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Abstract:Abstract In this paper, a novel design of the flower pollination algo-
rithm is presented for model identification problems in nonlinear active noise
control systems. The recently introduced flower pollination based heuristics is
implemented to minimize the mean squared error based merit/cost function
representing the scenarios of active noise control system with linear/nonlinear
and primary/secondary paths based on the sinusoidal signal, random and
complex random signals as noise interferences. The flower pollination heuris-
tics based active noise controllers are formulated through exploitation of
nonlinear filtering with Volterra series. The comparative study on statistical
observations in terms of accuracy, convergence and complexity measures
demonstrates that the proposed meta-heuristic of flower pollination algorithm
is reliable, accurate, stable as well as robust for active noise control system.
The accuracy of the proposed nature inspired computing of flower pollination
is in good agreement with the state of the art counterpart solvers based on
variants of genetic algorithms, particle swarm optimization, backtracking
search optimization algorithm, fireworks optimization algorithm along with
their memetic combination with local search methodologies. Moreover, the
central tendency and variation based statistical indices further validate the
consistency and reliability of the proposed scheme mimic the mathematical
model for the process of flower pollination systems.

Keywords: Active noise control; computational heuristics; volterra filtering;
flower pollination algorithm

1 Introduction

The trend of exploiting the potential of bio/nature-inspired soft computing techniques
is growing in the research community due to their extensive use in optimization problems
arising in engineering, science and technology [1–5]. For instance, heat transfer model [6],
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magnetohydrodynamics [7], nonlinear system identification [8], atomic physics [9], nonlinear
optics [10], plasma physics [11], and scheduling problem [12,13]. Recently, a new meta-heuristic
name as flower pollination algorithm (FPA) is introduced by Yang [14] for efficiently solving
nonlinear, constrained, single/multi-objective optimization problems [15–18]. The mathematical
model for the process of flow pollination of the flowering plants is used to due develop the FPA
meta-heuristic. Few potential applications of FPA include photovoltaic system optimization [19],
dimension improvement [20], truss structures [21], wireless sensor network [22,23], feature selec-
tion [24], control of power systems [25], biometric systems [26], wind speed forecasting [27], image
segmentation [28,29], antenna synthesis [30], power flow problem [31,32], neural network opti-
mization [33], chaotic systems identification [34] and bio-impedance models [35]. These illustrative
applications are motivations for the authors to exploit the potential of FPA based meta-heuristic
for solving the optimization problems of nonlinear active noise control (ANC) systems.

The ANC is a fundamental problem in control engineering and has been studied extensively
with both traditional and different local/global optimization techniques [36]. The well-known local
search methods used in ANC systems are based on the least mean squares approach [37–44]. The
local search algorithms are easy to implement but suffer from premature convergence, i.e., local
minima issues. To overcome these issues, different global search based soft computing techniques
are proposed such as, genetic algorithms (GAs) [45,46], particle swarm optimization (PSO) [47–49],
backtracking search heuristics [50], fireworks algorithm [51], and artificial neural networks [52].
The optimization strength of FPA looks promising to be exploited for ANC problems as an
alternate, accurate, reliable, and robust computing paradigm. The innovative contributions of the
current study are given as:

• The design of FPA based intelligent computing paradigm is presented for an effective
solution of nonlinear ANC systems.

• Mean squared error based merit function with nonlinear Volterra series filtering
is formulated.

• The accurate and robust performance of the FPA based ANC for various noise interfer-
ences in the case of different primary and secondary path scenarios prove the efficacy of
the approach.

• Central tendency and variation based statistical indices validate the consistency and relia-
bility of the proposed scheme.

The rest of the manuscript is prepared as: ANC model is given in Section 2. The design
approach is described in Section 3. Section 4 presents the results and the comparative studies with
state of the art counterparts, and conclusions are given in Section 5.

2 System Model: ANC

The conventional block diagram of ANC based controller is given in Fig. 1, and the pro-
posed model of nonlinear ANC with FPA is shown in Fig. 2. The algorithm used for filter’s
coefficients update belongs to a class of nature-inspired heuristics named FPA. In the proposed
mechanism, the reference microphone detects the source noise and error microphone measures the
output response of a system. When anti-noise and source noise signals combine silence zone is
created. The proposed mechanism works on the principle of superposition theorem [53]. Related
information for ANC system model can be seen in [54–56] and citations mentioned therein.
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Figure 1: Graphical representation of general analogy of ANC system
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Figure 2: Process block structures of proposed flower pollination algorithm based ANC system

3 System Methodology

The methodology for ANC modeling with FPA consists of two phases; (1) formulating fitness
function (2) presenting optimization mechanism based on FPA. The detailed flowchart in terms
of process block structure is shown in Fig. 3.

