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Abstract: Boundary effect in digital pathology is a phenomenon where the
tissue shapes of biopsy samples get distorted during the sampling process. The
morphological pattern of an epithelial layer is greatly affected. Theoretically,
the shape deformation model can normalise the distortions, but it needs a
2D image. Curvatures theory, on the other hand, is not yet tested on digital
pathology images. Therefore, this work proposed a curvature detection to
reduce the boundary effects and estimates the epithelial layer. The boundary
effect on the tissue surfaces is normalised using the frequency of a curve
deviates from being a straight line. The epithelial layer’s depth is estimated
from the tissue edges and the connected nucleolus only. Then, the textural
and spatial features along the estimated layer are used for dysplastic tissue
detection. The proposedmethod achieved better performance compared to the
whole tissue regions in terms of detecting dysplastic tissue. The result shows
a leap of kappa points from fair to a substantial agreement with the expert’s
ground truth classification. The improved results demonstrate that curvatures
have been effective in reducing the boundary effects on the epithelial layer
of tissue. Thus, quantifying and classifying the morphological patterns for
dysplasia can be automated. The textural and spatial features on the detected
epithelial layer can capture the changes in tissue.
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1 Introduction

Digital and computational pathology are becoming in demand now for clinical diagnosis and
education, and a recent study in oral pathology [1] is the latest proof. The demand is motivated
by the current inter and intra-observer variations, fuzzy areas of grading, and the repetitive and
time-consuming process of diagnosing pathology slides.
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Tissue changes, known as morphological transitions, are continuous and vary over time,
rendering diagnosis more difficult at higher stages due to their complexity [2]. However, detecting
and grading dysplasia are routine in histopathological diagnosis as they determine the first signs
of tissue changes. Therefore, Shaheen et al. [3] have identified the guidelines for the patients with
non-dysplastic Barrett’s Oesophagus (BO) and their endoscopic surveillance.

Dysplasia, in BO, is characterised by morphological transitions in oesophagus lining where
mucus-secreting goblet cells and glands start to form in the epithelium and lamina propria. Then,
the condition may progress into low-grade dysplasia where size, shape, and other cytological
features in the cells and nuclei, starts to morph. The micro changes will gradually be seen in
oesophagus lining, as the smooth surface of the squamous epithelial layer begins to form a
fingerlike cellular pattern, also known as villiform. The pattern becomes more complicated with
back-to-back gland formations and more prominent nuclei sizes, and other abnormalities invade
into lamina or even the muscularis mucosa area, a sign of invasive carcinoma. Fig. 1 are sample
tissue in varying dysplasia grade to show the changes in patterns.

Figure 1: Transition from normal squamous epithelial cells into intestinal metaplasia [4]

A trained pathologist can usually detect tissue changes under a light microscope, but the inter-
observer agreement for dysplasia is generally less than moderate. On top of this, sampling error
at the time of endoscopy may contribute to the diagnosis of BO [5,6]. Different pathologists have
their own interpretations and opinions of the histopathological definitions of dysplastic epithelial
lesions. Based on years of experience with dysplastic tissue, an agreement is not always met [7,
8]. Although the conclusions mentioned above were reached 16 and 12 years back respectively,
the recent research on dysplasia grading agreements in 2014 and 2016 show that the findings
are still valid as the agreement on colon and oral epithelial indefinite dysplasia score less than
0.3 kappa (fair agreement) [9,10]. Meanwhile, the most recent report on BO tissue verified that
the variations in agreement among experts concerning dysplasia across all grades had been 0.58
since ten years ago [11]. Besides, an online consensus of 50 pathologists from over 20 countries
reveals histopathologist-dependent predictors of significant diagnostic error in the assessment of
Barrett’s biopsies [12], and grading dysplasia accurately is still reported as a challenging task [13].
Kaye et al. [14] has also concluded that preventing the over-diagnosing of dysplasia may avoid
inappropriate treatment.

Thus, implementing machine learning to help identify and measure morphological transi-
tion patterns may help in reducing the variations. Recent attempts on implementing machine
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learning on histopathology images are on the oesophagus, using textural and spatial features [15].
There is also research applying machine learning on blood peripheral film image using shapes
features [16], and brain using shapes and spatial features [17]. Besides, grading prostate and
breast cancer [18–20], endoscopy [21], oncology [22], liver disorder [23] and colon [24], were also
attempted, among others.

