
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014686

Article

An Ontology Based Test Case Prioritization Approach in
Regression Testing

Muhammad Hasnain1, Seung Ryul Jeong2,*, Muhammad Fermi Pasha1 and Imran Ghani3

1Monash University, Petaling Jaya, 46150, Malaysia
2Kookmin University, Seoul, 136, Korea

3Indiana University of Pennsylvania, PA, 15705, USA
*Corresponding Author: Seung Ryul Jeong. Email: srjeong@kookmin.ac.kr

Received: 08 October 2020; Accepted: 26 November 2020

Abstract: Regression testing is a widely studied research area, with the aim
of meeting the quality challenges of software systems. To achieve a software
system of good quality, we face high consumption of resources during testing.
To overcome this challenge, test case prioritization (TCP) as a sub-type of
regression testing is continuously investigated to achieve the testing objectives.
This study provides an insight into proposing the ontology-basedTCP (OTCP)
approach, aimed at reducing the consumption of resources for the quality
improvement and maintenance of software systems. The proposed approach
uses softwaremetrics to examine the behavior of classes of software systems. It
uses Binary Logistic Regression (BLR) and AdaBoostM1 classifiers to verify
correct predictions of the faulty and non-faulty classes of software systems.
Reference ontology is used to match the code metrics and class attributes. We
investigated five Java programs for the evaluation of the proposed approach,
which was used to achieve code metrics. This study has resulted in an average
percentage of fault detected (APFD) value of 94.80%, which is higher when
compared to other TCP approaches. In future works, large sized programs
in different languages can be used to evaluate the scalability of the proposed
OTCP approach.

Keywords: Software code metric; machine learning; faults detection; testing

1 Introduction

Regression testing involves retesting of software after adding changes in the software or its
environment [1]. Retesting of entire software is quite a challenging task for testers. They usually
take only the current test suit T with the maximum number of faults. Schwartz et al. in [2]
examined cost-effective TCP approaches and suggested trade-offs among them. If test cases are
significant in number, retesting of software becomes an expensive and time-consuming technique.
Manual testing may take several weeks to months for retesting an entire system. Several regression
testing approaches have been proposed in the literature to overcome the high consumption of
resources, particularly TCP techniques [3,4].

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014686


1052 CMC, 2021, vol.67, no.1

TCP makes software evolution more rapid as well as cost-effective. Recent research has
highlighted that TCP is widely used to manage the increased costs of execution of large test suits.
Among the many TCP techniques is code coverage, which focuses on the code churn attribute to
identify code parts that can be used to test and fix errors [5].

Ontology-based approaches can combine various software artifacts. They can also provide the
description of design and testing of software and adhere to the full use of the semantic rules [6].
In [7], researchers proposed ‘ontology-based knowledge map methodology’ (PROM) to reduce the
failure rate of ‘business process re-engineering’ (BPR) [8].

Ontologies present the formal conceptualization of different entities, their behavior, interfaces,
and associations. They are widely used to meet automation and decision-making needs [9]. Prior
studies have addressed the TCP aspects with regards to codes, requirements, risks and others.
There is a lack of research exploring the identification of the defects of software systems using
test case prioritization based on ontologies. The study in [10] used requirement ontology for test
case generation during the software testing phase. The proposed approach in [11] is aimed to
measure the objective risk management using web services analysis and ontology. Additionally,
ontology-based literature has provided success in the classification of items in different research
domains [12,13].

A study in [14] emphasized the ontology-driven software testing approach that covers func-
tional and ‘non-functional requirements’ (NFRs). Ontology-based software testing can minimize
ambiguity, heterogeneity, and incompleteness issues in properties and relationships. However, it is
unknown how ontology can help in prioritizing the test properties of modified software systems.
Prior to it, the study [15] proposed constructs in the ontology of NFRs, to provide a mechanism
for tracing back their impacts on other constructs in an ontology. Moreover, ontologies can be
updated or extended to support test activities, techniques, methods and software artifacts [16].
A recent work [17] sheds light on the role of ontologies in software systems’ maintenance and
testing. Ontologies are better than the existing approaches in detecting the critical scenarios in
autonomous vehicle systems. Systems based on ontologies are modeled into inputs in combinato-
rial testing and used to generate test cases. A case study was carried out in [18] that demonstrated
the applications of ontology-based ‘test case generation’ (TCG) in an industrial setting. This
study proposes an ontology-based technique that generates different scenarios to reveal faults in
a system. For continuous improvement of software systems, ontology, and provenance model [19]
help capture and provide regression test data. The proposed ontology-driven studies [18,20] are
relevant in identifying real-world system issues.

In this research, we integrate theoretical and practical aspects of ontologies with the testing
of software systems.

The contributions of this paper are as follows:

• We propose an ontology-based TCP technique based on the defect prediction criterion.
• We propose to use the code metrics values to provide ground truth for prediction and

classification of faulty and non-faulty classes.
• We propose usage of the classification models to classify the faulty and non-faulty classes

and report the values of performance measuring metrics.
• We report empirical studies to evaluate the performance of the proposed TCP technique.

The rest of the paper is organized as follows. Section 2 covers a background of the main con-
cepts used in the proposed study. Section 3 concerns the related works with the TCP approaches,
software metrics, and reference ontology. The proposed ontology-based TCP technique is described



CMC, 2021, vol.67, no.1 1053

in Section 4. Empirical studies and experiments are presented in Section 5. Finally, Section 6
concludes the proposed research and presents implications for future works.

