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Abstract: We introduce a new two-parameter model related to the inverted
Topp–Leone distribution called the power inverted Topp–Leone (PITL) distri-
bution.Major properties of the PITL distribution are stated; including; quan-
tile measures, moments, moment generating function, probability weighted
moments, Bonferroni and Lorenz curve, stochastic ordering, incomplete
moments, residual life function, and entropy measure. Acceptance sampling
plans are developed for the PITL distribution, when the life test is truncated at
a pre-specified time. The truncation time is assumed to be the median lifetime
of the PITL distribution with pre-specified factors. The minimum sample size
necessary to ensure the specified life test is obtained under a given consumer’s
risk. Numerical results for given consumer’s risk, parameters of the PITL
distribution and the truncation time are obtained. The estimationof themodel
parameters is argued using maximum likelihood, least squares, weighted least
squares, maximum product of spacing and Bayesian methods. A simulation
study is confirmed to evaluate and compare the behavior of different estimates.
Two real data applications are afforded in order to examine the flexibility of the
proposed model compared with some others distributions. The results show
that the power inverted Topp–Leone distribution is the best according to the
model selection criteria than other competitive models.

Keywords: Inverted Topp–Leone distribution; acceptance sampling plans;
maximum likelihood estimators; weighted least squares estimators; Bayesian
estimators

1 Introduction

The inverted (inverse) distributions have considerable applications in several area including;
biological sciences, life testing problems, survey sampling, engineering sciences, etc. Many inverted
distributions and their applications have been devoted by several authors; for instance, Keller
et al. [1] studied the shapes of the density and failure rate functions for the inverse Weibull model.
Reference [2] proposed a generalized inverse Weibull distribution with decreasing and unimodal
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failure rates. Reference [3] proposed the inverse Lindley distribution and studied its main proper-
ties. The inverted Kumaraswamy distribution has been discussed in [4]. The inverted Nadarajah–
Haghighi distribution with decreasing and upside-down bathtub hazard rate was discussed in [5].
Reference [6] proposed and studied the inverse power Lomax distribution. Reference [7] intro-
duced inverted exponentiated Lomax distribution and estimated the distribution for right cen-
sored data. Reference [8] introduced the inverted Topp–Leone (ITL) distribution and discussed
several properties.

The cumulative distribution function (CDF) of random variable Y has the ITL distribution
with shape parameter α > 0 is defined by:

FITL (y;α)= 1−
{

(1+ 2y)α

(1+ y)2α

}
; y≥ 0, α > 0. (1)

The probability density function (PDF) related to (1) is given by

fITL (y;α)= 2αy (1+ y)−2α−1 (1+ 2y)α−1 ; y, α > 0. (2)

In recent times, several extended and generalized formulations of the classical distributions,
based on different procedures, have been discussed by several authors (see for example [9–13]).
The power transformation (PT) approach is one of the most important methods that have been
employed for this purpose. It is employed to create new distributions out of the well-known
distributions through adding an additional parameter. This approach allows more flexible model
able to describe different types of real data. PT procedure for several distributions has been
provided by several researches (see, for example [14–16]).

Acceptance sampling (AS) concerns with inspection and decision-making regarding lots of
product and constitutes one of the oldest techniques in quality assurance. A typical application
of AS is as follows:

Required: A company receives a shipment of product from a vendor. This product is often a
component or raw material used in the company’s manufacturing process.

• Sampling: A sample is taken from the lot and the relevant quality characteristic of the units
in the sample is inspected.

• Decision: On the basis of the information of the given sample, a decision is made regarding
lot disposition to accept or to reject the lot.

1. For AS: Accepted lots are put into production,
2. For rejected samples: Rejected lots may be returned to the vendor or may be subjected to

some other lot disposition action.

The objective of this research is to provide a generalized formula of the ITL model by
employing the PT as X = Y 1/θ , where Y has the ITL distribution. We call the modified form
of ITL model as the PITL distribution. The PITL model is able to (i) give favorite properties
owing to the additional shape parameter; (ii) give more flexibility of the PDF and hazard rate
function (HRF); (iii) provide more flexibility of the kurtosis compared to ITL model; (iv) develop
a sampling plan, derive its operating characteristic function and give the corresponding decision;
(v) estimate the model parameters based on different methods of estimation, and (vi) analyze two
read data.

This paper involves the following sections. In Section 2, we introduce the two-parameter
PITL distribution. Section 3 gives some stractural properties of the PITL distribution. The design
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of proposed AS plan under a truncated life test is discussed in Section 4. Section 5 discusses
parameter estimation of the PITL model based on the maximum likelihood (ML), maximum
product of spacing (MPS), least squares (LS), weighted LS (WLS) and Bayesian methods.
Section 6 provides a numerical study. Real data are analyzed in Section 7 and the article finishes
with concluding remarks.

2 Power Inverted Topp–Leone Distribution

In this section, we define a new probability distribution related to the ITL distribution via a
PT method. The formulae of its PDF, CDF, survival function (SF), HRF and cumulative HRF
are given.

Definition:

A random variable X is said to have the PITL distribution if we employ the PT X =Y 1/θ , where Y
has the ITL distribution with CDF(1). The CDF of a random variable has the PITL distribution with
shape parameters α and θ , denoted by X ∼PITL (α, θ), is defined by

FPITL (x;α, θ)= 1−
{(

1+ 2xθ
)α

(
1+xθ

)2α
}
; x≥ 0, θ , α > 0. (3)

The PDF of the PITL distribution related to (3) is given by:

fPITL (x;α, θ)= 2αθx2θ−1 (1+xθ
)−2α−1 (

1+ 2xθ
)α−1

; x, θ , α > 0. (4)

For, θ = 1, the PDF (4) provides the ITL distribution (see [8]). The survival function;
F (x;α, θ), and the HRF; h (x;α, θ) of the PITL distribution are, respectively, given by

FPITL (x;α, θ)=
{(

1+ 2xθ
)α

(
1+xθ

)2α
}
, (5)

Figure 1: The PDF and HRF plots for the PITL distribution
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and

h (x;α, θ)= 2α θ x2θ−1 [(1+xθ
) (
1+ 2xθ

)]−1
. (6)

Plots of the PDF and HRF are presented in Fig. 1 for some choice’s values of parameters.

The shape of the PITL PDF could be inverted bathtub, reversed J-shape, unimodal, and
positively skewed. The shape of the HRF of the PITL shows that it is increasing, decreasing,
reversed J-shape and up-side down.

3 Structural Properties

This section gives some necessary characteristics of the PITL distribution such as; the prob-
ability weighted moments, the kth moment, the moment-generating function (MGF), inequality
measures, rth moment of the residual lifetime (RL), Rényi entropy, and stochastic ordering.

