�c crop, assuming farmers
already know what type of crop they are growing. In this case, an early investigation has validated
deep learning-based recognition of crop diseases in apple [16], banana [17], wheat [18], Alfalfa [19],
tomato [20–22], and the dataset of multiple crops of healthy and diseased leaves [23,24].

Athanikar et al. [30] applied multi-layered back propagation neural network (BPNN) to
categorize images of healthy and diseased leaves of the potato crop. The images were collected
from potato �elds using high-resolution cameras, and different preprocessing techniques were
used to enhance images. BPNN was trained on different types of leaves features such as color,
texture, shape, and size and was able to predict healthy or diseased leaf with an accuracy of 86%.
Moreover, Samanta et al. [31] used a histogram-based image processing technique to detect potato
scab diseases. Extensive image segmentation was carried out to identify patterns of target spots;
�nally, an analysis of the target region was performed to identify the disease phase.

Liu et al. [32] used AlexNet, a CNN based deep learning architecture, to detect apple leaf
diseases. They used 13,689 images of diseased apple leaves to detect four common types of
apple leaf diseases. Experimental results showed that the proposed disease identi�cation approach
achieved an overall accuracy of 97.62%. Selvaraj et al. [17] trained three different types of CNNs
architectures i.e., ResNet50, InceptionV2, and MobileNetV1, using transfer learning to detect
banana diseases and pests. A total of 18,000 images from different parts of the banana plants
were collected from �elds and annotated with 18 different diseases and pests. Experimental results
showed that most of the models achieved more than 90% accuracy on held-out dataset.

Fuentes et al. [20] proposed a real-time system for tomato plant diseases and insect detection
system using images captured in �elds using cameras with different resolutions. The system com-
bined three families of meta-architectures (Faster R-CNN, R-FCN, and SSD) with deep feature
extractors such as VGGNet and ResNet, to �rst detect the location of disease/pest and then
classify them into nine different categories. Experimental results showed that meta-architectures
with feature extraction could recognize different types of tomato plant diseases and pests collected
in real scenarios. Our proposed system is different in the sense that it can recognize twenty-
four different types of tomato plant diseases, pests, and nutritional de�ciencies. Furthermore, we
collected images of tomato leaves and fruits from Saudi Arabia under the assumption that the
tomato plant is susceptible to different types of diseases and pests due to harsh environmental
conditions. Additionally, recognizing a disease with respect to the source of problems such as
pathogens, pests, or nutritional de�ciencies would help the local farmers to take appropriate
remedial action such as spreading chemicals, pesticides, or fertilizers at targeted areas.

The above studies show that CNNs based deep learning models had been applied successfully
to various plant disease recognition and showed outstanding performance. Unfortunately, the
attack of diseases is not only common to leaves, but other body parts of a plant are equally
affected by such problems. Also, most of the studies are conducted on plant disease recognition,
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and only a few studies focus on pests with only a few common categories, e.g., [17,20]. To the
best of our knowledge, this is the �rst study, which covers eight different types of pests observed
in the tomato plant along with four macro-nutrient de�ciency problems. Furthermore, most of the
existing work focuses only on a single source of problems such as pathogens, pests, or nutritional
de�ciencies with few more common diseases. Consequently, when disease recognition tools are
used under real-world conditions, they have to �nd the class that best explains the symptoms
among the limited subset of disorders and often leads to an incorrect diagnosis. A comprehensive
diagnosis system should be able to identify all possible sets of disorders caused by various
sources of problems. Thus, it is essential to integrate possible threats of a single crop caused
by various sources of problems under one tool. The proposed system has the ability to identify
a large number of classes caused by several diseases, pests, and nutritional de�ciencies in the
tomato plant.