Oesophagus tissue usually is of a smooth line shape, but during sampling, they are pinched
off or scraped from the oesophagus lining. The process yields curvature-shaped tissue for the
biopsy, known as ‘boundary effect’. Tissue samples located in the surface area are usually affected,
such as the epithelial layer in the mouth, oesophagus, colon and cervical biopsies. In characterising
dysplasia, examining the epithelium layer is essential [25,26]. As shown in Fig. 1, normal tissue,
low-grade dysplasia and adenocarcinoma shared the same tissue surface characteristics, which is
smooth. The inner texture gives away the differences while Barrett’s oesophagus and the high-
grade dysplasia usually have curvy surfaces. Therefore, the effect from pinching off the tissue
while sampling may introduce unnecessary curves along the tissue surfaces. Manual detection
and characterisation of dysplastic regions in pathology images are labour-intensive and subjective.
Therefore, we proposed an automated region detection and boundary effects must be taken into
consideration for handling false positives regions.

Meanwhile, in the machine vision field, it is agreed that the shapes and curvatures of biopsy
sample tissues have a significant impact on tissue architecture analysis [11,27–30]. Recent works
involving tissue shaped and boundary-related challenges include segmentation of deep brain
regions [31], learning shape and appearance models to improve deformation smoothness [32] as
well as using a deformable model to estimate the correct shape [11,33]. Curvatures theory in
measuring surface deviation degree from being a plane on tissue images is not yet found in
any literature.

1.1 Original Contribution
The main objective of this paper is to identify dysplastic tissue from the epithelial layer.

However, the epithelial layer is greatly affected by boundary effects during the biopsy sampling
processes. Thus, one of the significant contributions of this paper is the curvature-based method
for detecting and extracting the correct epithelial tissue texture from the digital slide. This is
because curvature theory on tissue boundary or squamous epithelial layer is not yet found in any
literature. The proposed method has enabled the analysis of textural feature along the curvy tissue
surface and solved the boundary effect problem.

Then, rigorous experiments to find the correct thickness of the epithelial layer in each par-
ticular zoom level for these regions were carried out. The second contribution is the new texture
features called cluster co-occurrence matrix (CCM), which preserves and correlates the textural
and spatial features between different magnifications. Considering spatial information between
clusters of image texture has enabled the algorithm to capture different primitives on tissue
images, without the need to identify them. The CCM feature extractions are carried out in two
levels of magnification for each selected region and used in the machine learning approach for
tissue classification.

1.2 Organization of the Paper
This paper is organised as follows: Section 2 describes the methodology used including

datasets and the processes for tissue detection, segmentation to region and type of tissues, as
well as the feature extraction and classification from the curvy and smooth-surfaced virtual
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slides. Theories that underpins the shape complexity measurement also presented. The parameter
and feature selection for epithelial layer classification is also explained. Then, Section 3 follows,
describing the result obtained from experiments carried out to normalise the boundary effects of
tissue shape and the estimation of epithelial thickness. It also includes the boundary complexity
quantifiers after the normalisation of the boundary effect and the CCM feature performance in
classifying dysplastic tissue. In Section 4, discussions on the findings from all experiments to show
the significance and relationship of the machine learning and machine vision modelling to the
domain understandings are carried out.

2 Methodology

Tissue structure, as defined collectively by [4,11,29,34,35], is a general organisation or pattern
of cellular geometric or reciprocal arrangements with other cellular structures within a tissue.
Therefore, selecting correct regions from the whole virtual slides is very important, to detect the
changes in tissue structure in different stages of dysplasia. Also, the virtual slides contained several
unarranged tissues from more than one biopsy sample. The analysis was conducted in five stages,
as illustrated in Fig. 2. It started with detecting tissues from the whole slides at five magnification
level, where each level is a refinement from the previous ones. The at 4× magnification, curvature
points will be detected and used at stage 2 to create regions. Regions created were magnified into
10× magnification, and boundary lines detection is carried out with morphological operators and
colour deconvolutions.