3.1 Probability Weighted Moments
The probability weighted moments (PWM) are ordinarily used to find estimators of the

parameters and quantiles of distributions. The PWM of X (for r≥ 1, s≥ 0) is defined by:

Ξr,s=
∫ ∞

0
xrf (x) [F (x)]s dx. (7)

Use binomial expansion for [FPITL(x; α, θ)]s as follows:

[FPITL (x;α, θ)]s =
s∑

m=0

(−1)m
(
s

m

)(
1+xθ

)−αm
{
1+ xθ

1+xθ

}αm

. (8)

The PWM of the PITL distribution is obtained by substituting PDF (4) and CDF (8) in (7)
as follows:

�r,s= 2θα

s∑
m=0

(−1)m
(
s

m

)∫ ∞

0
xr+2θ−1 (1+xθ

)−αm−α−2
{
1+ xθ

1+xθ

}αm+α−1

dx. (9)

Employ the following generalized binomial expansion, where b > 0 is real non integer and
|z|< 1,

(1+ z)b−1 =
∞∑
i=0

(
b− 1

j

)
zi, (10)

in �r,s then we get

�r,s= Wi,m

� (αm+α + i+ 2)
�
( r
θ
+ i+ 2

)
�
(
αm+α − r

θ

)
, (11)

where Wi,m = 2α
∞∑
i=0

s∑
m=0

(−1)m
(
s

m

)(
α+αm− 1

i

)
and � (.) is the gamma function.
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3.2 Moments and Quantiles
Here, we present the kth moment, MGF, and quantile analysis of the PITL (x; α, θ)

distribution. The kth moment for the PITL is derived as follows:

μ′
k = 2α

∞∑
�=0

(
α− 1
�

) �
(
k
θ
+ �+ 2

)
�
(
α− k

θ

)
� (�+ 2+α)

, αθ > k. (12)

The first four moments about zero are obtained after putting k= 1, 2, 3, 4 in (12). The MGF
of the PITL distribution is given by

Mx (t)=E
(
etx
)= ∞∑

k=0

tk

k!
μ′
k =

∞∑
r=0

∞∑
�=0

2αtk

k!

(
α− 1

�

)
B
(
k
θ
+ �+ 2,α− k

θ

)
. (13)

The kth central moment (μk) of the PITL distribution is given by:

μk =E
(
X −μ′

1

)k = k∑
i=0

(−1)i
(
k

i

)(
μ′
1

)i
μ′
k−i (14)

Moreover, we obtain quantile function of the PITL, say xp =Q (p)= F−1 (u), by inverting (3)
as follows:

xp =

⎡
⎢⎢⎣
−2
(
(1− p)1/α − 1

)
+
√
4
(
(1− p)1/α − 1

)2− 4 (1− p)1/α
(
(1− p)1/α − 1

)
2 (1− p)1/α

⎤
⎥⎥⎦

1
θ

. (15)

In particular, the first three quartiles, say Q1, Q2 and Q3 are obtained by setting u = 0.25,
0.5, 0.75 respectively, in (15).

3.3 Inequality Measures
The Bonferroni curve (BC) as well as Lorenz curve (LC) are widely useful not only in

economics to study income and poverty, but also in other fields, such as reliability, insurance and
medicine. The LC and BC of the PITL model are derived, respectively, as follows:

LC (t)= E (X |x< t)
E (X)

=
∑∞

j=0

(
α− 1
j

)
B
(
1
θ
+ j+ 2,α− 1

θ
, tθ

1+tθ
)

∑∞
�=0

(
α− 1
�

)
�
(
1
θ +�+2

)
�
(
α− 1

θ

)
�(�+2+α)

, (16)

and

BC (t)= LC (t)
FPITL (t)

=
∑∞

j=0

(
α− 1
j

)
B
(
1
θ
+ j+ 2,α− 1

θ
, tθ

1+tθ
)

{
1−

[
(1+ 2t)α (1+ t)−2α

]}∑∞
�=0

(
α− 1
�

)
�
(
1
θ +�+2

)
�
(
α− 1

θ

)
�(�+2+α)

, (17)
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where B
(
., ., tθ/1+ tθ

)
is the incomplete beta function.

3.4 Residual and Reversed Residual Life Functions
Here we obtain the rth moment of the RL of the PITL model. The rth moment of RL is

defined as follows

�r (t)= 1

F (t)

∫ ∞

t
(x− t)r f (x) dx. (18)

The rth moment of the RL of the PITL distribution is derived by using the binomial
expansion and the PDF (4) in (18), as follows:

�r (t)= 2α

FPITL (t;α, θ)

r∑
j=0

∞∑
�=0

(−t)r−j
(
n
j

)(
α− 1
�

)
tr−jB

(
j
θ
+ �+ 2,α− j

θ
, 1/1+ tθ

)
. (19)

An important application of the moments of RL is the mean which represents the expected
additional life length for an item which is working at age t and obtained by putting r= 1 in (19).

On contrast, the reversed RL is defined as the conditional random variable t−X |X ≤ t which
denotes the time elapsed from the failure of a component given that its life is less than or equal
to t. The rth moment of the reversed RL for PITL distribution is given by

φr (t)== 2α
FPITL (t;α, θ)

r∑
j=0

∞∑
�=0

(−t)r−j
(
r

j

)(
α− 1
�

)
tr−jB

(
j
θ
+ �+ 2,α− j

θ
, tθ/1+ tθ

)
. (20)

The mean of reversed RL serves as the waiting time elapsed since the failure of an item on
condition that this failure had occurred.

3.5 Rényi and ω-Entropies
The entropy of a random variable is a measure of the uncertainty variation. The Rényi

entropy of PITL distribution is obtained as follows:

RE (X)= (1− γ )−1 log
{∫ ∞

0
(2αθ)γ xγ (2θ−1) (1+xθ

)−(2α+1)γ (
1+ 2xθ

)(α−1)γ
dx
}

= (1− γ )−1 log

{
(2α)γ

∞∑
i=0

θγ−1
(

(α− 1) γ

i

)
B
(
2γ − γ

θ
+ i+ 1

θ
,γ α+ γ

θ
− 1

θ

)}
. (21)

The ω-entropy is defined by

Hω (X)= 1
ω− 1

log
(
1−

∫ ∞

0
f (x)ω dx

)
, ω > 0 and ω �= 1. (22)

Therefore, the ω-entropy of the PITL distribution is given by

Hω (X)= 1
ω− 1

log

{
1− (2α)ω

∞∑
i=0

θω−1
(

(α− 1)ω

i

)
B
(
2ω− ω

θ
+ i+ 1

θ
,ωα+ ω

θ
− 1

θ

)}
. (23)
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3.6 Stochastic Ordering
Let X and Y are independent random variables with CDFs Fx and Fy respectively, X is said

to be smaller than Y if the following ordering holds (see [17]):

• Stochastic order (X ≤sr Y ) if FX (x)≥ FY (x) for x.
• Likelihood ratio order (X ≤lr Y ) if fX (x) /fY (x) is decreasing in x.
• Hazard rate order (X ≤hr Y ) if hX (x)≥ hY (x) for all x.
• Mean residual life order (X ≤mrl Y ) if mX (x)≥mY (x) for all x.