3 Deep Learning-Based Architecture for Tomato Plant Diseases, Pests, and Nutrients-De�ciency
Recognition

Tomato plants are susceptible to several diseases caused by pathogens, pests, and nutritional
disorders. Several factors can be attributed to affecting the plant, especially in Saudi Arabia
and worldwide in general: (1) Harsh environmental conditions such as high temperature, dryness,
sandy, and salinity land; (2) Pests that spread diseases from one plant to another; (3) Bacterial,
viral, and fungal diseases; (4) Nutritional disorders due to fertilizers’ excess or de�ciency. These
problems usually present different physical signs and symptoms (variation in shapes, colors, lines,
presence of pests or insects, etc.) at various plant parts, such as stems, leaves, and fruits. Due to
similar patterns, it is challenging to differentiate different plant problems unless visually inspected
by agriculture experts or analyzing a physical sample in a laboratory. Both approaches are time-
consuming, costly, and not feasible for smallholder farmers due to lack of infrastructure. Early
detection and treatment based on visual characteristics of leaves or fruits can avoid destroying the
whole crop.

3.1 System Overview
This work aims to identify twenty-four classes of diseases, pests, and nutritional de�ciencies

that impact tomatoes production, using deep learning as the system’s main body. An abstract view
of the system is presented in Fig. 1. The proposed system consists of several components, from
data collection to classi�cation and prediction of the results. The following section describes the
detail of each component of the proposed approach.

3.2 Data Collection and Labeling
This study’s dataset contains images for three main categories of problem sources, i.e., dis-

eases, pests, and nutritional de�ciencies in the leaves and fruits of the tomato plants. To develop
accurate image classi�ers for tomato plants disease diagnosis purposes, we needed a large, veri�ed
dataset of images of diseased and healthy leaves and fruits. We used the Plant Village [26] dataset
openly available for the public for the tomato leaf disease dataset. We selected eight classes of leaf
diseases from the plant village dataset that are commonly observed in the local context. We further
enriched this dataset with tomato fruit and leaf images for a few disease classes. Additionally,
we extended the dataset with three more disease classes for tomato leaves and fruits, i.e., high
temperature, leaf miner, and powdery mildew. The images were taken from the agriculture farms
of King Faisal University, Alahsa, under natural conditions.
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Figure 1: System overview of the deep-learning-based approach for plant diseases, pests, and
nutrients-de�ciency recognition. The deep learning architecture consists of several steps that use
input images as sources of information and provide detection results in terms of classes ranked
on con�dence

We used publicly available datasets for the pest dataset for eight common tomato pests
provided at Mendeley data3 for the tomato leaves. We extended the dataset with more images
taken from the local agriculture farms.

To collect data for nutrient de�ciencies in tomato leaves and fruits, we cultivated tomato plants
under greenhouse conditions at the agriculture farms of King Faisal University. During the growth
process, we arti�cially induced four macro-nutrients de�ciency, i.e., Nitrogen (N), Calcium (Ca),
Magnesium (Mg), and Potassium (K). We captured tomato leaves and fruits images in the state
of de�ciency of these nutrients at different stages of the plant growth. Each image is examined by
human experts and labeled with the appropriate nutrient de�ciency class. We observed Nitrogen
and Magnesium de�ciency shown only on leaves, Potassium de�ciency appeared on leaves in the
early stage and fruits on the middle stage, and Calcium de�ciency mostly appeared on the fruit.

Altogether, the dataset used for this study has twenty-four classes: Diseases (11), pests (8),
nutritional de�ciencies (4), and a class for tomato plant healthy leaves and fruits images (1).

The aim of the labeling process is assigning a class label to each image out of twenty-four
classes. Agriculture experts have provided the knowledge of assigning an appropriate label. They
helped us visually identifying characteristics of leaves and fruit attacked by disease, pests, or
nutrient de�ciencies to label under the right class of each category.

Tab. 1 shows the total number of images collected across twenty-four classes of problems that
can affect the leaves and fruits of a tomato plant.

3 A database of eight common tomato pest images: https://data.mendeley.com/datasets/s62zm6djd2/1.

https://data.mendeley.com/datasets/s62zm6djd2/1
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Table 1: List of categories included in the dataset of tomato diseases, pests, and nutritional
de�ciencies and their labeled samples