2 Background

This section covers the main concepts involved in this study, along with their definitions.

2.1 Regression Testing
Testing is a mandatory phase of software development. Software development companies face

the challenges of testing for large scale and complex systems. Regression testing is one of these
challenging testing activities, which consumes a lot of resources. It is performed to ensure that
software modifications do not affect the other parts, and unchanged parts work as they did before
any change or modification [21].

2.2 Test Case Prioritization (TCP)
Regression TCP aims to improve the fault detection rate, executing the important test cases

as earlier as possible [22]. There are different proposed TCP techniques based on varying criteria.
These are, code coverage and requirements coverage. TCP techniques are effective in reducing
the overhead in regression testing. They are widely examined in the literature [23,24], with most
studies focusing on code coverage criteria and prioritization algorithms. Institutively, code coverage
criteria can be considered a characteristic of a test case, and studies use code coverage to guide
the process of prioritizing test cases.

2.3 Ontology
Ontology is a rigorous and formal approach used for knowledge representation that provides

precise and unambiguous semantics for terms [25]. In literature, ontologies are classified into top-
domain, core, foundational, domain, or instance [14]. In software testing, ontologies provide the
common shared knowledge understanding of concerned entities and their relationships, resulting
in their easy organization, maintenance, and updates [26].

3 Related Works

In the following sections, we review the existing literature on TCP and related concepts,
together with software metrics and reference ontology.

3.1 Test Case Prioritization Approaches
Test Case Prioritization is aimed at scheduling the execution of test cases following some

criteria. It is performed to optimize some objective functions [23]. Yoo et al. [27] stated that TCP
is also performed to maximize earlier fault detection in software systems. Srikanth et al. [28]
stated that software issues mostly arise from modification or changes in software systems. Software
maintenance, including software updates, modifications, and bug fixes make up more than 50%
of the total cost of a project. Moreover, regression testing in any of its three types, ‘test case
selection,’ ‘test case reduction,’ and ‘test case prioritization’ requires further processes to refine all
these types. However, since the last several years, many researchers have focused on prioritizing
test cases in a new fashion to detect the maximum faults. Parejo et al. [29] involved a highly
configurable system known as ‘Drupal framework’ for their experiments using the multi-objective
TCP approach. To test a more substantial and complex system is a challenging task, and therefore,
multiple TCP criteria were proposed to identify the faults as early as possible.



1054 CMC, 2021, vol.67, no.1

Regarding the TCP approach proposed in [30], the faults’ severity has been missed. Therefore,
the researchers taking up future work need to offer criteria to prioritize test cases. They also
need to allocate various scores according to the severity of each fault in software applications. To
overcome the issue of TCP, Hao et al. [31] proposed the optimal coverage technique. Although
several coverage-based TCP techniques have been proposed for fault detection and prioritization
of test cases, researchers involve either structural coverage or detected faults to propose them.

3.2 Software Metrics in Predicting the Faulty Modules
The assessment of software quality attributes depends on the applications of appropriate

metrics. However, the choice of software metrics becomes complicated as several of them are
available in the literature. Arvanitou et al. [32] introduced a new property of software metrics
called ‘software metric fluctuation’ (SMF), aimed at quantifying the variations in metrics score.
Although the SMF has been aimed at measuring the variance in scores between successive
software versions, two levels have been defined, which refer to the sensitivity (a high variation)
and the stable (a low variation), respectively.

The role of SDP is to reduce the cost and ensure the quality of software. The success of SDP
lies in using the software metrics that have been traditionally used; however, the class imbalance
problem remains unresolved. To overcome this issue, Tong et al. [33] in a recently published
research proposed the SDP named ‘SDAEsTSE’, which was focused on applying the software
metrics to extract the defaults and address the imbalance issue of classes.

3.3 Reference Ontology
Souza et al. [34] used reference ontology for knowledge management with the objectives of

structuring knowledge repositories and annotating the knowledge items to make the searching
process much easier. The researchers proposed ‘reference ontology on software testing’ (ROoST)
to address the issues related with testing process. They used a well-established, and well-known
SABiO method. Several references were considered during the development of ROoST, as men-
tioned above. The proposed approach showed limitations in handling the software and human
resources used in the previously mentioned study. This work [34] is related to our work, as
ontologies cover test information. However, there is no proposal for the test case prioritization
process in the earlier mentioned study.

In another research study, Serna et al. [35] emphasized establishing the association between
testing and software metrics to software components. The value of metrics related to a software
component was determined several times. However, the researchers in the lateral study used
ontologies that were developed for software maintenance. Thus, the proposed technique in the
latter study showed limitations regarding software maintenance and knowledge which can be
managed, and which helps in maintaining the software products.

Saleh et al. [36] proposed a framework to classify the input pages depending on predefined
domain classes. Web mining techniques and ‘multi-layer domain ontology’ were used to propose
the framework. The researchers of the same research study claimed that their proposed framework
outperformed the existing classification framework in terms of the recall, precision and accuracy
metrics values. However, semantic relations to the ontology have been missed in this work, which
can be carried out in future works.

In a recently published work, Lytvyn et al. [37] proposed the ontology-based method to clas-
sify text documents. They used metrics based on the classical structure of an ontology. Regarding
the classical architecture of the ontology, two scalar values, such as the significance of concepts



CMC, 2021, vol.67, no.1 1055

and relationships, were added to the conventional three-elements-based ontology. An ontology
with the three elements, such as set of concepts, relationships and interpretation of relationships,
was already used. It showed inefficiency in calculating the distances.