We have the following chain of implications among the various partial orderings mentioned
above:

X ≤lr Y ⇒X ≤hr Y ⇒X ≤mrl Y

⇓
X ≤sr Y

To show that the random variable X is smaller than Y , where X and Y have the PITL with
different parameters, so we prove the above conditions, mentioned in [17], in the following theorem

Theorem 1: Let X ∼ PITL (α1, θ1) and Y ∼ PITL (α2, θ2). If α1 > α2 and θ1 > θ2, then X ≤lr
Y , X ≤hr Y , X ≤mrl Y , and X ≤sr Y .

Proof

It is sufficient to show fX (x) /fY (x) is a decreasing function of x; the likelihood ratio is

fX (x)
fY (x)

= α1θ1x2θ1−1 (1+xθ1
)2α1−1 (1+ 2xθ1

)α1−1

α2θ2x2θ2−1
(
1+xθ2

)2α2−1 (1+ 2xθ2
)α2−1 . (24)

Therefore,

d
dx

log
fX (x)
fY (x)

= 2θ1− 2θ2
x

+ (2α1− 1) θ1xθ1−1

1+xθ1
− (2α2− 1) θ2xθ2−1

1+xθ2

+ 2 (α1− 1) θ1xθ1−1

1+ 2xθ1
− 2 (α2− 1) θ2xθ2−1

1+ 2xθ2
< 0. (25)

Thus, fX (x) /fY (x) is decreasing in x and hence X ≤lr Y . Similarly, we can conclude that for
X ≤hr Y ,X ≤mrl Y ,X ≤sr Y .

4 Acceptance Sampling Plans

We assume that the lifetime of a product follows the PITL distribution with parameters (α, θ)
defined by (4) and the specified median lifetime of the units claimed by a producer is m0. Our
interest is to make an inference about the acceptance or rejection of the proposed lot based on
the criterion that the actual median lifetime, m, of the units is larger than the prescribed lifetime
m0. A common practice in life testing is to terminate the life test by a pre-determined time t0 and
note the number of failures. Now to observe median lifetime, the experiment is run for a t0 = am0
units of time, multiple of claimed median lifetime with any positive constant a. The idea to accept
the proposed lot based on the evidence that m≥m0, given probability of at least p∗(consumer’s
risk) using single acceptance sampling plan is as follows [18].
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Draw a random sample of n number of units from the proposed lot and conduct an experi-
ment for t0 units of time. If during the experiment c or less number of units (acceptance number)
fail then accept the whole lot, other than the lot is rejected. Observe that probability of accepting
a lot, consider sufficiently large sized lots so that the binomial distribution can be applied, under
the proposed sampling plan is given by

L (p)=
c∑
i=0

(
n

i

)
pi (1− p)n−i , i= 1, . . . ,n (26)

Table 1: Single sampling plan for PITL distribution at α = 0.5, θ = 1

p∗ c a= 0.25 a= 0.5 a= 0.75 a= 1

n L(p0) n L(p0) n L(p0) n L(p0)

0.25 0 2 0.7863 1 1 1 1 1 1
2 9 0.7662 6 0.7578 5 0.7707 4 0.8750
4 17 0.7557 10 0.8207 9 0.7569 8 0.7734
6 25 0.7608 15 0.8066 13 0.7603 11 0.8281
8 33 0.7696 20 0.8031 17 0.7678 15 0.7880
10 42 0.7529 26 0.7565 21 0.7767 19 0.7597

0.5 0 3 0.6183 2 0.6455 2 0.5592 2 0.5000
2 13 0.5105 8 0.5221 6 0.6100 6 0.5002
4 22 0.5238 13 0.5703 11 0.5284 10 0.5001
6 31 0.5334 19 0.5331 15 0.5740 14 0.5001
8 41 0.5080 25 0.5073 20 0.5267 18 0.5002
10 50 0.5179 30 0.5416 24 0.5635 22 0.5001

0.75 0 6 0.3007 4 0.2690 3 0.3127 3 0.2500
2 18 0.2632 11 0.2521 8 0.3346 7 0.3437
4 29 0.2555 17 0.2766 13 0.3276 12 0.2744
6 39 0.2688 23 0.2871 19 0.2503 16 0.3036
8 50 0.2523 29 0.2918 23 0.3064 21 0.2517
10 60 0.2576 36 0.2537 28 0.2959 25 0.2706

0.95 0 13 0.0559 7 0.0723 6 0.0547 5 0.0625
2 28 0.0520 16 0.0576 12 0.0733 11 0.0546
4 41 0.0511 24 0.0504 18 0.0691 16 0.0592
6 53 0.0525 31 0.0530 24 0.0608 21 0.0576
8 65 0.0512 38 0.0525 30 0.0524 26 0.0538
10 76 0.0544 45 0.0507 35 0.0587 30 0.0680

0.99 0 20 0.0104 11 0.0125 8 0.0171 7 0.0156
2 37 0.0101 21 0.0109 16 0.0127 14 0.0112
4 51 0.0105 29 0.0120 23 0.0104 19 0.0154
6 64 0.0111 37 0.0113 29 0.0111 25 0.0113
8 77 0.0107 44 0.0128 35 0.0108 30 0.0120
10 89 0.0113 52 0.0107 41 0.0101 35 0.0121
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where p = FPITL (t0;α, θ) defined by (3). The function L(p) is the operating characteristic func-
tion of the sampling plan, i.e., the acceptance probability of the lot as function of the failure
probability. Further using t0 = am0, thus p0 can be written as

p0 = 1−
{(

1+ 2 (ma0)θ
)α

(
1+ (ma0)θ

)2α
}
. (27)

Table 2: Single sampling plan for PITL distribution at α = 1.5, θ = 1

p∗ c a= 0.25 a= 0.5 a= 0.75 a= 1

n L(p0) n L(p0) n L(p0) n L(p0)

0.25 0 3 0.7832 1 1 1 1 1 1
2 16 0.7555 7 0.7935 5 0.8195 4 0.8750
4 30 0.7641 13 0.7927 9 0.8245 8 0.7734
6 45 0.7623 20 0.7587 14 0.7685 11 0.8281
8 61 0.7510 26 0.7802 18 0.7983 15 0.7880
10 76 0.7592 33 0.7649 23 0.7686 19 0.7597