Class No. Common name Scienti�c name Number of images Total

Leaf Fruit

1. Mosaic virus Mosaic virus 373 430 830
2. Bacterial spots Xanthomonas campestris

pv. vesicatoria
2127 194 2321

3. YLCV Yellow leaf curl virus 3208 0 3208
4. Late blight Phytophthora Infestans 1909 0 1909
5. Early blight Alternaria solani 1000 0 1000
6. Leaf mould Passalora fulva 952 0 952
7. Septoria leaf spot Septoria lycopersici 1771 0 1771
8. Target spot Corynespora cassiicola 1404 0 1404
9. High temperature NA 752 0 752
10. Powdery mildew Oidium lycopersicum 241 0 241
11. Leaf miner Agromyzidae 1230 0 1230
12. Two-spotted spider mite Tetranychus urticae 1676 78 1754
13. White�y Bemisia argentifolii 420 0 420
14. Melon �y Zeugodacus cucurbitae 294 0 294
15. Melon thrips Thrips palmi 168 0 168
16. Green peach aphid Myzus persicae 910 0 910
17. Taro caterpillar Spodoptera litura 672 0 672
18. Beet armyworm Spodoptera exigua 525 0 525
19. Cotton bowl worm Helicoverpa armigera 756 0 756
20. Nitrogen de�ciency N 103 0 103
21. Potassium de�ciency Kalium (K) 132 91 223
22. Calcium de�ciency Ca 75 132 207
23. Magnesium de�ciency Mg 80 72 152
24. Tomato healthy NA 1591 350 1941

Total 22,369 1347 23,716

3.3 Disease, Pest and Nutrient-De�ciency Recognition Using CNN Architectures
To �nd the suitable Convolutional Neural Network (CNN), we �rst trained a shallow network

(ShallowNet) from scratch to investigate how CNN would perform on the small dataset selected
for the tomato disease recognition caused by pathogens, pests, and nutritional de�ciencies. We
then trained state-of-the-art CNN architectures using transfer learning by �ne-tuning the top layer
of pre-trained models trained on a large dataset. The results of ShallowNet are compared with
pre-trained models to understand the relative impact of pre-trained weights on the tomato disease
recognition task. In the following section, the network topology of each architecture is described.

3.3.1 Shallow Net
To train the deep learning models, we built a shallow network from scratch for the purpose

of tomato plant disease classi�cation. The model involves few convolutional layers with few
�lters in each layer, followed by fully connected layers and ends with a softmax normalization.
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The ShallowNet was trained on 4, 6, 8, and 10 convolutional layers with an input size of
256 × 256. Each convolutional layer has 32 �lters of 3 × 3, with the same padding, the stride
of one, and the Recti�ed Linear Units (ReLU) activation function. Each convolutional layer is
followed by a 2× 2 max-pooling layer, except for the last convolutional layer with an additional
dropout regularization layer of 20% dropout ratio to avoid over�tting. The �rst fully connected
layer has 128 units with a ReLU activation and is followed by the last fully connected layer with
24 units, corresponding to twenty-four classes, which feed into the softmax layer to calculate the
probability of the output.

3.3.2 Transfer Learning
It is worth mentioning that CNN-based models are largely impacted by the dataset’s size

used to train the models. To understand the impact of a limited dataset on the CNN model’s
performance, we used the concept of transfer learning. The key idea is taking an existing model
trained on one type of problem and using it to train another related task by �ne-tuning a
network’s parameters. Pre-trained models are usually trained on a large dataset, and we can bene�t
from knowledge gained during training to �ne-tune the target domain with a smaller dataset [25].

The capacity of pre-trained models varies based on the number of learnable parameters,
operations, and depth. A CNN model complexity increases with an increasing number of param-
eters and operation. Moreover, as the depth increases, other challenges emerge, such as vanishing
gradients, internal covariate shifts, and degradation problems [24]. While considering these factors
and accelerate learning at the same time, we selected the four pre-trained models with signi�cant
variance in complexity and depth. We �ne-tuned VGGNet with 16 layers [10], ResNet with 50
and 152 convolution layers [11], and DenseNet [33] with 121 layers to classify 24 categories of
tomato plant diseases, pre-trained on ImageNet [34].

VGGNet: VGGNet is a CNN model proposed by Simonyan et al. [10]. The model attained a
7.5% error rate on the validation set and secured second place in the 2014 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC).