(1) Tissue Detection

(2) Create ROIs

(3) Epithelial Layer Detection

(4) Epithelial Feature Extraction & Analysis

(5) Dysplastic Tissue Classification

θ,ω,j,Δ

Figure 2: The processes involved in quantifying tissue boundary complexity and classifying dys-
plastic tissue

Stage 3 is to detect the epithelial layer in regions using the boundary lines detected at the
previous stage. The layer thickness level is estimated with few parameters which will be elaborated
in 2.4. The analysis of textural features will be carried out on the detected epithelial layer at 20×
and the elaboration is in Section 2.5. In the final stage, these tissue regions will be classified into
dysplastic or non-dysplastic as elaborated in Section 2.6.
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2.1 The Dataset
The dataset used in this paper was obtained from an Aperio Server at St James’s Hospital,

scanned with an Aperio Scanner at 40× zoom level [36]. Permission to access the dataset can be
acquired at Leeds Virtual Pathology Project at http://www. virtual pathology.leeds.ac.uk/research.
Four hundred seventy-four annotated images with annotations from ExpertB and ExpertE,
recorded across 142 virtual slides, was used as our ground truth. To test the hypothesis, focused
was on Grade 1 (Barrett’s only without dysplasia) and Grade 5 (Barrett’s with High-Grade
dysplasia). A total of 147 annotated images out of the ground truth data were Grade 1 while
59 were Grade 5. Annotated regions with tissue boundaries were carefully selected for necessary
tissue inclusions, leaving 40 balanced data between these two grades.

Two regions were identified based on the general characteristics of the tissue: the epithelial
tissue and the lamina propria. The architectural and cytological features in each region differen-
tiate the two types, and both had different patterns in the morphological sequences as well. As
dysplastic changes occurred in the epithelial layer, segregating both tissue types was crucial. There-
fore, additional measurements were taken in different magnification levels, as shown in Fig. 2, to
detect and segment out the epithelial tissues. The tissue shape complexity guided regions creations,
and classification is carried out using the textural features of the detected epithelial layer.

2.2 Tissue Detection
Based on the morphological pattern described above, the smoothness of the tissue’s bound-

aries can be used to gauge the tissue condition. While the changes in tissue progressed and invaded
other areas, regions with smooth, curvy or complex surfaces needed to be segregated. In this work,
feature extraction for epithelial tissue was applied in different magnification levels for each virtual
slide in our training dataset. The first process was to detect the tissue from the virtual slides. At
this stage, the whole virtual slide was viewed as thumbnail-sized images, with tissue labelled as
a foreground using binary classification from grey-level thresholding. The image background is
the white areas outside tissues including any object sizes of less than 200 pixels (usually smears
or torn tissues). The background pixels were eliminated, leaving only tissues. Fig. 3 shows the
detected tissues after these processes, from the original image (a), binary image (b), and detected
tissues labelled (c).

(a) (b) (c)

Figure 3: Tissue detected from whole slide images (thumbnail-sized). (a) Original image (b) binary
image (c) labelled image

http://www. virtual pathology.leeds.ac.uk/research
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Knowing that normal oesophagus is covered with stratified squamous epithelium cells, differ-
ent patterns of cells’ existence may show some abnormality. When dysplasia becomes more severe,
the smooth lining eventually changes to form a villiform structure, similar to colon tissue. So,
the detected tissues were further investigated in a binary format at 4× magnification, and each
will be assigned with a bounding box. The coordinates of the intersection points between the
candidate tissue and its bounding box, as well as all connected pixels with value ‘1’, excluding
the bounding box itself, are recorded. These recorded coordinates represent the candidate tissue
boundary (β). Then, the image with β is used for shape analysis; so a good representation of the
tissue shapes was needed. Few window sizes (j) along the β were tested, as shown in Fig. 4 to
select the best representation of the tissue shape. An appropriate j was important to ensure that
the image representation is not too sensitive to small peaks and crypts, but still able to identify
high curvature points along the β. The pixels situated at the β were considered as the boundary
line β, and the coordinates were recorded.