4 Proposed Ontology-Based Test Case Prioritization (OTCP) Approach

This section describes the proposed OTCP approach, the process flow of which is depicted
in Fig. 1.

Figure 1: Process flow of proposed OTCP approach

Fig. 1 shows a high-level process flow of the proposed OTCP approach. The process starts
by source code and data pre-processing for classification of Java classes. We have different phases
of the proposed approach, as described in the following sections. Until the classification of the
modules as faulty and non-faulty has reached, we continue the computation of metric values for
modules of programs. We also process the attribute and metric values of classes in the proposed
Reference Ontology. The description of the proposed Reference Ontology has been given in the
following sections.



1056 CMC, 2021, vol.67, no.1

4.1 First Phase
The first phase involves the selection and data pre-processing of programs. In here, we per-

form a search for data repositories that host the desired programs used in this study. The datasets
which have been frequently used in primary studies are selected from public data repositories.
These repositories include PROMISE, GitHub, and ECLIPSE, and Maven. PROMISE is a source
of datasets that are widely used in studies [33,38]. Other than the PROMISE data repository,
Zhou et al. [39] explored the ECLIPSE repository to collect the datasets of three versions of
Eclipse Java programs. In the current study, we access the programs from data repositories [40,41].
Datasets residing on these repositories are used for training and testing of the binary logistic
regression and AdaBoostM1 classification models.

4.2 Second Phase
The next phase of the proposed approach as ‘Metrics’ is the core phase to select the potential

code metrics. Appropriate code metrics can give us the valuable divergence of modules from their
classification. We employ the code metrics, including lines of code, cyclomatic complexity, depth
of inheritance, number of operands, and operators. Moreover, we present the reference ontology,
which has been argued as a concept to classify the real-world issues [42]. We aim to use reference
ontology by incorporating the code metrics at the class level of programs.

In the following Fig. 2, we present reference ontology at a class level to show how attributes
of a class and software metrics match each other. Ontology can represent the consensus within
a community by making the representation of fault identification in the projects [34]. It brings
clarity in the description of classes and their code metrics, and how both have a relationship with
each other.

Figure 2: A class level reference ontology



CMC, 2021, vol.67, no.1 1057

Fig. 2 shows the high-level diagram of reference ontology as proposed in this study. Reference
ontology provides an effective way to extract information. It also plays a vital role in bridging the
gap of connecting metrics’ values and their relevant classes. Before creating an ontology, experts’
knowledge and literature support were used to define classes and their relationship with code
attributes. There are various concepts across the metrics values. However, we keep the number of
code metrics limited to achieve simplicity in results. We know that object-oriented programming
is mostly based on the classes, and each class programmed in any language has many attributes,
as shown in Fig. 2.

Before this study, references [43,44] used the threshold values of metrics such as LOCs, CC,
number of operators, and number of operands. Therefore, we add metrics such as ‘depth of
inheritance hierarchy’ (DIH) in the proposed OTCP approach. The lateral added metric represents
the CK metric that was used in [45]. We use Plugin Metrics 1.3.8 to measure the values of each
metric in this study.

Class complexity is generalized by using the DIH metric. A deeply positioned class makes
sense, and is relatively complex maintain. The nominal range of the DIH metric’s value lies
between 0 and 4. The findings of Erdogmus et al. [46] provide evidence that a Java program with
(DIH = 5) takes a longer time than one with an inheritance depth of 3. A flat program with 0
DIH does not require much effort to maintain. On the other hand, a Java program with a DIH
of more than 4 becomes more complex and fault proneness is likely increased. Therefore, we have
set the threshold value of DIH as 4, as given in this section. Below we have defined a few rules
to reveal the threshold values of software metrics.

(1) If lines of code metric are >65, the class is faulty
(2) If Cyclomatic Complexity score is >10, the class is faulty
(3) If Depth of Inheritance score is >4, the class is faulty
(4) If number of operators is >125, the class is faulty
(5) If number of operands is >70, the class is faulty

We have adopted the threshold frequencies of code metrics, including lines of code, cyclomatic
complexity, operators, and operands from the study of Abaei et al. [43], where they have provided
a detailed description of software metrics. To show the binary relationship between class attributes
and metric values, we have defined a rule as follows:

A class attribute (A) is in a binary relation to a metric value (V) in a one to one relationship.
This means, A-to-V shows us a general overview of a relationship between two entities.

For example, we have five class attributes and five metrics values, so there is a one to one
relationship between attributes and metrics values. We use an x-value and a y-value to show this
relationship in a paired form. The set of x-values is called domain, while that of y-values is known
as the range. To display the one-to-one relationship, reference ontology expresses this relationship
between class attributes and metric values through the respective annotations (Fig. 3).

Fig. 3 shows the Visual Notation for OWL Ontologies (VOWL) view of the developed ref-
erence. It is clearly showing us the focused classes and sub-classes in the reference ontology. As
mentioned earlier, the main focus has been on ‘class’ in the context of a programming language.
As such, a class represents the classes of the application programmed in languages (Java, C++,
C#, and VB.Net), and each class has its sub-classes, as shown in Fig. 3. Main classes, along
with their relevant sub-classes, represent the knowledge domain that we want to model. Therefore,
the resulting ontology may be used to make a statement concerning the metrics, classes and



1058 CMC, 2021, vol.67, no.1

decisions. Ontology serves as a means of knowledge representation and reasoning [47]. Generally,
an ontology is represented by using OWL syntax, which makes it superior in representing complex
relationships, information sharing, and reuse.