VGGNet involves 16 (VGG 16) convolutional layers and 224 × 224 size of input images.
Typically, the model is famous for the uni�ed arrangement of convolution layers with 3×3 �lters
and max pool layers of 2×2 �lters stacked on top of each other in increasing depth. The model
ends with three fully connected layers, followed by a linear layer with softmax activation for the
output. The model involves about 120 million parameters and requires a considerable amount of
memory, making it computationally more expensive for optimizing the learning parameters.

We used the same network topology to train VGG16 for the tomato disease classi�cation
task. Additionally, �ne-tuning was done by truncating the original softmax layer and replacing
it with a new fully-connected softmax layer with 24 output corresponding to 24 labels in our
classi�cation task.

ResNet: The ResNet (Residual Network) was introduced by He et al. [11]. The model won �rst
place on the ILSVRC challenge in 2016 with an error rate of 3.7% on the ImageNet classi�cation,
ever since the model is used for solving computer vision problems across multiple domains.

The network is built upon many stacked residual units. These residual units are the set of
building blocks used to construct the network. Each building block consists of several convolu-
tional layers, followed by pooling layers. The architecture is similar to the VGGNet consisting of
3× 3 �lters, but ResNet is about eight times deeper than VGGNet and uses the concept of skip
connection, i.e., non-linear convolution layers. The skip connection bypasses the previous residual
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block input and adds the input directly to the bottleneck residual block with an identity function.
The identity function and the output of previous residual units are combined by summation to
achieve feature mapping. Hence, the gradient can �ow directly through identity mapping from
earlier layers to later layers. The identity mapping enables the creation of deeper networks that can
learn more complex mappings without the degradation problem usually observed in single-branch
networks like VGGNet 16.

We �ne-tuned ResNet using the same network topology presented in the original work. Each
residual building block has two 1×1 convolutional layers with a 3×3 convolution layer in between
and a direct skip connection. Each convolution operation is followed by batch normalization and
the ReLU activation function. We loaded the ResNet with 50 and 152 layers with pre-trained
weight from ImageNet. Finally, a customized softmax layer was created for the task of tomato
disease identi�cation.

DenseNet: DenseNet was introduced by Huang et al. [33]. The model is based on the concept
of a densely connected convolutional network. The architecture is made up of several dense
blocks, each followed by transition layers. All layers in a dense block are directly connected in
a feed-forward manner to ensure maximum information �ow in the network. A single layer in a
dense block has a 3×3 convolution �lter, and it receives the feature- maps of all preceding layers
as input, which concatenate its unique feature-maps to produce input for the next layer. To keep
the feature dimension the same between each dense block, it uses a transition layer with a 1× 1
�lter followed by a 2× 2 average pooling layer to down-sample the next block’s feature size.

For the task of tomato plant disease identi�cation, we created DenseNet model with 121
layers, as presented in the original paper by Huang et al. [33]. The model was loaded with
pre-trained weights from ImageNet. Additionally, the top fully connected layer was replaced
with a new fully-connected layer and customized softmax layer for the task of tomato plant
disease classi�cation.

4 Experimental Results

This section describes the dataset used in the experiment and evaluates the performance of
deep learning models. All networks are implemented in Python programming language using Keras
deep learning library with the Tensor�ow backend. Experiments are carried out on GPU based
workstation with 16 GB of RAM equipped with NVIDIA GTX 1080ti with 8 GB of memory
and 1920 CUDA cores.

4.1 Training and Testing Dataset
We used images of healthy and infected images of the tomato plants for the task of image-

based plant disease classi�cation. The overall dataset contains 23,716 labeled images of healthy
and infected parts of the tomato plant’s fruits and leaves grouped into disease, pest, and nutrition
de�ciency across twenty-four classes. Tab. 1 shows the number of images and classes for each
category. The dataset is very challenging since images have varying background, shape, resolution,
and illumination conditions.

We divided the dataset into a training set and testing set by applying strati�ed random
sampling and split the dataset into 90% in the training set and 10% in the testing set. The training
dataset contains 21,345 images, and the testing dataset contains 2371 samples. We further divided
the training set into two subsets, i.e., 80% training set (17,076 images) and 20% validation set
(4269 images). Since images contain the same leaf or fruit taken from different orientations or
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illumination, we developed a python script to map the same set of images either in training,
testing, or validation dataset.