Original image j = 1 with no frame j = 10

j = 20 j = 50 j = 100

Figure 4: Image showing how different values of j affecting the tissue shape representation in 4×
magnification

2.3 Regions Creation
The high curvatures points (hc) (curvatures that fall between a specific range of angles [θ1,

θ2]) identified along the β is used to create the regions of interest. The hypotenuse of three
consecutive j is used to calculated curvatures, as shown in Eq. (1). Then, the distances between hcs
(ω) and the standard deviation of distances (ωσ ) are calculated. Regions of interest (ROI) were
created based on consecutive points that fell between the highest distances [ω, ω−ωσ ]. This is to
detect the smooth boundaries of normal squamous cells from the villiform patterns in the surface
area. Each region repeats the same process at 10× magnification, where detailed crypts and peaks
in each ROI were measured. These ROIs were classified as complex or smooth boundaries using
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the frequency of hc along with a threshold distance of the β.

curvature(rad)=

∥∥∥∥1+
(
dy
dx

)2
∥∥∥∥
3/2

∣∣∣d2ydx2

∣∣∣
(1)

where

d2y
dx2

≈ Δm
Δx

and

Δm= Δyj,j−1

Δxj,j−1
− Δyj+1,j

Δxj+1,j

Fig. 5 below illustrates these processes. Referring to the illustration, (a), (a–d) are the points
where the tissue boundary will be segmented. The first patch is from a to b, then from b to c,
from c to d and lastly from d to a.

(a) (b)

Figure 5: Region creation with curvatures. (a) Illustration of region creation on tissue boundary.
(b) Implementation of region creation using curvatures on tissue boundary

2.4 Epithelial Layer Detection
Images of the ROIs created were accessed in 10× and 20× magnification levels to extract the

epithelial tissue layer. At this zoom level, tissue appearance was more detailed; thus, β needed to
be detected again to enable a correct epithelial layer estimation. Therefore, two approaches were
experimented to get the best tissue shape representation for β detection at this magnification rates.

However, filters were applied to enhance the boundary detection accuracy and to retain unique
coordinates. The coordinate of start-and-end points for each detected line are compared, and lines
were linked together as one IF the coordinate is the same. The line measurements were recorded
by the straight-line distance of the start-and-end points, and the number of connected pixels. The
measurements were used as the third filter to verify the severity of surface complexity, as the
detected line might be from torn tissue or the muscularis mucosa. Finally, the longest connected
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pixels detected was used as a priority for the candidate boundary. Fig. 6 shows the incorrectly
detected boundary and the corrected version from these approaches.

(a) (b) (c)

Figure 6: Some of the wrongly-detected boundary and the corrected output for βc. Reasons for
false detections: Image (a) missing starting pixel, image (b) longest detected line is not an epithelial
tissue (c) longest line are the complex structure from torn-off tissue

The first method tested, was using optical density matrix for colour deconvolution in Hema-
toxylin and Eosin stained tissues, as suggested by Ruifrok et al., as the cytoplasm would appear
pinkish and nuclei purplish. Applying this to an image produced a clearer image with enhanced
nuclei or cytoplasm, making it easy to analyse each component further. The hypothesis was
to extract the epithelial based on either nuclei lining or the cytoplasm in the ROI, as both
components arranged themselves differently as dysplasia progressed. The nuclei component was
deconvolved from each ROI. Then, repeated dilation and erosion processes were applied to the
deconvolved ROI. This process was carried out to obtain the thinnest and smoothest line possible
along the ROI boundary, without affecting the important crypts and peaks in the images. The line
constructed was initialised as the candidate boundary: βn (from the deconvolved nuclei of ROI)
and βc (from the deconvolved cytoplasm of ROI).

The second approach is extracting the epithelial layer using the eight connected components.
This method requires a binary image of ROI with the threshold grey-level values. From coordinate
[0, 0], the coordinate for each connected pixel in eight directions, AND just next to a zero-valued
pixel [background] was recorded as the boundary. Therefore, in each annotated region, a set of
lines would be obtained, which would end at the bounding box but might start anywhere in the
annotated regions. Five pixels on the image sides were excluded to ensure only relevant tissues are
selected for boundary detection.