Figure 3: VOWL view of the reference ontology

Fig. 4 gives us an overview of an OntoGraph of the Ontologies which are used in this study.
The OntoGraph supports the interactive navigation and relationship between OWL ontologies.
We have imported the OWL for ontology parsing, which can be visualized by Protégé. Therefore,
we have constructed a software program ontology in the OntoGraph in Protégé, as illustrated
in Fig. 4. The class hierarchy is starting from the ‘Thing’ class to the main classes and sub-
classes. The main classes include the metrics, classes, and decision. Each of these classes further
incorporate a set of properties and conditions.

4.3 Third Phase
To validate the performance of the Metrics phase of the proposed OTCP approach, we

aim to use the Binary Logistic Regression, and AdaBoostM1 classification models. Generally,
logistic models have very close overall classification accuracy as compared to neural network
models [48]. The main advantage of using logistic regression is its effectiveness in handling the
multiple predictors to the mixed data types [49]. We aim to analyze the metrics data and validate
the Metrics phase in step 1 to estimate the accuracy of the proposed OTCP approach in the same



CMC, 2021, vol.67, no.1 1059

phase. Fault prediction urges the researchers to assure that detection of faulty and non-faulty
modules is supported by the statistical analysis.

Figure 4: OntoGraph view of the ontology

We reorder the test case based on the fault score covered by each class in a program. However,
a class may have multiple test cases, which need to be reordered based on higher number of faults.
Previous studies emphasize the defect prediction methods which are leveraged for automated tasks,
i.e., TCP. Most of the existing TCP techniques do not involve the latter mentioned aspect of
software testing.

Based on the assumption, we extract the prior knowledge of fault probability from code
metrics values. The probability of existing faults can be derived using the following formula given
in Eq. (1), provided that the probability of the existing faults in a unit is as uj 1 ≤ j ≤ m and
is Prob. of Fj; where Fj indicates the event in which j as a coding unit is faulty, and Prob. (Fj)
represents the probability of this event [50]. We can determine the coverage for the test case Ti
from the modified coverage formula, as shown in Eq. (1).

FaultsBasedCover (i)=
∞∑

1≤i≤m
(Cover (i, j)xProb.(Fj) (1)

Based on the above formula, a unit test case with a higher weight has more fault probability.
As such, more priority is given to that unit in a class. A class may have multiple test cases, and
each test with a higher fault probability is prioritized for the execution.

5 Empirical Study and Experiments

This section presents the empirical studies conducted to answer the research. Experiments
were carried out on a PC with an Intel Core processor and 8 GB of RAM. Before we discuss
experiments, we propose the research question as follows:

RQ: Is the proposed OTCP approach superior to the existing TCP techniques?



1060 CMC, 2021, vol.67, no.1

The RQ is aimed to measure the efficiency of the proposed TCP approach against other
TCP approaches. To compare the performance of our proposed approach, we have five different
criteria based on TCP techniques. In addition to these TCP approaches, we also aim to compare
the OTCP approach’s performance with other approaches if any of the five Java programs have
been analyzed in other TCP approaches. Based on the APFD value, we present each technique’s
fault detection competency, because the APFD metric is widely explored in the research area of
regression testing. Some researchers [51,52] have doubts about the effectiveness of mutant based
TCP approaches. Therefore, we collect datasets with the number of test cases and detected faults.
Experiments on the actual Java programs are convincing for answering the proposed RQ.

5.1 Implementation and Subject Programs
Eclipse SDK 3.7.2. Framework [53] is used to implement experiments. This framework sup-

ports several plugins, including CodePro Analytix, which is mainly used by Java developers.
Eclipse supports the dynamic uploading of Java projects, which are further explored in Java
packages and classes. Next, we perform the categorization of classes of Java programs. Since we
collect information at the class level, we perform experiments at the class level test cases. The
section below describes the five chosen Java programs (datasets).

‘Measure of Software Similarity’ (Moss) is an online service freely available for academic
use. It detects the similarity between a pair of documents. Several studies highlight its use for
experiments and empirical evaluation of code-based approaches [54,55]. This dataset resides on
GitHub repository [56]. The second dataset, PureMVC, is a lightweight framework used to create
applications based on model-view-controller design and meta-patterns. The source code of the
PureMVC program resides on the repositories [41,57]. This program helps in setting the best prac-
tices and architecture for software development [58]. Ant program and several other programs have
been used to evaluate the proposed code of the coverage-based TCP approach [59]. Jsystem and
Tomcat programs, with their different versions, can be accessed from the Maven repository [41].
Tomcat and Ant datasets have been used for the evaluation of ensemble learning classifiers [60].
All these programs were used to validate the proposed ontology.

5.2 Empirical Study Design
We exploit the information regarding code metric values of Java programs’ classes, test cases,

faults, prediction and classification of faulty classes, and performance accuracies of classification
models. Execution results of the earlier mentioned factors are obtained by using CodePro Analytix
and Weka 3.8.4. We use JUnit testing [61] to design test cases, which also gives us information
regarding the faults identified for each class’s test cases. As we assumed that the earliest Java
programs did not have any errors, and faulty versions were produced by modifications, and
introduced commits. Thus, the faulty versions contained the metrics values, as explained in the
second phase of the proposed OTCP approach.