Image preprocessing techniques are applied to training and testing datasets to make them
compatible with each network’s input size. We applied four types of image preprocessing tech-
niques: First, all images are resized to 256 × 256 pixels for ShallowNet, 224 × 224 for VGGNet,
ResNet, and DenseNet. We performed model optimization and prediction on resized images.
Second, we normalized all pixels’ values by the ratio of 1/255 to rescale high-resolution images
into the network’s input size, following common approaches for deep learning architectures [9].
Third, we performed sample-wise standardization to increase the ef�ciency of end-to-end training.
Standardization is achieved by subtracting a pixel from its mean value and dividing the result
by the standard deviation of the pixel so that the individual features are distributed normally
with zero mean and unit variance. Finally, training instances were augmented with several random
variations, including rotation, zooming, �ipping, mirroring, brightness, and contrast adjustment.
Consequently, the size of the training set increased by 10-fold with a signi�cant reduction of
over�tting problems [32].

4.2 Fine-tuning Network Parameters
Each of the experiment runs for a total of 12 epochs with a batch size of 32. Where epoch is

the number of training iterations, and batch size is the number of examples processed before the
model is updated. Network weights were optimized using the Adam optimization algorithm. Since
Adam optimizer only requires �rst-order gradients with little memory requirement; therefore, it is
an ef�cient method for stochastic optimization [35]. We used a learning rate scheduler to modulate
the changing learning rate of optimizer with an initial weight decaying factor and learning rate of
1e-2, which descends every iteration down to 1e-4. Moreover, the step size for updating learning
was set to 10,000 iterations with the decay rate of 0.90. After appropriate experimentation, these
values gave the best results during training.

4.3 Results
Training and �ne-tuning of the deep learning architectures were carried out, as described in

Section 3.3. Our focus was on �nding the best model suitable for the task of recognizing tomato
diseases, pests, and nutritional de�ciencies. In the �rst set of experiments, we trained a shallow
network with different depths from scratch. In the second set of experiments, transfer learning was
used by �ne-tuning the pertained models, i.e., VGGNet-16, ResNet-50, ResNet 152, and DenseNet
121 using parameters described in Section 4.2.

We trained a small network with 4, 6, 8, and 10 convolution layers (ShallowNet) according
to network topology described in Section 3.3. Fig. 2 shows the training, validation, and testing
accuracy of the ShallowNet. Each bar in the �gure shows the result of 12 runs with a batch
size of 32. We noticed that at �rst, the validation and testing accuracy improves slightly with
increasing the depth of the model. The ShallowNet with 8 layers achieved the best performance
with a validation accuracy of 88% and a testing accuracy of 78%. However, the accuracy starts
decreasing with increasing the depth from 8 layers onwards. The performance fall is due to
insuf�cient training data to train the model with too many parameters. The limited size of the
training data set is addressed by using transfer learning in the next set of experiments.

In the next set of experiments, transfer learning was applied by �ne-tuning the state-of-the-art
deep learning architecture pre-trained on the ImageNet dataset, as described in Section 3.3. We
�ne-tuned the VGGNet 16, ResNet 50, ResNet 152, and DenseNet 121. We truncated the original
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softmax layer in each architecture and replaced it with a new, fully connected softmax layer for
the tomato disease identi�cation problem.

Figure 2: Accuracy of a shallow network across different convolutional layers

Table 2: Accuracy of CNN-based models on the training, validation, and testing dataset

Models Parameters Training Validation Testing

ShallowNet 8 10.7 M 0.9102 0.8534 0.7805
VGGNet 16 119.6 M 0.9106 0.8566 0.8032
ResNet 50 23.6 M 0.9902 0.9660 0.9201
ResNet 152 58.5 M 0.9802 0.9566 0.9085
DenseNet 121 7.1 M 0.9979 0.9805 0.9531

Overall accuracy on the testing dataset is computed to evaluate the performance of each
model on unseen data. The accuracy results of each model, with the total number of parameters,
are shown in Tab. 2. Overall accuracy achieved on the test dataset varies from 78%–95%. It can
be observed from the table that the testing accuracy of ShallowNet 8 is the lowest (78.05%) than
all �ne-tuned pre-trained models. Each pre-trained model achieved accuracy over 90%, except
VGG 16, with 80.32% accuracy. Among all pre-trained models, DenseNet 121 achieved the highest
test accuracy score of 95.31%, beating RestNet 50 and ResNet 152 by 3%–5% higher accuracy,
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respectively. The results verify that models with a large number of parameters perform poorly
compared to models with fewer parameters.