3.1 Modeling for ANC
Block diagram of proposed ANC controller is given in Fig. 2 while the adjustable param-

eter L-tap weights, i.e., decision variables of optimization algorithm, for ANC system based on
nonlinear filtering with Volterra series is given mathematically as:

b (k)= [b (0,k) ,b (1,k) , . . . ,b (L− 2,k) ,b (L− 1,k)] (1)

here b(k) represents coefficients Volterra filter at instance k. Let B be a set of contestant solutions
of ANC systems, i.e., elements of FPA, a set of k numbers of b as in (1) construct B as follows

B (k)=

⎡
⎢⎢⎢⎣

b1 (k)
b2 (k)
...
bn (k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1 (0,k) b1 (1,k) · · · b1 (L− 1,k)
b2 (0,k) b2 (1,k) · · · b2 (L− 1,k)
...

...
...

...
bn (0,k) bn (1,k) · · · bn (L− 1,k)

⎤
⎥⎥⎥⎦ (2)
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The input noise interference or source signal s(k) and output of nonlinear adaptive Volterra
filtering b(k) with length L = 20, i.e., VF-T1, for the population B, then ANC system using (1)
and (2) is written as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 (k)
q2 (k)
...
qP−L/4 (k)
qP−L/4+1 (k)
qP−L/4+2 (k)
...
qP (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 (0,k) b1 (1,k) . . . b1 (L− 1,k)
b2 (0,k) b2 (1,k) . . . b2 (L− 1,k)
...

...
...

...
bP−L/4 (0,k) bP−L/4 (1,k) . . . bP−L/4 (L− 1,k)
bP−L/4+1 (0,k) bP−L/4+1 (1,k) . . . bP−L/4+1 (L− 1,k)
bP−L/4+2 (0,k) bP−L/4+2 (1,k) . . . bP−L/4+2 (L− 2,k)
...

...
...

...
bP (0,k) bP (1,k) . . . bP (L− 1,k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s (k)
s (k− 1)
...
s (k−L/4+ 1)
s2 (k)
s2 (k− 1)
...
s2 (k−L/4+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Accordingly, Volterra filtering of type 2 (VF-T2) with L = 35 for the ANC system using
Eqs. (1) and (2) is written as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 (k)
q2 (k)
...
qP−L/7 (k)
qP−L/7+1 (k)
qP−L/7+2 (k)
...
qP (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 (0,k) b1 (1,k) . . . b1 (L− 1,k)
b2 (0,k) b2 (1,k) . . . b2 (L− 1,k)
...

...
...

...
bP−L/7 (0,k) bP−L/7 (1,k) . . . bP−L/7 (L− 1,k)
bP−L/7+1 (0,k) bP−L/7+1 (1,k) . . . bP−L/7+1 (L− 1,k)
bP−L/7+2 (0,k) bP−L/7+2 (1,k) . . . bP−L/7+2 (L− 2,k)
...

...
...

...
bP (0,k) bP (1,k) . . . bP (L− 1,k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s (k)
s (k− 1)
...
s (k−L/7+ 1)
s2 (k)
s2 (k− 1)
...
s2 (k−L/7+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Similarity, for Volterra filtering of type 3 (VF-T3) in case of the length of the Volterra filter
L= 65 in ANC system is given by:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1(k)
q2(k)
...
qP−L/10(k)
qP−L/10+1(k)
qP−L/10+2(k)
...
qP(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(0,k) b1(1,k) ... b1(L−1,k)
b2 (0,k) b2(1,k) ... b2(L−1,k)
...

...
...

...
bP−L/10(0,k) bP−L/10(1,k) ... bP−L/10(L−1,k)
bP−L/10+1(0,k) bP−L/10+1(1,k) ... bP−L/10+1(L−1,k)
bP−L/10+2(0,k) bP−L/10+2(1,k) ... bP−L/10+2(L−2,k)
...

...
...