Next, we have analyzed code metric results using the defined rules to classify the faulty and
non-faulty classes of five Java programs. Tab. 1 presents a summary of actual and predicted faulty
and non-faulty classes in focused programs, and the accuracy score of both the classifiers. For
the Moss program, we have determined that out of 10 classes, 5 java classes were identified as
faulty classes. However, we validate our findings by performing binary logistic regression analysis.
We also use the AdaBoostM1 classifier to verify the accuracy in the classification and prediction
of faulty classes and non-faulty classes. Below we show the correct classification and prediction
results of five Java programs.



CMC, 2021, vol.67, no.1 1061

Table 1: Prediction results of faulty and non-faulty classes in five Java programs

Program
name

Classifier Actual faulty
classes

Actual non-faulty
classes

Predicted faulty
classes

Predicted
non-faulty
classes

Accuracy
(% age)

Moss BLR 7 3 6 1 70.00
AdaBoostM1 7 3 6 3 90.00

PureMVC BLR 6 19 4 19 92.00
AdaBoostM1 6 19 5 19 96.00

Jsystem BLR 10 7 7 7 82.35
AdaBoostM1 10 7 7 7 82.35

Tomcat BLR 8 2 8 2 99.80
AdaBoostM1 8 2 8 0 80.00

Ant BLR 7 8 6 8 93.33
AdaBoostM1 6 9 4 8 80.00

Results illustrated in Tab. 1 verify that six Java classes are correctly observed as non-faulty
classes from the BLR classifier. In contrast, the AdaBoostM1 classifier has correctly predicted
the same number of classes for the Moss program. This also shows us that the prediction made
by using BLR classifier is according to the identified Java classes. We also performed a binary
classification of the PureMVC Java program using the chosen classifiers. Out of 25 Java classes
in the PureMVC program, four classes were identified as faulty classes using the BLR classifier,
while five classes were identified as non-faulty by the AdaBoostM1 classifier. For the remaining
three Java programs, Jsystem, Tomcat, and Ant, we have better classification accuracies from
two classifiers. Thus, the binary classification with the support of two classifiers verified what we
observed the correct prediction of faulty and non-faulty classes in five Java programs. Prediction
accuracy of both types of classes varied between 70% and 99.80%, leading to better testing in
further steps. We have generated test cases of the faulty Java classes of datasets of five programs.

Table 2: APFD values of five programs

Program name Number of
classes

Number of
test cases

Number of
faults

APFD value

Moss 5 16 20 0.8877
PureMVC 25 138 75 0.9684
Jsystem 17 310 103 0.9494
Tomcat 18 165 215 0.9533
Ant 15 91 76 0.9814

Tab. 2 is showing us the programs, number of classes, number of test cases, faults, and APFD
values of the five focused datasets. These results illustrate that PureMVC is an extensive size
program with a more significant number of classes, while Moss is with the minimum number of
classes. The other three programs such as Jsystem, Tomcat, and Ant are with medium number
of classes. Our proposed OTCP approach is best in revealing faults in small and medium-
sized software programs. Programs such as Moss, PureMVC, and Tomcat have 2466, 2481, and
1460 LOCs, respectively. We assume these programs as being small sized programs, since the



1062 CMC, 2021, vol.67, no.1

LOCs are less than 5000. On the other hand, Ant with 7232 and Jsystem with 8983 LOCs are
considered medium-sized, because their size in LOCs is more than 5000 and less than 10000
LOCs. Faults were not revealed according to the size of a program. Future works may inves-
tigate how a program size affects predicting the number of faults. Maybe the versions used in
these programs were not stable enough in revealing the faults with their program size. In the
following figure, we show the efficiency of the proposed OTCP approach with respect to APFD
values.

Based on the APFD values as listed in Tab. 2 and shown in Fig. 5a, the fault detection
capability of the OTCP approach is excellent for most of the programs. Among the Java programs,
the chosen Ant program is also used for the evaluation of the “Additional Greedy-method Call”
(AGC) sequence [62] approach that received 82.59% as APFD value in the latter mentioned
study. In contrast, our study received an APED value of 98.14% in the same subject program. It
clearly shows that the OTCP approach is better in fault detection than the other TCP approaches.
This finding directly answers the RQ proposed in this study, as Ant program is widely used in
other studies.

Figure 5: APFD values from five Java programs based on the number of test cases and detected
faults in them. The line in the plot (a) represents the efficiency of the OTCP approach from the
obtained APFD values. In the plot (b), red and blue lines represent the number of test cases and
detected faults in the five Java programs

Binary logistic regression (BLR) is a model used for the prediction of faulty classes in Java
programs. We apply the AdaBoostM1 classifier to compare the performance of the BLR model.
AdaBoostM1 is a typical model of the boosting family, and it is trained on the datasets to
sequentially generate base classifiers [63]. During the iterations, incorrect identifications in the
previous iteration are emphasized to introduce a new classifier. In this research, the dependent
variable is 0 and 1, where 0 represents non-faulty classes, and 1, the faulty classes [64].



CMC, 2021, vol.67, no.1 1063

5.3 Performance of the OTCP Approach
This section contains the experiment data used to answer the RQ, and justifies how the

proposed OTCP approach is efficient in regression testing.