After �ne-tuning the pre-trained models using 12 epochs, all models achieved accuracy above
95% on the validation dataset, except VGGNet 16. DenseNet-121 and ResNet 50 consistently
performed better than ResNet 152 and VGGNet 16. Additionally, they converge earlier with fewer
iterations, as perceived in Figs. 3b and 3d.

These results conclude that deeper models perform better than shallow models. Equally,
deeper models can be more complex in terms of the number of operations and learnable parame-
ters. However, the complexity of deep learning models is associated with their capacity to extract
more features from the images; therefore, it is expected that a model with reasonable complexity
and the least number of parameters should be the most accurate.

DenseNet 121 is lightweight with the least number of parameters, about eight times lesser
than ResNet 152 and 16 times smaller than VGGNet 16. Therefore, it is easier to train DenseNet
as compared to the other architectures evaluated in this study. Although ResNet achieved the
state-of-the-art result on the ImageNet dataset, its performance is relatively lower than DenseNet
in the tomato diseases’ classi�cation task. Furthermore, it is worth noting that ResNet with 152
layers performed poorly than ResNet with 50 layers. The reason might be the early mapping
of the residual unit to zero, leading to local optimization and poor generalization in the �ne-
grained classi�cation.

On the other hand, ResNet yielded higher accuracy than VGGNet 16 on both validation
and test datasets and converged on fewer iterations than VGGNet 16. Overall, DenseNet 121
achieved the highest accuracy of 98.05%, while VGG 16 achieved the least accuracy. The results
are consistent with [24], where DenseNet 121 achieved the highest accuracy on the test dataset of
multi-crop classi�cation of diseased and healthy leaves.

Another observation derived in Tab. 2 is that although the best performance achieved by
DenseNet 121 with an accuracy of 98.5% on the validation dataset and 95.31% on the test dataset,
there exists a small difference in accuracy performance of ResNet 50 with 95.66% accuracy on
validation dataset and 90.85% on the testing dataset. By closely observing Figs. 3b and 5d, it is
noticeable that the accuracy pattern on the training dataset is almost the same for both models. It
implies that more depth of network could be less signi�cant in improving accuracy when a model
reaches its suf�cient depth.

4.4 Failure Analysis and Discussion
Based on the result obtained on the validation dataset, we generated a confusion matrix to

analyses classi�cation errors generated by the best model, i.e., DenseNet 121. We observed no
interclass similarities of pest category exist with disease and nutritional de�ciency categories by
closely analyzing errors. Pests’ misclassi�cation with the other two groups was not expected since
pests’ images (worms, �ies, etc.) have no similar visual characteristics with diseased leaves and
fruits images. However, DenseNet 121 produced a high confusion among diseases and the nutrients
de�ciency category. The results are shown in Fig. 4. It can be observed from the error matrix
(red boxes) that the model is highly confused between disease classes (‘early blight,’ ‘late blight,’
and ‘Yellow Leaf Curl Virus (YLCV)’) with nutritional de�ciencies (Nitrogen and Magnesium)
and vice versa. Nutrients’ de�ciency, mainly Nitrogen, produced a lot of confusion and low
accuracy (79%) with early blight (7%), late blight (4%), and YLCV (6%). Similarly, YLCV class
produced high confusion with Nitrogen and Magnesium de�ciency. This was expected since YLCV,
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(a) (b)

(c) (d)

Figure 3: Accuracy performance of training and validation dataset: (a) VGGNet 16; (b) ResNet
50; (c) ResNet 152; (d) DenseNet 121
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early blight, late blight, and macronutrients (Nitrogen and Magnesium) de�ciency produce similar
symptoms, i.e., turning leaf into yellow at an early stage and produced unique symptom at an
advanced stage.