...
bP(0,k) bP(1,k) ... bP(L−1,k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(k)
s(k−1)
...
s(k−L/10+1)
s2(k)
s2(k−1)
...
s2(k−L/10+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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In case of [c1,c2,...,cL]T are the response of secondary path transfer function C(z) with L-tap
weights/coefficients is written as:
⎡
⎢⎢⎢⎣

q∗(k)
q∗2 (k)
...
q∗p (k)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

q1(k) q1(k−1) ··· q1(k−L+1)
q2(k) q2(k−1) ··· q2(k−L+1)
...

...
...

...
qp(k) qp(k−1) ··· qp(k−L+1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1(k)
c2(k)
...
cL(k)

⎤
⎥⎥⎥⎦ (6)

(1) Problem (2) Modeling
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Figure 3: Process blocks for flower pollination based heuristics for ANC system

The fitness or merit function for ANC model is given as:

uj= 1
L

L−1∑
k=0

Uj (k), j=1,2,...,p (7)

for

Uj (k)=
(
v(k)−q∗j (k)

)2
, j=1,2,...,p (8)

Here v(k) and q∗(k) are the desired and estimated responses of the primary and secondary
paths, respectively. and is the response of the secondary path. Eq. (7) equivalently represented as:
⎡
⎢⎢⎢⎣

u1
u2
...
up

⎤
⎥⎥⎥⎦= 1

L

⎡
⎢⎢⎢⎣

U1(k)+U1(k−1)+···+U1(k−L+1)
U2(k)+U2(k−1)+···+U2(k−L+1)
...

...
... +···+...

Up(k)+Up(k−1)+···+Up(k−L+1)

⎤
⎥⎥⎥⎦ (9)
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In the case of perfect model, one has fitness function u=0, so optimization mechanism is
exploited for tuning of fitness (7), such that the magnitude of residual error of the ANC system
is reduced substantially. In the next section, optimization of ANC system with FPA is presented.

3.2 Optimization: Flower Pollination Algorithm
The FPA is a mathematical model inspired by the process of pollination dynamics in flowers

during the reproduction mechanism [14]. Yang et al. [15] introduced FPA in early 2012 as
an alternate optimization solver for both global and local search. Most of the flower plants
reproduction strategy is based on the pollination process in which pollen is transferred from one
plant to another plant of flowers by butterflies, insects, birds, and bees. The pollination process
is segmented into biotic and abiotic types. Biotic type flower pollination is also called cross-
pollination, i.e., the main form of flowering pollination, in which pollens are transferred by insects
and birds. The majority of flowering plants use biotic pollination procedures for pollen spread over
a long distance via Lèvy flights. While in abiotic pollination, the flowering plants does not required
pollinators and 10% of total flowering plants follow such pollination. In abiotic, the distance
covered by the pollinators is short and such types of actions are considered as local search. Biotic
and abiotic characteristics of pollinators are used to design an optimization algorithm called FPA.
The four basics rules of FPA based heuristic are introduced by Yang in 2012 as follows:

Rule 1. Global pollination carried out via biotic/cross pollination procedures with the help of
insects, birds and bees to transport the pollens.

Rule 2. Abiotic or self-pollination process is adapted for efficient local search.
Rule 3. Flower fidelity process based reproduction probability.
Rule 4. Switching probability between 0 and 1 is exploited for feasible local and global

pollination process [21].

The impressive swarm based optimization characteristics of FPA is exploited by the scholars
from different fields [57–60]. The mathematical mechanism of FPA bases of these four rules are
given as follows [25]:

xt+1
i =xti+L(λ)

(
xti−g∗

)
(10)

where, xti stands for pollen vector for ith candidate solution at iteration t, g∗ represents best
solution at current iteration and L stands for Lèvy flight represented as:

L(λ)= λΓ (λ)sin(λ/2)
πs1+λ

, (s�s0>0), (11)

here Γ (λ) represents the gamma function while distribution is effective for s>0 and λ=1.5. The
local search with FPA is represented as:

xt+1
i =xti+μ

(
xtj+xtk

)
, (12)

here, μ be the uniform distribution between 0 and 1, xtj and xtk are jth and kth pollens vectors

from different flowers of the same plant, respectively. In this study, the meta-heuristics of FPA
based ANC is implemented as shown in Fig. 3, while the pseudocode is presented in Algorithm 1.