For the performance comparison of TCP approaches, the APFD metric is widely used to
measure how quickly the faults are identified in each test suite [65]. The APFD metric value is
always between 0 and 1 or between 0% and 100%. A TCP technique with a value closer to 100%
is called a very efficient approach [66]. Therefore, we used the APFD metric, which is defined in
the following equation:

APFD= 1− (TF1+TF2+ . . .)

nm
+ 1

2n
(2)

where n signifies the total number of test cases, and m is the number of faults.

We have compared the efficiency of the proposed OTCP approach with several other TCP
approaches, including ‘prioritization of requirements for testing)’ (PORT), risk-based, optimal-
coverage, scope aided, and conventional code-based techniques, as shown in Tab. 3. The average
APFD value in a coverage-based study [67] remained 0.74, which is less as compared to 0.9480
or (94.80%), which is an average APFD value of five programs studied in this research. PORT
and Risk-based techniques are requirement-based TCP techniques [66]. A higher APFD value
indicates that a maximum number of faults have been detected. An increased APFD value has
been observed in our study compared to the rest of the studies. For example, Miranda et al. [68]
reported the overall APFD values of 93.29% and 93.46% for scope-aided and traditional TCP
techniques, respectively. Therefore, the OTCP approach has an edge over the reported APFD
values in the lateral discussed studies.

Table 3: APFD values of TCP techniques

Technique OTCP
(this study)

PORT Risk
based

Optimal
coverage

Scope
aided

Traditional
technique

APFD value 94.80 80.00 77.00 74.00 93.29 93.46

5.4 10-Fold Cross-Validation Method
We trained BLR and AdaBoostM1 classification models using code metrics values of five

Java programs. Furthermore, we performed a 10-Fold cross-validation method to evaluate the
chosen classification models. Data was split into training and testing sets [67]. Data is divided into
ten equal subsets. Each classification model has been trained using 90% of the data, while the
remaining 10% of the data is used for testing. We record the average accuracy for ten iterations as
a final measurement. The performance measures, including Precision, Recall, and F-Measure (see
Tab. 4) to evaluate the performance of classification models, have been reported. Cross-validation
is aimed to minimize the risks of the internal validity of results.

As shown in Tab. 4, Precision, Recall, and F-Measures are taken as an average of the
measures for faulty (F) and non-faulty (NF) classes of programs. The minimum Precision, Recall,
and F-measure values are 0.675, 0.700, and 0.680, respectively. These values were measured
for the evaluation of the BLR model using the Moss program. For the remaining programs,



1064 CMC, 2021, vol.67, no.1

Precision, Recall, and F-measure values are higher, which indicates that the predicted classes of
five programs are correctly classified.

The chosen classifiers perform very well on the five datasets of Java programs. Perfor-
mance indicators are based on the confusion matrix of each dataset. A confusion matrix gives
information on how a certain behavior is correctly detected, and how it is classified as another
behavior [69,70]. Evaluation of the classifiers’ performance implicitly describes the efficiency of
OTCP approach, because correct classification of classes and their execution for TCP is essentially
focused on in this study.

Table 4: Performance evaluation results

Program Model Precision Recall F-Measure

Moss BLR 0.675 0.700 0.680
AdaBoostM1 0.925 0.900 0.903

PureMVC BLR 0.928 0.920 0.914
AdaBoostM1 0.962 0.960 0.959

Ant BLR 0.941 0.933 0.933
AdaBoostM1 0.800 0.800 0.796

Tomcat BLR 0.998 0.995 0.990
AdaBoostM1 0.800 0.795 0.770

Jsystem BLR 0.876 0.824 0.820
AdaBoostM1 0.870 0.810 0.800

Additionally, the performance measuring metric results presented show how the proposed
OTCP approach supports the classification of faulty and non-faulty classes. As listed in Tab. 4
(Precision, Recall and F-measure), accuracy measures evidence the correct prediction of faulty
classes. AdaBoostM1 classifier shows better classification accuracy for Moss and PureMVC pro-
grams than the BLR model. For the other three programs (Jsystem, Tomcat, and Ant), the BLR
model shows better accuracy results than the AdaBoostM1 model. Overall, both classifiers show
higher accuracies in the categorization of classes. However, in medium-sized programs such as
PureMVC and Ant with more than 5000 LOCs, the chosen classifiers’ performance is very well.
This answers the RQ that the chosen classifiers showed a better classification, and prediction of
classes in Java programs.

5.5 Findings
The APFD value of our proposed OTCP approach was higher in comparison to code

coverage and requirement based TCP approaches. The significant variance between code-based
and requirement-based approaches shows the importance of code metrics used in this study. We
revealed useful information about code metrics such as LOCs, CC, DIH, number of operators,
and the number of operands metrics, which helped us classify the fault-prone classes in Java
programs. Our obtained results suggest that the proposed OTCP approach achieved consistently
excellent results if class attributes were mapped to software metrics using the standard ontology.
Considering the class attributes and assigning them appropriate software metrics provides us
support for a better classification of faulty and non-faulty classes of software systems. It was
observed that code complexity and DIH were useful in gauging the capability or strength of a
Java class in terms of analyzing the code. A class that is more complicated in its code structure



CMC, 2021, vol.67, no.1 1065

may result in more logical errors in programs. Therefore, we used CC and DIH metrics to reveal
the earlier faults in Java programs.