It is also worth mentioning that the dataset is not big enough, and especially nutrient
de�ciency images are less compared to disease category images. Therefore, the most likely cause
of classi�cation errors is insuf�cient training data. We are currently collecting and labeling more
images for each disease’s early stages from various perspectives of leaf and fruit symptoms to
improve the model’s accuracy to address this issue. Since early-stage symptoms are more important
to diagnose to prevent massive scale crop destruction, it is expected that the dataset should have
suf�cient instances to diagnose early-stage diseases accurately.

Figure 4: Error matrix of DenseNet 121 on the validation dataset of tomato diseases and
nutrient de�ciency images. Red boxes show interclass similarities, and green boxes show
intraclass similarities

It is also worth noting from Fig. 4 that besides interclass misclassi�cation, i.e., disease and
nutrient de�ciency, a small interclass variance also exists within each category. We further tested
the two most successful CNN models to analyze the interclass classi�cation errors, i.e., DenseNet
121 and ResNet 50, on the test dataset. The results are shown in Fig. 5. Each matrix shows
accuracy per class (diseases, pests, and nutritional de�ciencies) and the quantitative representation
of classes in which actual classes are misclassi�ed. The observation in Figs. 5a and 5b shows some
confusion between Nitrogen, Potassium, and Magnesium de�ciency. Since all these de�ciencies
show yellow leaf symptoms at an early stage, there is a high probability of misclassi�cation.
The same is the case in Figs. 5c and 5d, where there is a confusion between bacterial spots,
septoria spot, and target spot as well as in early blight, late blight, and YLCV. In these cases,
all these diseases show similar symptoms, i.e., leaf spotting and yellowing in the disease’s early
stage. Finally, Figs. 5e and 5f show that the taro caterpillar’s predicted label is mixed with cotton
bowel worm. The apparent reasons for these classi�cation errors are the lack of suf�cient training
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Confusion matrix for the best models: (a) Nutritional de�ciencies-DenseNet 121;
(b) Nutritional de�ciencies-ResNet 50; (c) Tomato plant diseases-DenseNet 121; (d) Tomato plant
diseases-ResNet 50, (e) Tomato plant pests-DenseNet 121; (f) Tomato plant pests-ResNet 50
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data. A rigorous image labeling is required to address these problems. Furthermore, it can also
be observed that the success rate of ResNet 50 is slightly lower than DenseNet 121.

5 Conclusions and Future Work

In this research, we developed, trained, and tested various deep learning models using speci�c
CNN architectures for the identi�cation of tomato diseases caused by pathogens, pests, and
nutritional de�ciencies in a uni�ed manner. The models’ training was performed using 23,716
images of the tomato plants’ diseased and healthy leaves and fruits. Our experimental dataset
consists of images from openly available datasets together with additional images of tomato fruit
and leaf images taken from the local agriculture farms. The dataset comprises images from three
categories (diseases, pests, and nutritional de�ciencies) and is divided into a total of 24 classes.
The most successful CNN architecture, DenseNet 121, achieved a success rate of 95.31% (top-1
error of 4.69%) in the classi�cation of 2371 previously unseen images (testing set).

It is worth mentioning that the inclusion of twenty-four classes of tomato leaf and fruit
images spanning disease, pests, and nutrition de�ciency related labels together in the dataset
makes this work the most diverse tomato disease identi�cation task addressed uniformly using
deep learning models. Nevertheless, despite the high accuracy, there are several challenges to be
addressed before deploying this research in practice. Firstly, the dataset used for testing the models
is originated from the same origin as the training dataset. To assess the system’s practical usability,
the test dataset should come from real �elds—preferably from heterogeneous sources different
from the training dataset. Secondly, although the proposed system has 24 classes of the same crop,
it is still not an exhaustive list of threats that can affect the tomato plants. Various environmental
factors, such as humidity, temperature, precipitation, and salinity, have different impacts on plants,
and therefore, a comprehensive diagnostic system should be able to integrate such factors in the
deep learning model. Our future work will address some of these issues in detail. Nonetheless,
the proposed deep learning approach outlined in this paper has its own potentials and can be
adequately adapted with proper considerations for the quantity and quality of the training data
to make the trained models suitable for broader real-world applications.
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