4 Results and Discussion

The results of detailed ANC experimentations are presented here for multiple independent
executions of the FPA. Three ANC problems are implemented based on different lengths (L) of
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Volterra filter (VF), i.e., L=20,35, and 65 in the case of VF-T1, VF-T2, and VF-T3, respectively.
The FPA based ANC system are evaluated for sinusoidal/random/complex random noise inter-
ferences having linear primary path (LPP), nonlinear primary path (NPP), linear secondary path
(LSP) and nonlinear secondary path (NSP). The transfer function for LPP is:

P(z)=z−5−0.3z−6+0.2z−7 (13)

While, in case of LSP, the transfer function is defined as

C(z)=z−2+1.5z−3−z−4 (14)

The NPP transfer function is given as:

x(k)=s(k−3)−0.3s(k−4)+0.2s(k−5) (15)

v(k)=x(k−2)+0.08[x(k−2)]2+0.04[x(k−2)]3 (16)

Let q∗(k), i.e., an anti-noise signal is generated by the NSP as:

r(k)=0.06 tanh(1.5q(k)) (17)

q∗(k)=r(k−2)+1.5r(k−3)−r(k−4) (18)

The simulations are conducted in Matlab R2017b running under Windows 10 environment on
DESKTOP-73HVB7M, with Intel(R) Core(TM) i7-4790 CPU@3.60 GHz, 16-GB RAM.

4.1 Problem 1: ANC Model for Sinusoidal, Random and Complex Random Signals of VF-T1
In this problem, FPA based ANC system is exploited for Case 1: ANC for LPP and NSP

(ANC-LPP-NSP), Case 2: ANC for NPP and LSP (ANC-NPP-LSP) and, Case 3: ANC for NPP
and NSP (ANC-NPP-NSP). The ANC primary/secondary paths are defined in Eqs. (13)–(18).

Reliable inferences on the outcome of ANC are presented for hundred independent trials of
the FPA and result in the form of graphical representation of the statistics are given in Fig. 4 for
different cases of sinusoidal noise interference. While the results in case of random and complex
random noise scenarios are presented in Fig. 5. The results illustrated in Figs. 4 and 5 show that
the proposed FPA based outcomes are effective for reliable treatment of ANC systems having
LPP, LSP, NPP and NSPs.

The performance of the FPA is further examined through histogram plots and statistical mea-
sures of minimum (MIN), mean, and standard deviation (STD). The histogram plots are provided
in Fig. 6 for all cases of Problem 1. While the statistical operators are given in Tab. 1 and one
may observe that the results of random VF-T1 are relatively better than that of sinusoidal, but a
bit degraded to complex random. Moreover, the small STD values further validate the precision
of the proposed FPS based ANC controllers.

The computational complexity of the FPA based ANC controllers is evaluated via mean time
of execution required for the optimization and results for mean along with STD are tabulated in
Tab. 2. It is observed that the average time lies around 100±50, 85±80 and 80±50 for sinusoidal
VF-T1, random VF-T1, and complex random VF-T1 cases.
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Figure 4: Results of fitness achieved for 100 runs of flower pollination algorithm for ANC with
VF-T1 filtering each sinusoidal noise scenario of problem 1. (a) Un-sorted results of sinusoidal
noise based ANC-LPP-NSP. (b) Sorted results for sinusoidal noise based ANC-LPP-NSP. (c) Un-
sorted results of sinusoidal noise based ANC-NPP-LSP. (d) Sorted results for sinusoidal noise
based ANC-NPP-LSP. (e) Un-sorted results of sinusoidal noise based ANC-NPP-NSP. (f) Sorted
results for sinusoidal noise based ANC-NPP-NSP

4.2 Problem 2: ANCModel for Sinusoidal, Random and Complex Random Signals of VF-T2
In problem 2, FPA based ANC system is implemented for Case 1: ANC for LPP and NSP

(ANC-LPP-NSP), Case 2: ANC for NPP and LSP (ANC-NPP-LSP) and, Case 3: ANC for NPP
and NSP (ANC-NPP-NSP).

Graphical representation of the statistical outcomes for hundred independent trials of the
FPA based ANC for each case of different noise interferences are given in Fig. 7. The statistical
operators are given in Tab. 3. The fitness values of FPA based ANC system for ANC-LPP-NSP,
ANC-NPP-LSP and ANC-NPP-NSP are around 10-05 to 10-06 for sinusoidal, 10-04 to 10-05 for
random and 10-04 to 10-06, for complex random noise interferences of VF-T2. The results for
different scenarios presented in Fig. 8 show that the proposed FPA controllers are effective for
the reliable treatment of ANC systems.