0.5 0 6 0.5428 3 0.5293 2 0.5988 2 0.5000
2 23 0.5279 10 0.5380 7 0.5419 6 0.5002
4 41 0.5063 17 0.5487 12 0.5296 10 0.5001
6 58 0.5125 25 0.5072 17 0.5234 14 0.5001
8 76 0.5007 32 0.5212 22 0.5195 18 0.5002
10 93 0.5065 39 0.5325 27 0.5166 22 0.5001

0.75 0 12 0.2608 5 0.2802 3 0.3586 3 0.2500
2 34 0.2520 14 0.2690 9 0.3130 7 0.3437
4 54 0.2559 22 0.2838 15 0.2763 12 0.2744
6 74 0.2514 31 0.2521 20 0.3045 16 0.3036
8 93 0.2557 39 0.2550 26 0.2697 21 0.2517
10 112 0.2570 47 0.2552 31 0.2871 25 0.2706

0.95 0 25 0.0532 10 0.0571 6 0.0770 5 0.0625
2 53 0.0525 21 0.0606 14 0.0569 11 0.0546
4 77 0.0537 31 0.0592 20 0.0683 16 0.0592
6 100 0.0534 41 0.0533 27 0.0546 21 0.0576
8 123 0.0506 50 0.0547 33 0.0560 26 0.0538
10 144 0.0527 59 0.0543 39 0.0556 30 0.0680

0.99 0 38 0.0109 15 0.0116 9 0.0165 7 0.0156
2 70 0.0108 28 0.0112 18 0.0120 14 0.0112
4 98 0.0101 39 0.0113 25 0.0130 19 0.0154
6 123 0.0102 49 0.0120 32 0.0121 25 0.0113
8 147 0.0104 59 0.0117 39 0.0106 30 0.0120
10 170 0.0107 69 0.0109 45 0.0119 35 0.0121
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Now, the problem is to determine for given values of p∗ (0< p∗ < 1) ,am0 and c the smallest
positive integer n such that

L (p0)=
c∑
i=0

(
n

i

)
pi0 (1− p0)n−i ≤ 1− p∗ (28)

where p0 is given by (27).

Table 3: Single sampling plan for PITL distribution at α = 0.5, θ = 2

p∗ c a= 0.25 a= 0.5 a= 0.75 a= 1

n L(p0) n L(p0) n L(p0) n L(p0)

0.25 0 7 0.7715 2 0.7863 1 1 1 1
2 41 0.7612 9 0.7662 5 0.8434 4 0.8750
4 80 0.7577 17 0.7557 10 0.7745 8 0.7734
6 121 0.7540 25 0.7608 14 0.8154 11 0.8281
8 163 0.7514 33 0.7696 19 0.7925 15 0.7880
10 205 0.7524 42 0.7529 24 0.7782 19 0.7597

0.5 0 17 0.5008 3 0.6183 2 0.6203 2 0.5000
2 63 0.5094 13 0.5105 7 0.5865 6 0.5002
4 111 0.5008 22 0.5238 12 0.5888 10 0.5001
6 158 0.5024 31 0.5334 18 0.5174 14 0.5001
8 205 0.5037 41 0.5080 23 0.5330 18 0.5002
10 252 0.5048 50 0.5179 28 0.5457 22 0.5001

0.75 0 33 0.2508 6 0.3007 3 0.3848 3 0.2500
2 92 0.2548 18 0.2632 10 0.2720 7 0.3437
4 148 0.2510 29 0.2555 16 0.2678 12 0.2744
6 202 0.2502 39 0.2688 22 0.2579 16 0.3036
8 254 0.2540 50 0.2523 27 0.2943 21 0.2517
10 307 0.2511 60 0.2576 33 0.2777 25 0.2706

0.95 0 70 0.0506 13 0.0559 7 0.0570 5 0.0625
2 147 0.0511 28 0.0520 15 0.0545 11 0.0546
4 214 0.0512 41 0.0511 22 0.0547 16 0.0592
6 278 0.0501 53 0.0525 29 0.0501 21 0.0576
8 339 0.0500 65 0.0512 35 0.0564 26 0.0538
10 398 0.0505 76 0.0544 41 0.0605 30 0.0680

0.99 0 107 0.0102 20 0.0104 10 0.0136 7 0.0156
2 196 0.0101 37 0.0100 19 0.0128 14 0.0112
4 271 0.0102 51 0.0105 27 0.0115 19 0.0154
6 341 0.0100 64 0.0111 34 0.0123 25 0.0113
8 407 0.0102 77 0.0107 41 0.0121 30 0.0120
10 472 0.0100 89 0.0113 48 0.0114 35 0.0121

By solving the inequality in (28) for n with given consumer’s risk p*, positive constant a,
acceptance number c and p0, which computed according to parameters (α, θ) and t0. The solution
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of the inequality in (28) depends on searching the minimum value of n which makes the left-hand
side of the given inequality is less than or equal 1− p∗.

The minimum values of n satisfying the inequality (28) and its corresponding operating
characteristic probability are obtained and displayed in Tabs. 1–3 for the following assumed
parameters:

1. p∗ = 0.25, 0.5, 0.75, 0.95, 0.99, c= 0(2)8.
2. a= 0.25, 0.5, 0.75, 1 (Note that when a= 1, t0 =m0 = 0.5∀α, θ).
3. (α, θ)= (0.5, 1) , (1.5, 1) , (0.5, 2).

From the results obtained in Tabs. 1–3, we notice that:

• With increasing p∗, the required sample size n is increasing.
• With increasing c, the required sample size n is increasing.
• With increasing a, the required sample size n is decreasing.
• With increasing α and fixed θ , the required sample size n is increasing.
• With increasing θ , and fixed α, the required sample size n is increasing.

Finally, for all results checked that L (p0) ≤ 1− p∗. Also, when a = 1, we have p0 = 0.5, as
t0 =m0 and hence all results (n, L(p0)) for any vector of parameter (α, θ) are the same.

5 Parameter Estimation

In this section, the parameter estimation of the PITL distribution is discussed using classical
and Bayesian estimation methods. The classical methods include ML, MPS, LS, and WLS.