On the other hand, operators and operands metrics were used to study the black box behavior
of Java programs that helped us in revealing the possible errors in Java programs. The APFD
value is better than the APFD values of other TCP approaches. Our proposed OTCP approach’s
increased performance is due to the ontology facts used in this study. Reference ontology is used
indirectly, mapping the class features and their pertaining software metrics values.

6 Conclusions and Future Works

This paper provides a comprehensive insight into an ontology-based TCP approach for pri-
oritizing test cases using Java programs. The proposed approach involves reference ontology in
mapping the class attributes to software metrics. Classification of Java classes into faulty and
non-faulty modules is validated using the BLR and AdaBoostM1 classification models. Faulty
Java classes are further analyzed for JUnit testing. The JUnit test results reveal a high number
of faults in the prioritized test cases. Our proposed OTCP approach shows better results than the
state-of-the-art TCP approaches based on APFD metric values.

In future work, we plan to extend the proposed OTCP approach for faults identification of
large-sized programs using web services, which have become a hot spot in the research area of
regression testing. It will be very interesting to know how performance of a large web service can
be affected when new web services are integrated, or existing services are updated. Our proposed
approach will apply the code metrics criteria to identify the faulty services, and prioritize the test
cases of faulty services to fix the errors.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] W. Zheng, R. M. Hierons, M. Li, X. Liu and V. Vinciotti, “Multi-objective optimization for regression

testing,” Information Sciences, vol. 334, pp. 1–16, 2016.
[2] A. Schwartz and H. Do, “Cost-effective regression testing through adaptive test prioritization strate-

gies,” Journal of Systems and Software, vol. 115, pp. 61–81, 2016.
[3] J. A. P. Lima and S. R. Vergilio, “Test case prioritization in continuous integration environments: A

systematic mapping study,” Information and Software Technology, vol. 121, pp. 1–16, 2020.
[4] A. Arrieta, S. Wang, G. Sagardui and L. Etxeberria, “Search-based test case prioritization for

simulation-based testing of cyber-physical system product lines,” Journal of Systems and Software, vol.
149, pp. 1–34, 2019.

[5] J. Anderson, M. Azizi, S. Salem and H. Do, “On the use of usage patterns from telemetry data for
test case prioritization,” Information and Software Technology, vol. 113, pp. 110–130, 2019.

[6] M. M. Ali, M. B. Doumbouya, T. Louge, R. Rai and M. H. Karray, “Ontology-based approach to
extract product’s design features from online customers’ reviews,” Computers in Industry, vol. 116, pp.
1–20, 2020.

[7] M. Abdellatif, M. S. Farhan and N. S. Shehata, “Overcoming business process reengineering obstacles
using ontology-based knowledge map methodology,” Future Computing and Informatics Journal, vol. 3,
no. 1, pp. 7–28, 2018.



1066 CMC, 2021, vol.67, no.1

[8] M. McDaniel, V. C. Storey and V. Sugumaran, “Assessing the quality of domain ontologies: Metrics
and an automated ranking system,” Data & Knowledge Engineering, vol. 115, pp. 32–47, 2018.

[9] Y. Li, J. Tao and F. Wotawa, “Ontology-based test generation for automated and autonomous driving
functions,” Information and Software Technology, vol. 117, pp. 1–16, 2020.

[10] S. Ul Haq and U. Qamar, “Ontology based test case generation for black box testing,” in Proc. of the
2019 8th Int. Conf. on Educational and Information Technology, Cambridge, UK, pp. 236–241, 2019.

[11] X. Bai, R. S. Kenett and W. Yu, “Risk assessment and adaptive group testing of semantic web
services,” International Journal of Software Engineering and Knowledge Engineering, vol. 22, no. 5,
pp. 595–620, 2012.

[12] X. Xue and J. Lu, “A compact brain storm algorithm for matching ontologies,” IEEE Access, vol. 8,
pp. 43898–43907, 2020.

[13] S. El-Sappagh, F. Franda, F. Ali and K. S. Kwak, “SNOMED CT standard ontology based on the
ontology for general medical science,” BMC Medical Informatics and Decision Making, vol. 18, no. 76,
pp. 1–19, 2018.

[14] G. Tebes, D. Peppino, P. Becker, G. Matturro, M. Solari et al., “Analyzing and documenting the
systematic review results of software testing ontologies,” Information and Software Technology, vol. 123,
pp. 1–23, 2020.

[15] M. Kassab, O. Ormandjieva and M. Daneva, “Relational-model based change management for non-
functional requirements: Approach and experiment,” in Fifth Int. Conf. on Research Challenges in
Information Science, Gosier, France, pp. 1–9, 2011.

[16] H. Zhu and Y. Zhang, “A test automation framework for collaborative testing of web service dynamic
compositions,” in Advanced Web Services. New York, USA: Springer, pp.171–197, 2014.

[17] S. Popereshnyak and A. Vecherkovskaya, “Modeling ontologies in software testing,” in IEEE 14th Int.
Conf. on Computer Sciences and Information Technologies, Lviv, Ukraine, pp. 236–239, 2019.

[18] C. F. Fan and W. S. Wang, “Validation test case generation based on safety analysis ontology,” Annals
of Nuclear Energy, vol. 45, pp. 46–58, 2012.

[19] H. de Souza Campos Jr, C. A. de-Paiva, R. Braga, M. A. P. Araújo, J. M. N. David et al., “Regression
tests provenance data in the continuous software engineering context,” in Proc. of the 2nd Brazilian Sym.
on Systematic and Automated Software Testing, Fortaleza, Brazil, pp. 1–6, 2017.