2.5 Epithelial Layer Tissue Texture Extraction
Next, the location and thickness of the epithelial tissue were detected using the two boundary

coordinates [βn, βc] detected before. For this, two coordinates perpendicular to both sides of the
two βs were calculated on every jth pixel. As illustrated in Fig. 7, point Aj is the jth pixels on the
β while point A′ and A′′ are projected perpendicular to the line from Aj to Aj+1. The distances
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(R) of A′ and A′′ from Aj represent the epithelial thickness. The grey-level values along the lines
between points A and A′, and from A to A′′ on the original image were extracted. Higher grey-
level values between the two sides were chosen as the epithelial area, as they contained lesser
empty (background) pixels. Therefore, the coordinates for each accepted A′ or A′′ were recorded,
and the area between these lines and β was considered as the epithelial tissue area.

Figure 7: Illustration of patches projection from β to detect tissue areas and epithelial thickness

Annotated regions were analysed at 20× magnification for surface membrane feature extrac-
tions. As the tissue boundary was curvy, the squamous epithelial cells on the surface followed.
Therefore, the effect of cell rotations at pixel-level need to be investigated. Thus, rotated and
unrotated patches, as illustrated in Fig. 8 were considered. Patches along the β were created using
the moving coordinates of each jth pixel. This is carried out by calculating the slope between
two neighbouring j, and the new coordinates for generating next patches were projected. Different
patch heights [R= 100, 150, and 200 pixels] were selected to estimate the epithelial layer’s thickness
for feature extraction. Ideally, patches should cover the whole epithelial layer only.

Rotated patches Unrotated patches

Figure 8: The creation of rotated and unrotated patches along the βc, at 20×
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Next, the patches were transformed into greyscale images for feature extraction at the pixel
level. GLCM features, namely contrast, correlation, energy, and homogeneity, were extracted in
four directions from each patch to represent the patch texture. Then, K-means clustering will
automatically cluster the patches based on their textural similarity into several clusters. Squared
Euclidean Distance with two values of k was tested [k= 5, 7] for the evaluation process.

The GLCM features were used to investigate the effect of zoom-level and neighbouring
distance [n] as well. Only this time, patches were created at 10× and 20× magnification levels with
[n= 2, 4, 6, 8, 10]. The results presented in Tab. 4 show that the most reliable grading performance
if from k= 5. The different numbers of n do not produce a significant difference in the accuracy
percentage (AP), either at the same or different zoom level. In other inferences, when k= 7, the
AP performances fluctuated across different values of n and zoom level.

Then, texture features at patch level were investigated. Three texture features from the rotated
and unrotated patches along the epithelial layer from both βc and βn were extracted and evaluated
for comparison. The first texture was the cluster co-occurrence in one direction (0◦) along βc and
βn, as described in [37]. The second was the frequency of clusters, and the third was the Local
Binary Pattern (LBP) features. The LBP features were included to observe whether the CCM
features on rotated and unrotated patches are directions invariant.

However, as the patches were aligned along the tissue boundary, the properties of the clus-
ters in CCM (as in GLCM) were projected in one direction within two neighbouring patches.
Therefore, eight features were extracted and used to differentiate between normal and dysplastic
epithelial tissues in oesophagus virtual slides. The texture similarity between these patches was
observed using ten-fold cross-validation on k-means clustering.

2.6 Dysplastic Tissue Classification
After feature extraction, the classifier model for classifying the annotated regions into dyspla-

sia or non-dysplasia was trained. Decision Tree (DT), Random Forest (RF) and Support Vector
Machine (SVM) classifier model were used on a 70% split-training test dataset to ensure the
reliability and robustness of the results. The linear SVM was used, while the DT used was the
C4.5 algorithm with a confidence factor of 0.25, and the minimum number of objects in each
leaf was set as two. The RF built up to 100 trees with a maximum depth of 10.

Although deep learning is becoming a trend now in image classification and image detection,
it lacks in explainable reasoning on how a decision is made [38–41]. Thus, domain understand-
ing from the clinician for validation, clinical diagnosis and medicolegal issues will hinder its
implementation in both education and diagnosis process.

3 Results

This section presents the results of tissue boundary selection, region creation, boundary
complexity identification, and the epithelial layer feature extraction and classification.