The performance of the FPA based ANC systems is further investigated through histogram
plots and STATISTICAL operators and it is observed that the results of random VF-T2 are better
than that of complex random but inferior to sinusoidal VF-T2. One may decipher that relatively
better accuracy is attained for ANC system based sinusoidal and random noise signals. While the
results of ANC with sinusoidal noise are consistently found better than random noise scenarios.
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Figure 5: Results of fitness achieved for 100 runs of flower pollination algorithm for ANC with
VF-T1 filtering in case of random and complex random. (a) Un-sorted results of all three
scenarios of random noise. (b) Sorted results of all three scenarios of random noise. (c) Unsorted
results of complex random noise based ANC-LPP-NSP. (d) Sorted results of complex random
noise based ANC-LPP-NSP. (e) Unsorted results of complex random noise based ANC-NPP-
LSP. (f) Sorted results of complex random noise based ANC-NPP-LSP. (g) Unsorted results of
complex random noise based ANC-NPP-NSP. (h) Sorted results of complex random noise based
ANC-NPP-NSP

The computational complexity analyses for the optimization of FPA based ANC is evaluated
based on mean time and STD. The results of complexity are given in Tab. 4 and analysis show
that the average time lies around 75±65 for sinusoidal, 115±110 for random and 80±70 for
complex random noise interferences for ANC system with VF-T2 filtering cases.
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Figure 6: Comparison with histogram analysis for 100 runs of flower pollination algorithm for
ANC system for each noise scenario of problem 1. (a) Results of sinusoidal noise based ANC-
LPP-NSP with VF-T1. (b) Results of sinusoidal noise based ANC-NPP-LSP with VF-T1. (c)
Results of sinusoidal noise based ANC-NPP-NSP with VF-T1. (d) Results of random noise based
ANC-LPP-NSP with VF-T1. (e) Results of random noise based ANC-NPP-LSP with VF-T1. (f)
Results of random noise based ANC-NPP-NSP with VF-T1. (g) Results of complex random noise
based ANC-LPP-NSP with VF-T1. (h) Results of complex random noise based ANC-NPP-LSP
with VF-T1. (i) Results of complex random noise based ANC-NPP-NSP with VF-T1

4.3 Problem 3: ANCModel for Sinusoidal, Random and Complex Random Signals of VF-T3
In this problem, FPA based ANC system is exploited for different primary/secondary path

scenarios. The proposed FPA based ANC are conducted for hundred independent trials and
graphical representation of the statistics in sort and unsorted plots are given in Fig. 9. The
histograms are provided in Fig. 10 for each case of problem 3, while the statistics are provided in
Tab. 5. It is observed that the results of random VF-T3 are better than that of complex random
but inferior to sinusoidal VF-T3. Relatively better outcomes in term of accuracy are observed for
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FPA based ANC system in case of sinusoidal and random noise interferences. The comparison
shows that sinusoidal noise interference based ANC with VF-T3 are consistently superior than
each random noise scenario.

Table 1: Comparison through statistical operators for flower pollination algorithm based ANC
system for each scenarios of problem 1

ANC system with VF-TI Index Statistical indices

Min Mean STD

Sinusoidal noise Case 1 8.64E-05 9.10E-05 4.10E-06
Case 2 8.53E-05 8.65E-05 1.10E-06
Case 3 3.16E-04 3.18E-04 1.83E-06

Random noise Case 1 6.97E-06 2.32E-05 1.23E-05
Case 2 6.42E-06 1.83E-05 8.55E-06
Case 3 6.55E-06 2.33E-05 1.34E-05

Complex Random noise Case 1 1.32E-09 6.43E-07 2.71E-06
Case 2 2.95E-05 2.98E-05 7.43E-07
Case 3 4.02E-05 4.08E-05 8.62E-07

Table 2: Complexity of flower pollination algorithm for ANC cases of problem 1 under different
noise interferences

Index Sinusoidal Random Complex random

Mean STD Mean STD Mean STD

Case 1 93.479 0.333 85.145 0.386 76.974 2.959
Case 2 52.696 0.349 85.864 0.498 56.501 0.371
Case 3 50.839 0.297 80.377 0.217 56.708 0.355

The computational complexity analyses for the optimization of FPA based ANC is also
evaluated based on mean execution time and STD, and results are provided in Tab. 6. The analysis
show that the average time lies around 15±10 for sinusoidal, 30±15 for random and 60±40 for
complex random noise interferences of ANC with VF-T3 cases, respectively.