5.1 ML Estimators
Let X1,X2, . . . ,Xn be the observed random sample from the PITL distribution with PDF (4).

The log-likelihood function of the PITL distribution, denoted by ln �, for parameters, based on
complete sample, is given by

ln�= n ln 2α+ n ln θ − (2α+ 1)
n∑
i=1

ln
(
1+xθ

i

)+ (α− 1)
n∑
i=1

ln
(
1+ 2xiθ

)
. (29)

The partial derivatives of ln� with respect to α and θ are given by

∂ ln�

∂α
= n

α
− 2

n∑
i=1

ln
(
1+xθ

i

)+ n∑
i=1

ln
(
1+ 2xiβ

)
, (30)

and,

∂ ln�

∂θ
= n

θ
−

n∑
i=1

(2α+ 1)xθ
i
lnxi(

1+xθ
i

) +
n∑
i=1

2 (α− 1)xθ
i
lnxi(

1+ 2xθ
i

) . (31)

The non-linear equations ∂ ln�/∂α = 0 and ∂ ln�/∂θ = 0 are solved numerically via iterative
technique, to get the ML estimators of α and θ .
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5.2 MPS Estimators
A strong alternative procedure, known as MPS, for estimating the population parameters of

continuous distributions was proposed in [19]. Let

Di (α, θ)= F
(
x(i) |α, θ

)−F
(
x(i−1) |α, θ

)
, i= 1, 2, . . . ,n+ 1, (32)

be the uniform spacings of a random sample from the PITL distribution, where

F
(
x(0) |α, θ

)= 0, F
(
x(n+1) |α, θ

)= 1 and
n+1∑
i=1

Di (α, θ)= 1. (33)

The MPS estimator is obtained by maximizing the geometric mean (GM) of the spacings

GM (α, θ)=
{
n+1∏
i=1

Di (α,β, θ)

} 1
n+1

, (34)

with respect to α and θ , or we maximize the logarithm of the GM of sample spacings (34) with
respect to α and θ . The numerical technique is used to otain the desired estimators.

5.3 Least Squares and Weighted Least Squares Estimators
Let X1,X2, . . . ,Xn is a random sample of size n drawn from the PITL distribution and let

X(1),X(2), . . . ,X(n) be the observed ordered sample. The LS estimators are derived by minimizing
the sum of squares errors,

n∑
i=1

[
F
(
X(i)
)− i

n+ 1

]2
, (35)

related to the population parameters. So, the LS estimators of the model parameters of the PITL
distribution are obtained by minimizing the following formula

n∑
i=1

⎡
⎢⎣1−

⎧⎪⎨
⎪⎩
(
1+ 2xθ

(i)

)α

(
1+xθ

(i)

)2α
⎫⎪⎬
⎪⎭− i

n+ 1

⎤
⎥⎦
2

, (36)

related to α and θ . Furthermore, the WLS estimators of the PITL distribution is obtained by
minimizing the following related to α and θ .

n∑
i=1

1

var
(
F
(
X(i)
))
⎡
⎢⎣1−

⎧⎪⎨
⎪⎩
(
1+ 2xθ

(i)

)α

(
1+xθ

(i)

)2α
⎫⎪⎬
⎪⎭− i

n+ 1

⎤
⎥⎦
2

, (37)

where, var
(
F
(
X(i)
))= (n+ 1)2 (n+ 2)

i (n− i+ 1)
.
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5.4 Bayesian Estimators
The Bayesian estimator using squared error loss function (SELF) under the assumption of

non-informative prior of the population parameters for PITL distribution is obtained. Assuming
the prior distributions of α and θ have uniform density function, where the joint prior PDF are
given by

π (α, θ)∝ (αθ)−1 ; α, θ > 0. (38)

The posterior density of α and θ given the data is

π (α, θ |x)∝ 2n (αθ)n−1
n∏
i=1

[
x(2θ−1)
i

(
1+xθ

i
)−(2α+1) (

1+ 2xθ
i
)α−1

]
. (39)

Table 4: The MSE, RB and MCMC for different estimates of the PITL distribution

Parameter MLE LSE WLSE MPSE BE

MSE RB MSE RB MSE RB MSE RB MSE RB MCMC

n= 20
α = 0.5 0.0502 3.3614∗ 0.0874 0.1339 0.0756 0.1291 0.0774 0.4803 0.0221 0.2970 0.1285∗
θ = 0.25 0.0557 0.3658 0.0423 0.1941 0.0238 0.1440 0.1694 1.3526 0.0220 0.5932 0.5047∗
α = 0.5 0.0477 0.0886 0.0820 0.0801 0.0665 0.0685 0.1669 0.1159 0.0394 0.3968 0.1487∗
θ = 0.5 0.7593 0.5961 1.3296 0.4823 0.1710 0.1884 0.0523 0.0832 0.0514 0.4526 1.2930∗

n= 50
α = 0.5 0.0159 0.0255 0.0327 0.0265 0.0246 0.0113 0.0714 0.5178 9.9297∗ 0.1992 0.1221∗
θ = 0.25 7.3359∗ 0.0927 0.0106 0.0761 8.7961∗ 0.0701 0.0946 1.1191 6.3198∗ 0.3176 0.3541∗
α = 0.5 0.0199 1.6015∗ 0.0351 0.0832 0.0285 0.0627 0.0202 0.0268 0.0143 0.2392 0.1297∗
θ = 0.5 0.0371 0.1106 0.0752 0.0591 0.0570 0.0632 0.0220 0.0882 0.0193 0.2768 0.9988∗

n= 75
α = 0.5 0.0142 0.0407 0.0257 0.0336 0.0196 0.0156 0.0639 0.4961 6.3469∗ 0.1592 0.1281∗
θ = 0.25 4.1856∗ 0.1063 7.0371∗ 0.0699 4.9633∗ 0.0675 0.0818 1.0437 3.5326∗ 0.2364 0.5969∗
α = 0.5 0.0125 0.0366 0.0220 0.0481 0.0159 0.0191 0.0106 8.4056∗ 9.9320∗ 0.1992 0.1221∗
θ = 0.5 0.0166 0.0860 0.0169 0.0139 0.0139 0.0309 0.0124 0.0246 0.0108 0.2070 0.9626∗

n= 100
α = 0.5 0.0112 0.0104 0.0162 0.0282 0.0125 0.0193 0.0606 0.5129 2.4800∗ 0.0994 0.1367∗
θ = 0.25 2.3740∗ 0.0435 3.9248∗ 0.0181 2.7331∗ 0.0166 0.0784 1.0736 1.5718∗ 0.1572 0.4978∗
α = 0.5 9.9583∗ 0.0163 0.0148 0.0370 0.0117 0.0159 5.8392∗ 0.0207 4.8690∗ 0.1394 0.1220∗
θ = 0.5 7.8253∗ 0.0520 9.0235∗ 5.8805∗ 7.5677∗ 0.0202 0.0105 0.0354 6.2709∗ 0.1572 0.8880∗

n= 150
α = 0.5 6.3963∗ 8.7789∗ 0.0116 0.0137 8.3495∗ 0.8879∗ 0.0565 0.5124 0.3927∗ 0.0392 0.1211∗
θ = 0.25 1.0688∗ 0.0262 2.5472∗ 0.0109 1.4929∗ 0.0166 0.0762 1.0570 0.3908∗ 0.0760 0.5356∗
α = 0.5 4.9217∗ 0.0156 0.0123 0.0282 8.4621∗ 0.0206 4.2623∗ 0.0486 2.4703∗ 0.0992 0.1189∗
θ = 0.5 4.3257∗ 0.9536∗ 8.3465∗ 0.0884∗ 6.8160∗ 1.4037∗ 5.5084∗ 0.0513 3.5151∗ 0.1170 0.9037∗

Note: ∗Indicate that the value multiply 10−3.
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Therefore, the Bayesian estimators of υ = (α, θ) under SELF; denoted by q̃(SELF) (υ) can be
calculated as follows:

q̃(SELF) (υ)=
∫ ∞

0

∫ ∞

0
υL (α, θ |x )π (α, θ |x )dαdθ . (40)

Generally, the ratio of two integrals given by (40) cannot be obtained in a closed form. Then,
the integral Eq. (40) is solved numerically due to its complicated forms.