3.1 Curvature-Based for Boundary Complexity Quantifier
The first experiment was conducted to extract the correct β for region creation. Then, another

1628 brute-force experiments were carried out to establish an appropriate ω, θ1, θ2, and j.
These variables are important to directly represent tissue boundary, shapes, and curvatures for
segmenting correct regions.
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Tab. 1 shows the parameters tested at 4× and 10× magnification levels and the best-selected
value. At 4×, j = 20 best at representing the peaks and crypts on the tissue boundary, while θ

value ranging between 30◦ and 150◦ was selected as a threshold of hc, with the ω as 200 pixels. At
10× magnification, a boundary is classified as ‘complex’ when j was 40, and the θ value ranged
between 40◦ and 160◦ with at least 30 hc per 100 pixels as the ω value along with the epithelial
layer. These values were established using 40 training patches annotated by a pathologist.

Table 1: Parameter setting for complexity measurement

Zoom j θ1 θ2 ω Precision (%) Recall (%)

4 20 30◦ 150◦ [ωt]= 200 93.83 90.61
10 40 40◦ 160◦ 30hc/100pix 81.40 72.92

Then, the β detection was carried out for each region classified as complex from previous
steps. As explained in Section 3.2, the boundary detection results from nuclei and cytoplasm com-
ponent [βn and βc] were both compared to hand-marked tissue boundary with Euclidean distance.
Tab. 2 shows that the best result obtained was 82.5% AP from βc, compared to only 47.5% using
βn. Thus, βc was accepted as the tissue boundary for further processes. The experiment also
showed that patches based on the βc yielded better regions and lesser risked at crypts, but some
information might be lost at a closed-curve boundary.

Table 2: Comparison of tissue boundary detection from different approaches

β AP [%]

Train-test 10-fold 8-fold 6-fold

βn 65.0 47.5 45.0 55.0
βc 83.5 82.5 82.0 80.0

Then, feature extraction processes were carried out for the epithelial layer tissue, using βc
as the baseline. Combinations of necessary parameter settings were tested to produce a good
estimation of the epithelial layer thickness. Tab. 3 lists all the tested values for the parameters
involved in the epithelial layer extractions and the selected best values.

Table 3: Parameters tested and selected values for epithelial layer detection

Parameter Tested value Selected value

k 3, 4, 5, 6, 7, 8 5
R 50, 100, 150, 200 150
j 50, 100, 150 100
n 2, 4, 6, 8, 10 4
Zoom 10×, 20× 10×
β βn, βc βc
patches rotated, unrotated unrotated
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The effect of k, n, zoom were analysed with SVM. Tab. 4 shows that the best result is n= 4
at 10× magnification with five clusters.

Table 4: Validation result on values of n, k, and zoom level to classify annotated regions using
the texture of the epithelial layer

n/zoom k= 5 k= 7

10 20 10 20

10 AP MSE 75.0 71.5 85.7 67.9
6.25 7.14 3.5 8.03

8 AP MSE 78.6 78.6 82.1 67.9
4.65 5.23 4.4 8.03

6 AP MSE 78.6 78.6 60.7 85.7
4.94 4.36 9.8 3.5

4 AP MSE 82.1 78.6 64.3 57.1
4.47 5.36 8.9 10.7

2 AP MSE 78.6 71.4 71.4 67.9
5.35 7.14 7.14 8.03

3.2 CCM Feature Performance
In this step, the window sizes for patch creation were projected based on the βc. However,

extra features such as the epithelial layer thickness were required, and the thickness varied,
mostly when nuclei were at narrow crypts. From the experiments, R= 100 pixels are best in 20×
magnification.

Tab. 5 shows the comparison results for all classifiers, and the numbers are translated into
Fig. 9 for better visualisation. The results indicated that the CCM features of the rotated and
unrotated patches along the βc yielded better classification results than the frequency of clusters
as well as the LBP. The features are generic enough that all three machine learning techniques
give similar performance. Therefore, the CCM features extracted were also direction invariant. On
the other hand, features from the frequency of clusters are more fluctuates with unrotated patches
gives a lower performance, along with LBP features.

Table 5: Average classification result with ten-fold cross-validation for comparison of rotated and
unrotated patches.