The computational complexity of FPA based ANC is examined with counterpart optimization
solvers. The computational complexity on mean execution time index of BSA and BSA-SQP
results for sinusoidal noise signal are lie around 800±50, 1000±60 and 780±30 for FIR, VF-1
and VF-2, respectively, while 750±100 and 900±90 for random and complex random noise
signals, respectively [50]. The complexity of variants of GAs and its moments combination of
IPA, i.e., GA-IPM-1 to 12, for ANC with FIR filter with sinusoidal, random and complex random
noise interference is 40±10, 60±5, and 90±5, respectively. Computational complexity of nature
inspired heuristics of PSO and its hybridized methodologies with PSO-IP, PSO-AS, PSO-SQP, and
PSO-NM for ANC system based on FIR filtering for all three noise variations is around 7±4 [49].
The computational complexity on mean values of respective FWA, enhanced FWA and adaptive
FWA are around 250±40, 145±40, and 100±20 for sinusoidal noise signal, 530±20, 340±20,
and 220±10 for random noise signal and 835±17, 540±25, and 352±5 for complex random
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signal [51]. One can quite evidently observe that the complexity requirements of FPA based ANC
system is relatively superior from GAs, BSA and FWA along with their memetic combination
with local search methodologies. While the results of PSO based variants are efficient from rest
but these results are for ANC systems based on FIR filtering having relatively inferior in accuracy
from FPA based ANC.

Figure 7: Results of fitness achieved for 100 runs of flower pollination algorithm for ANC with
VF-T2 filtering each noise scenario of problem 2. (a) Sinusoidal noise all three cases. (b) Sinu-
soidal sorted all three cases. (c) Random noise all three cases. (d) Random sorted all three cases.
(e) Complex random all three cases. (f) Complex random sorted cases

Table 3: Comparison through statistical operators for flower pollination algorithm based ANC
system for each scenarios of problem 2

ANC system with VF-T2 Index Statistical indices

Min Mean STD

Sinusoidal noise Case 1 1.07E-05 2.73E-05 3.91E-05
Case 2 8.19E-06 1.42E-05 4.32E-06
Case 3 2.00E-05 4.79E-05 1.39E-04

Random noise Case 1 4.19E-05 1.17E-04 7.34E-05
Case 2 1.79E-05 1.07E-04 7.15E-05
Case 3 2.44E-05 1.45E-04 1.04E-04

Complex random noise Case 1 3.96E-04 1.49E-01 1.42E-01
Case 2 1.08E-05 1.37E-04 1.71E-04
Case 3 4.78E-04 2.03E-01 1.31E-01
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Figure 8: Comparison with histogram analysis for 100 runs of flower pollination algorithm for
ANC system for each noise scenario of problem 2. (a) Results of sinusoidal noise based ANC-
LPP-NSP with VF-T2. (b) Results of sinusoidal noise based ANC-NPP-LSP with VF-T2. (c)
Results of sinusoidal noise based ANC-NPP-NSP with VF-T2. (d) Results of random noise based
ANC-LPP-NSP with VF-T2. (e) Results of random noise based ANC-NPP-LSP with VF-T2. (f)
Results of random noise based ANC-NPP-NSP with VF-T2. (g) Results of complex random noise
based ANC-LPP-NSP with VF-T2. (h) Results of complex random noise based ANC-NPP-LSP
with VF-T2. (i) Results of complex random noise based ANC-NPP-NSP with VF-T2

Table 4: Complexity of flower pollination algorithm for ANC cases of problem 2 under different
noise interferences

Index Sinusoidal noise Random noise Complex
random
noise

Mean STD Mean STD Mean STD

Case 1 71.902 1.456 113.904 1.405 72.157 1.205
Case 2 71.008 1.381 114.081 1.615 79.680 1.264
Case 3 68.994 1.167 113.046 0.856 79.737 1.439
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Figure 9: Results of fitness achieved for 100 runs of flower pollination algorithm for ANC
with VF-T3 filtering each noise scenario of problem 3. (a) Sinusoidal noise all three cases V3.
(b) Sinusoidal noise sorted all cases V3. (c) Random noise all three cases V3. (d) Random
noise sorted all cases V3. (e) Complex random noise NP-LSP V3. (f) Complex random sorted
NP-LSP V3