6 Monte Carlo Simulation

As mentioned in previous section, expressions for the derived estimators are hard to obtain.
Therefore, we design simulation study for clarifying the theoretical results. The behavior of esti-
mates is examined in terms of their mean square error (MSE), and relative bias (RB). We perform
the following:

Step 1: 10000 random samples of sizes 20, 50, 75 and 150 are generated from PITL
distribution. The chosen parameters values are;

(α = 0.5, θ = 0.25), (α = 0.5, θ = 0.5), (α = 0.5, θ = 0.75), (α = 0.5, θ = 1.25), (α = 0.25, θ = 0.25),
(α = 0.75, θ = 0.25), (α = 1.25, θ = 0.25), (α = 1.5, θ = 0.25).

Table 5: The MSE, RB and MCMC for different estimates of the PITL distribution

Parameter MLE LSE WLSE MPSE BE

MSE RB MSE RB MSE RB MSE RB MSE RB MCMC

n= 20
α = 0.5 0.0499 0.0332 0.0884 0.1528 0.0766 0.1549 0.2042 0.4776 0.0393 0.3962 0.1950∗
θ = 0.75 0.4311 0.2953 0.3510 0.1592 0.1739 0.0948 0.0756 0.1948 0.0710 0.3547 1.4330∗
α = 0.5 0.0599 4.9900∗ 0.1039 0.2159 0.0896 0.1743 1.2878 1.8693 0.0521 0.4562 0.1645∗
θ = 1.5 1.0838 0.2532 0.4214 4.3805∗ 0.4393 0.0255 0.8898 0.6065 0.4078 0.4247 4.3470∗

n= 50
α = 0.5 0.0176 0.0315 0.0351 0.0305 0.0268 9.7007∗ 0.0968 0.4744 0.0143 0.2394 0.1143∗
θ = 0.75 0.0703 0.1141 0.0946 0.0823 0.0797 0.0838 0.0680 0.2982 0.0516 0.3019 1.7770∗
α = 0.5 0.0170 0.0263 0.0377 0.1040 0.0281 0.0557 0.9997 1.8786 0.0143 0.2392 0.1344∗
θ = 1.5 0.1821 0.0682 0.2046 0.0331 0.1788 0.2410∗ 0.8582 0.6468 0.1559 0.2620 3.6850∗

n= 75
α = 0.5 0.0126 0.0101 0.0232 0.0443 0.0174 0.0334 0.0729 0.4526 9.9517∗ 0.1994 0.1222∗
θ = 0.75 0.0310 0.0574 0.0615 0.0357 0.0356 0.0246 0.0633 0.3001 0.0219 0.1961 1.6290∗
α = 0.5 9.5928∗ 0.0223 0.0179 0.0408 0.0137 0.0155 0.9882 1.9169 8.9794∗ 0.1894 0.1218∗
θ = 1.5 0.1405 0.0568 0.1502 0.0823∗ 0.1322 0.0185 0.6718 0.6539 0.1063 0.2160 3.4330∗

n= 100
α = 0.5 0.0125 5.1640∗ 0.0174 0.0508 0.0143 0.0300 0.0657 0.4518 7.1852∗ 0.1694 0.1127∗
θ = 0.75 0.0195 0.0390 0.0292 3.4620∗ 0.0241 0.0119 0.0617 0.2958 0.0141 0.1568 1.4390∗
α = 0.5 8.9568∗ 0.0326 0.0177 0.0562 0.0124 6.3811∗ 0.8697 1.8196 8.5678∗ 0.1850 0.1359∗
θ = 1.5 0.0508 4.6253∗ 0.1026 5.8072∗ 0.0976 7.6945∗ 0.6288 0.6394 0.0352 0.1233 3.0300∗

n= 150
α = 0.5 5.6017∗ 0.0428 0.0102 0.0188 7.3563∗ 0.0319 0.0612 0.4535 4.8689∗ 0.1394 0.1177∗
θ = 0.75 0.0108 0.0513 0.0183 0.0320 0.0127 0.0390 0.0571 0.3003 9.7996∗ 0.1305 1.3600∗
α = 0.5 7.4829∗ 0.0259 0.0122 0.0366 0.0104 0.0146 0.7230 1.8869 5.5761∗ 0.1492 0.1344∗
θ = 1.5 0.0380 9.9734∗ 0.0682 4.6852∗ 0.0744 0.0260 0.4469 0.6462 0.0249 0.1033 2.7410∗
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Table 6: The MSE, RB and MCMC for different estimates of the PITL distribution