β Input features SVM (%) DT (%) RF (%)

βc CCM rotated 75.0 75.0 75.0
CCM unrotated 82.1 75.0 75.5
Freq rotated 55.0 60.0 62.5
Freq un-rotated 72.5 67.5 80.5
LBP 55.0 55.0 60.0
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Figure 9: Comparison of classification accuracy between features

Tab. 6 shows the confusion matrix for dysplasia classification. The classification accuracy was
0.825 with 0.818 precision. The specificity was 0.789 while sensitivity was only 0.545 yield to 0.837
f score, which is considered good.

Table 6: Confusion matrix for epithelial layer dysplasia classification.

Dysplasia Non-dysplasia

Dysplasia 18 3
Non-dysplasia 4 15

4 Discussion and Conclusions

The selection of β shows that βn was too sensitive to the nuclei size and location changes.
Thus, many small crypts and peaks were detected, which distorted the tissue shape representation.
Therefore, correct parameters are needed for feature extraction as they directly influence the
grading output. The textural features extracted had managed to preserve the critical information
on the tissue boundary, which is considered necessary in reviewing pathology slides [12,13].

Tab. 1 showed that the boundary complexity measured at 4× magnification achieved 93.83%
precision and 90.61% recall value, while at 10× magnification, a significant reduction to 81.40%
and 72.92% could be seen. These threshold values managed the reduce the sensitivity of the
detection algorithm to seventh from the manual mark-up images.

Few conclusions can be made from Tab. 5: [i] The different kinds of tissue texture within a
tissue, can be represented with CCM [ii] Frequency of cluster only considers clusters that dominate
the tissue as a whole and [iii] LBP did not perform well, as the features were too many compared
to the patch size.

A statistical test was also conducted to support the hypothesis that the texture features in the
epithelial layer contained enough information to classify dysplastic and non-dysplastic tissue. A
Chi-Square test of homogeneity was used to test if the results of classifying a tissue region as
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non-dysplastic or dysplastic using epithelial layer are the same as that of when using lamina layer.
Hence, the hypotheses for the homogeneity test were:

H0: The proportion of true or false for grading non-dysplastic and dysplastic tissues is the
same when using the epithelial layer and lamina layer.

H1: The proportion of true or false for grading non-dysplastic and dysplastic tissues is not
the same when using the epithelial layer and lamina layer.

As the classification accuracy from the epithelial layer was 0.835 [refer Tab. 6], and the
accuracy from the lamina layer was 0.730, the statistical test produced was 1.141 with a p-value of
0.285. Accordingly, at 0.05 level of significance, evidence was lacking to reject the null hypothesis.
Therefore, the distribution of proportions grading non-dysplastic and dysplastic tissues was the
same when using the epithelial layer and lamina layer can be concluded. Hence, we accept the
research hypothesis that the epithelial layer tissue texture contains enough information to classify
dysplastic and non-dysplastic tissue.

Manual detection and characterisation of dysplastic regions in pathology images are labour-
intensive and subjective. Thus, we proposed an automated region detection. The significance of
detecting the tissue boundary, which subsequently allows the estimation of the epithelial layer
of a tissue, is proven. However, the accuracy percentage of the dysplastic tissue classification
still needs improvement. Thus, further experiment on machine learning optimisation will be
carried out.

This paper has presented a new approach to assist dysplastic tissue classification and sum-
marised as follows. Two region selection criteria of tissue types were first established for charac-
terising different architectural and cytological features. Then, feature extractions of the epithelial
tissue were performed at different magnification levels, and their ROIs were captured. With the
ROIs, the boundaries of the tissue shapes were detected using two approaches; an optical density
matrix for colour deconvolution, and a boundary detection technique based on eight connected
components. The boundary detected based on deconvolved cytoplasm of ROI was shown to be
superior and selected for further classification validation. The co-occurrence matrix and frequency
of clusters based on rotated and unrotated patches of the boundaries were also performed via
three classification methods—SVM, DT, and RF—with the AP measured. The results showed that
classifications were generally improved.

Further statistical tests also proved the research hypothesis—the changes in tissue texture
along the tissue boundary to detect dysplasia can be detected was accepted. It demonstrated a
solution to the boundary effect issue with tissue changes. This finding contributes to the domain
and image processing fields as it solves the issue of boundary effect.
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