4.4 Comparative Study with Reported Results
Comparative studies of FPA results for ANC systems are made with reported studies based

on adaptive genetic algorithm AGA [58], variants of memetic combination of GAs with interior-
point (IP) algorithm, i.e., GA-IPA-1, to GA-IPA-12 [59], nature-inspired heuristic via particle
swarm optimization (PSO) and its hybrid with IP (PSO-IP), active-set (PSO-AS), sequential
quadratic programming (PSO-SQP) and Nelder-Mead (PSO-NM) methods [49], backtracking
search optimization algorithm (BSA) and its hybrid with SQP (BSA-SQP) [50], and variants of
fireworks algorithm (FWA) [51]. One may decipher from all these reported results and statistical
observation that the accuracy and convergence of FPA are in good agreement with state of
the art methodologies for all three ANC problems. An additional advantage of FPA based
ANC is that optimization of decision variables is based on a standalone algorithm with the
ability of both local and global search whereas most of the reported results are based on
hybrid methodologies.
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Figure 10: Comparison with histogram analysis for 100 runs of flower pollination algorithm for
ANC system for each noise scenario of problem 3. (a) Results of sinusoidal noise based ANC-
LPP-NSP with VF-T3. (b) Results of sinusoidal noise based ANC-NPP-LSP with VF-T3. (c)
Results of sinusoidal noise based ANC-NPP-NSP with VF-T3. (d) Results of random noise based
ANC-LPP-NSP with VF-T3. (e) Results of random noise based ANC-NPP-LSP with VF-T3. (f)
Results of random noise based ANC-NPP-NSP with VF-T3. (g) Results of complex random noise
based ANC-LPP-NSP with VF-T3. (h) Results of complex random noise based ANC-NPP-LSP
with VF-T3. (i) Results of complex random noise based ANC-NPP-NSP with VF-T3

Table 5: Comparison through statistical operators for flower pollination algorithm based ANC
system for each scenarios of problem 3

ANC system with VF-TI Index Statistical indices

MIN Mean STD

Sinusoidal noise Case 1 5.81E-01 7.19E-01 6.40E-02
Case 2 9.28E-06 3.40E-05 2.41E-05
Case 3 1.26E-05 5.99E-03 1.11E-02

Random noise Case 1 2.57E-04 1.23E-03 7.33E-04
Case 2 1.55E-04 9.20E-04 4.70E-04
Case 3 3.40E-04 1.43E-03 9.16E-04

Complex random noise Case 1 1.51E-01 6.42E-01 7.25E-02
Case 2 1.64E-03 1.38E-02 6.75E-03
Case 3 5.16E-01 6.82E-01 4.25E-02
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Figure 11: Pseudocode for flower pollination algorithm for nonlinear ANC

Table 6: Complexity of flower pollination algorithm for ANC cases of problem 3 under different
noise interferences

Index Sinusoidal Random Complex random

Mean STD Mean STD Mean STD

Case 1 10.699 0.004 14.275 0.691 45.523 3.773
Case 2 13.638 0.445 21.570 0.392 58.928 0.711
Case 3 13.131 0.447 18.866 0.377 59.225 0.785

5 Conclusions

A novel design of nature-inspired heuristic of FPA is presented for the identification problem
in nonlinear ANC with interferences. Different ANC scenarios by considering linear/nonlinear
and primary/secondary paths are evaluated by determining coefficients of three different Volterra
filters, i.e., VF-T1, VF-T2 and VF-T3. The performance of the FPA based ANC is verified
through consistently achieving reasonable gauges of statistical operators in terms of accuracy,
convergence and complexity measures. The performance is further validated via histogram analysis
to prove that the FPA based ANC systems are reliable, accurate, stable and robust but the
performance of the VF-T3 is comparatively better. The accuracy of FPA based ANC is in good
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agreement with state of the art counterpart solvers based on GA, PSO, BSA and FWA along with
their hybrid with local search. In the future, one may explore to enhance the performance of ANC
system by implementation of recently introduced fractional derivative definition [60–64]. More-
over, the proposed methodology can be exploited to efficiently solve various complex engineering
optimization problems [65–68].
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