Parameter MLE LSE WLSE MPSE BE

MSE RB MSE RB MSE RB MSE RB MSE RB MCMC

n= 20
α = 0.25 0.0215 0.0175 0.0556 0.4366 0.0371 0.3402 0.3629 0.4150 0.0193 0.5556 0.0881∗
θ = 0.25 0.1610 0.6416 0.0329 0.0167 0.0247 0.0102 0.0331 0.2617 0.0221 0.5940 0.3558∗
α = 0.75 0.0834 0.0294 0.1045 0.0356 0.0936 0.0213 0.2654 0.6785 0.0768 0.3693 0.2208∗
θ = 0.25 0.0128 0.1919 0.0184 0.1138 0.0202 0.1319 0.4077 2.2835 0.0118 0.4340 0.4083∗
n= 50
α = 0.25 9.4403∗ 0.0566 0.0180 0.2453 0.0117 0.1394 9.6211∗ 5.4851∗ 8.9721∗ 0.3788 0.0761∗
θ = 0.25 0.0279 0.2695 0.0150 0.0508 0.0117 4.4851∗ 0.0105 0.1048 0.0101 0.4020 0.2627∗
α = 0.75 0.0423 0.2867∗ 0.0588 0.0319 0.0502 0.0231 0.2610 0.6774 0.0398 0.2657 0.1910∗
θ = 0.25 4.3629∗ 0.0711 4.9722∗ 0.0340 4.1783∗ 0.0372 0.3376 2.1739 3.8803∗ 0.2484 0.4547∗
n= 75
α = 0.25 6.2262∗ 2.9251∗ 0.0162 0.1852 9.7917∗ 0.0924 5.6048∗ 0.0443 5.3033∗ 0.2912 0.0692∗
θ = 0.25 0.0101 0.1020 9.9630∗ 0.0252 6.4655∗ 0.0121 7.5809∗ 0.1188 6.3290∗ 0.3180 0.2473∗
α = 0.75 0.0203 5.2508∗ 0.0306 0.0491 0.0242 0.0285 0.2590 0.6766 0.0167 0.1723 0.1830∗
θ = 0.25 1.9143∗ 0.0407 2.9400∗ 7.9264∗ 2.1453∗ 6.5916∗ 0.2964 2.1037 1.5651∗ 0.1572 0.4263∗
n= 100
α = 0.25 3.3672∗ 0.0541 9.3865∗ 0.0411 5.0419∗ 8.1889∗ 2.9053∗ 0.0122 2.4833∗ 0.1992 0.0658∗
θ = 0.25 4.7421∗ 0.1040 9.7320∗ 0.0128 5.6535∗ 0.0415 3.4359∗ 0.0356 3.1820∗ 0.2244 0.5566∗
α = 0.75 0.0139 0.0273 0.0194 3.4386∗ 0.0198 0.0179 0.2517 0.6675 0.0103 0.1355 0.1723∗
θ = 0.25 1.4259∗ 0.0554 2.5388∗ 0.0329 1.8250∗ 0.1215 0.2674 2.0158 1.1283∗ 0.1332 0.4106∗
n= 150
α = 0.25 2.5287∗ 0.0270 5.7767∗ 0.0914 3.5442∗ 0.0558 1.9448∗ 0.0507 1.8268∗ 0.1708 0.0658∗
θ = 0.25 2.4121∗ 0.0266 4.9991∗ 0.8099∗ 2.4142∗ 4.2659∗ 3.0967∗ 0.0946 2.2711∗ 0.1896 0.5666∗
α = 0.75 0.0111 0.0161 0.0179 0.0141 0.0183 0.0350 0.2495 0.6487 9.5698∗ 0.1303 0.1609∗
θ = 0.25 1.0226∗ 0.0312 1.6564∗ 0.0373 1.3509∗ 0.0343 0.2621 1.9717 1.0077∗ 0.1260 0.3476∗

Note: ∗Indicate that the value multiply 10−3.

Step 2: ML estimate (MLE), MPS estimate (MPSE), LS estimate (LSE), WLS estimate
(WLSE) and Bayes estimate (BE) of the parameters are obtained.

Step 3: Markov Chain Monte Carlo (MCMC) technique (as M-H algorithm) is used to get
the BEs of α and θ under SELF via 10000 iterations.

Step 4: Compute MSEs and RBs of all estimates and the results are listed in Tabs. 4–7. We
notice the following about the performance of estimates:

• For all methods of estimation, it is clear that MSEs and RBs decrease as n gets larger for
all parameters (see Tabs. 4–7).

• The MSEs of BS are the less than the corresponding for other methods in almost all cases
(see Tabs. 4–7).

• For fixed value of α and as the value of θ gets larger, the MSEs and RBs of θ estimates
are increasing for different methods (see Tabs. 4–7).

• For fixed value of α and as the value of θ decreases, the MSEs and RBs of θ estimates
are decreasing for different methods (see Tabs. 4–7).
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• For fixed value of θ and as the value of α increases, the MSEs and RBs of α estimates
increase based on the different methods. But the MSEs and RBs of estimates of θ decrease
for different methods (see Tabs. 4–7).

• For fixed value of θ and as the value of α decreases, the MSEs and RBs of α estimates
decrease based on the different methods. While the MSEs and RBs of θ estimates for
different methods increase (see Tabs. 4–7).

Table 7: The MSE, RB and MCMC for different estimates of the PITL distribution

Parameter MLE LSE WLSE MPSE BE

MSE RB MSE RB MSE RB MSE RB MSE RB MCMC

n= 20
α = 1.25 0.1316 0.0610 0.1259 0.0101 0.1181 0.0178 1.0292 0.8094 0.1064 0.2608 0.3346∗
θ = 0.25 0.0118 0.1403 7.6849∗ 0.0231 6.4685∗ 0.0313 1.1295 4.0226 6.1965∗ 0.3144 0.3638∗
α = 1.5 0.1962 4.4106∗ 0.2397 0.0282 0.2205 0.0270 1.5919 0.8382 0.1562 0.2633 0.4202∗
θ = 0.25 3.4040∗ 0.0418 5.7670∗ 5.4885∗ 4.6340∗ 0.0111 1.5220 4.6453 3.2419∗ 0.2272 0.3422∗
n= 50
α = 1.25 0.0713 6.3716∗ 0.0938 7.9533∗ 0.0837 3.4523∗ 1.0243 0.8091 0.0698 0.2112 0.2912∗
θ = 0.25 2.1955∗ 0.0225 2.4607∗ 0.0157 2.0882∗ 5.3997∗ 1.1227 4.1105 2.0692∗ 0.1812 0.3720∗
α = 1.5 0.0698 3.1267∗ 0.0887 4.2921∗ 0.0809 3.6117∗ 1.5569 0.8314 0.0621 0.1660 0.3352∗
θ = 0.25 1.6055∗ 0.0374 2.0401∗ 8.7988∗ 1.7800∗ 0.0151 1.3746 4.5562 1.5608∗ 0.1572 0.3621∗
n= 75
α = 1.25 0.0448 0.0136 0.0667 0.0281 0.0584 0.0228 1.0129 0.8068 0.0438 0.1672 0.2738∗
θ = 0.25 1.0791∗ 0.0227 1.6382∗ 6.5046∗ 1.3702∗ 0.0121 1.0994 4.1070 1.0719∗ 0.1300 0.3523∗
α = 1.5 0.0449 5.0528∗ 0.0615 1.4778∗ 0.0585 0.9863∗ 1.5565 0.8314 0.0438 0.1393 0.3279∗
θ = 0.25 0.9677∗ 0.0107 1.7814∗ 1.5020∗ 1.5890∗ 8.4333∗ 1.3203 4.4979 0.9455∗ 0.1220 0.3482∗
n= 100
α = 1.25 0.0316 9.9876∗ 0.0399 0.0173 0.0352 8.0360∗ 1.0107 0.8040 0.0293 0.1368 0.2822∗
θ = 0.25 0.8071∗ 0.0250 0.9559∗ 8.3144∗ 0.8334∗ 3.0754∗ 1.0455 4.0291 0.7656∗ 0.1096 0.3399∗
α = 1.5 0.0435 0.0211 0.0448 0.0236 0.0429 0.0242 1.5417 0.8275 0.0401 0.1333 0.2025∗
θ = 0.25 0.6372∗ 9.5575∗ 0.7242∗ 6.2625∗ 0.6186∗ 4.4455∗ 1.2907 4.4391 0.6115∗ 0.0980 0.2882∗
n= 150
α = 1.25 0.0235 0.0135 0.0309 0.0127 0.0281 0.0136 1.0093 0.8035 0.0194 0.1112 0.1630∗
θ = 0.25 0.5687∗ 0.0103 0.8431∗ 7.4235∗ 0.7212∗ 7.2200∗ 1.0418 4.0430 0.5634∗ 0.0940 0.2869∗
α = 1.5 0.0316 9.7917∗ 0.0354 2.7240∗ 0.0329 5.0414∗ 1.4824 0.8059 0.0286 0.1127 0.2191∗
θ = 0.25 0.4705∗ 0.0139 0.6606∗ 0.0111 0.5335∗ 0.0136 1.2206 4.1920 0.4353∗ 0.0824 0.2833∗

Note: ∗Indicate that the value multiply 10−3.

7 Real Data Modelling

This section gives applications of the PITL model using two real data sets. The fits of the
PITL distribution, for the first data, is compared with Type II Topp–Leone inverse Rayleigh
(TIITLIR) [20], inverse Weibull (IW), exponentiated generalized power function (EGPF) [21],
power function (PF), and the inverse exponential (IE) distributions. On the other hand, the fits
of the PITL distribution, for the second data, is compared with TIITLIR, IW, Kumaraswamy
Weibull Lomax (KWL) [22], inverse Rayleigh (IR) and Lomax (L) distributions. Criteria is handled
to inspect the distribution for best fit: Akaike information criteria (AIC), consistent AIC (CAIC),
Bayesian information criteria (BIC), Hannan and Quinn information criteria (HQIC). Also, we
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provide the Kolmogorov Smirnov (KS) statistic and the P value. The engineering application of
selecting and comparing different distributions in composite structures can be found in [23].

Table 8: The MLEs and SEs of the model parameters and goodness of fit measures for first data

Model MLE SE -2logL AIC BIC CAIC HQIC K-S P-value

PITL α̂ = 2.1897 0.4268 111.09 115.09 118.14 115.45 116.13 0.0781 0.922
θ̂ = 0.9478 0.1420

TIITLIR α̂ = 0.1440 0.0240 127.42 131.42 134.47 131.78 132.46 0.9375 0.062
θ̂ = 0.2860 0.0550

IW θ̂ = 0.6173 0.1277 117.25 121.25 124.31 121.64 122.29 0.2255 0.775
β̂ = 0.8804 0.1093

EGPF θ̂ = 0.4201 0.3262 120.75 128.75 134.86 130.13 130.83 0.9454 0.055
α̂ = 0.9021 0.2470
β̂ = 1.0712 0.9076
λ̂= 8 –

PF α̂ = 0.5031 0.0863 120.95 124.95 128.00 125.34 125.99 0.9327 0.067
λ̂= 8 –

IE θ̂ = 0.5725 0.0982 118.39 120.39 121.91 120.51 120.91 0.5456 0.454
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Figure 2: The PP plots of PITL, TIITLIR, IW, EGPF, PF and IE distributions for first data set



1008 CMC, 2021, vol.67, no.1

First Data: The data set contains 34 observations of the vinyl chloride data obtained from [24]
which represents clean up gradient ground–water monitoring wells in mg/L. Tab. 8 gives measures
of comparison for the various distributions under study. Also, it contains the MLE and the
corresponding standard error (SE) for parameters of each model. Plots of estimated PDF and
CDF are given in Fig. 3. The PP plots of estimated densities are given in Fig. 2.

Figure 3: Estimated PDF and CDF of the models for the first data set

Table 9: The MLEs and SEs of the model parameters and goodness of fit measures for sec-
ond data

Model MLE SE -2logL AIC BIC CAIC HQIC K-S P-value

PITL α̂ = 1.3156 0.3221 78.66 82.66 85.46 83.07 83.56 0.204 0.796
θ̂ = 1.9736 0.3652

TIITLIR α̂ = 0.5860 0.0790 86.40 90.40 93.21 90.82 91.30 0.812 0.188
θ̂ = 0.7310 0.1720

IW θ̂ = 1.0162 0.1272 83.83 87.83 90.64 88.28 88.73 0.511 0.489
β̂ = 1.5496 0.2027

KWL α̂ = 0.7828 0.1472 87.95 95.95 101.55 97.43 97.74 0.816 0.184
β̂ = 0.0354 0.0722
λ̂= 22.7034 38.7474
θ̂ = 1.9621 0.5633

L λ̂= 100.5541 227.4926 135.79 139.79 142.60 140.21 140.69 0.930 0.069
θ̂ = 167.2669 379.617

IR θ̂ = 0.9267 0.0846 88.273 90.273 91.674 90.416 90.721 0.936 0.064
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Figure 4: Estimated PDF and CDF of the models for the second data set

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PITL

Observed

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TIITLIR

Observed

E
xp

ec
te

d

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IW

Observed

E
xp

ec
te

d

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KWL

Observed

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L

Observed

E
xp

ec
te

d

E
xp

ec
te

d
E

xp
ec

te
d

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IR

Observed

E
xp

ec
te

d

Figure 5: The PP plots of PITL, TIITLIR, IW, KWL, L and IR distributions for second data set

Second Data: The second real-life data was originally reported in [25]. The data contain
30 observations of the March precipitation (in inches) in Minneapolis/St Paul. The observed
values are:

0.77, 1.74, 0.81, 1.20, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32,
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.



1010 CMC, 2021, vol.67, no.1

Tab. 9 provides comparison measures for the proposed distributions. Plots of estimated PDF
and CDF of the PITL model are given in Fig. 4. PP plots of estimated densities are given
in Fig. 5.

Based on Tabs. 8 and 9 and Figs. 2–5, it can be seen that the PITL provides the overall best
fit. Consequently, the PITL distribution can be chosen as suitable model when comparing to other
distributions to explain the studied data.

8 Concluding Remarks

In this study, the power inverted Topp–Leone distribution is proposed. It provides more
flexibility compared with the inverted Topp–Leone model. Some useful statistical properties of
the PITL distribution are provided. We obtain the acceptance sampling plans for the PITL
distribution when the life test is truncated at the median life of the stated distribution. At
different parameters of the PITL distribution and different levels of consumer’s risk, the minimum
sample size is computed under multiple truncation times. Also, at the obtained sample sizes, the
probability of acceptance is computed to ensure that it’s less than or equal the complement of the
consumer’s risk (1−P∗). The model parameters are estimated by the maximum likelihood, maxi-
mum product spacing, least squares, weighted least squares and Bayesian methods. A simulation
study reveals that the estimates have desirable properties such as small relative biases and mean
square errors as sample sizes increase. Then, we deal with two real data application and mention
that the PITL model is the better than other competitive distributions.
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