[20] É. F. de-Souza, R. A. Falbo and N. L. Vijaykumar, “Knowledge management initiatives in software
testing: A mapping study,” Information and Software Technology, vol. 57, pp. 378–391, 2015.

[21] N. M. Minhas, K. Petersen, J. Börstler and K. Wnuk, “Regression testing for large-scale embedded
software development-exploring the state of practice,” Information and Software Technology, vol. 120,
pp. 1–15, 2020.

[22] R. Huang, Q. Zhang, D. Towey, W. Sun and J. Chen, “Regression test case prioritization by code
combinations coverage,” Journal of Systems and Software, vol. 169, pp. 1–21, 2020.

[23] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold, “Test case prioritization: An empirical study,”
in Proc. IEEE Int. Conf. on Software Maintenance, Oxford, UK, pp. 179–188, 1999.

[24] B. Jiang, Z. Zhang, W. K. Chan and T. Tse, “Adaptive random test case prioritization,” in 2009
IEEE/ACM Int. Conf. on Automated Software Engineering, Washington, USA, pp. 233–244, 2009.

[25] J. Lin, M. S. Fox and T. Bilgic, “A requirement ontology for engineering design,” Concurrent Engineer-
ing, vol. 4, no. 3, pp. 279–291, 1996.

[26] H. Naseer and A. Rauf, “Validation of ontology based test case generation for graphical user
interface,” in 2012 15th Int. Multitopic Conf., Islamabad, Pakistan, pp. 465–469, 2012.

[27] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: A survey,”
Software Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[28] H. Srikanth, M. Cashman and M. B. Cohen, “Test case prioritization of build acceptance tests for an
enterprise cloud application: An industrial case study,” Journal of Systems and Software, vol. 119, pp.
122–135, 2016.



CMC, 2021, vol.67, no.1 1067

[29] J. A. Parejo, A. B. Sánchez, S. Segura, A. Ruiz-Cortés, R. E. Lopez-Herrejon et al., “Multi-objective
test case prioritization in highly configurable systems: A case study,” Journal of Systems and Software,
vol. 122, pp. 287–310, 2016.

[30] H. Srikanth, C. Hettiarachchi and H. Do, “Requirements based test prioritization using risk factors:
An industrial study,” Information and Software Technology, vol. 69, pp. 71–83, 2016.

[31] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu et al., “To be optimal or not in test-case prioritization,”
IEEE Transactions on Software Engineering, vol. 42, no. 5, pp. 490–505, 2016.

[32] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou and P. Avgeriou, “Software metrics fluctuation:
A property for assisting the metric selection process,” Information and Software Technology, vol. 72, pp.
110–124, 2016.

[33] H. Tong, B. Liu and S. Wang, “Software defect prediction using stacked de-noising auto-encoders and
two-stage ensemble learning,” Information and Software Technology, vol. 96, pp. 94–111, 2018.

[34] E. Souza, R. Falbo and N. L. Vijaykumar, “Using ontology patterns for building a reference software
testing ontology,” in 17th IEEE Int. Enterprise Distributed Object ComputingConf.Workshops, Vancouver,
BC, Canada, pp. 21–30, 2013.

[35] E. Serna and A. Serna, “Ontology for knowledge management in software maintenance,” International
Journal of Information Management, vol. 34, no. 5, pp. 704–710, 2014.

[36] A. I. Saleh, M. F. Al Rahmawy and A. E. Abulwafa, “A semantic based web page classification strategy
using multi-layered domain ontology,” World Wide Web, vol. 20, no. 5, pp. 939–993, 2017.

[37] V. Lytvyn, V. Vysotska, O. Veres, I. Rishnyak and H. Rishnyak, “Classification methods of text
documents using ontology based approach,” in Advances in Intelligent Systems and Computing, Warsaw,
Poland: Polish Academy of Sciences, pp. 229–240, 2017.

[38] S. S. Rathore and S. Kumar, “An empirical study of some software fault prediction approaches for the
number of faults prediction,” Soft Computing, vol. 21, no. 24, pp. 7417–7434, 2017.

[39] Y. Zhou, B. Xu and H. Leung, “On the ability of complexity metrics to predict fault-prone classes in
object-oriented systems,” Journal of Systems and Software, vol. 83, no. 4, pp. 660–674, 2010.

[40] M. M. Öztürk, “A bat-inspired algorithm for prioritizing test cases,” Vietnam Journal of Computer
Science, vol. 5, no. 1, pp. 45–57, 2018.

[41] Maven Repository, What’s new in Maven. [Online]. Available: https://mvnrepository.com/.
[42] C. Donalds and K. M. Osei-Bryson, “Toward a cybercrime classification ontology: A knowledge-based

approach,” Computers in Human Behavior, vol. 92, pp. 403–418, 2019.
[43] G. Abaei, A. Selamat and H. Fujita, “An empirical study based on semi-supervised hybrid self-

organizing map for software fault prediction,” Knowledge-Based Systems, vol. 74, pp. 28–39, 2015.
[44] E. Erturk and E. A. Sezer, “Iterative software fault prediction with a hybrid approach,” Applied Soft

Computing, vol. 49, pp. 1020–1033, 2016.
[45] D. P. P. Mesquita, L. S. Rocha, J. P. P. Gomes and A. R. Neto, “Classification with reject option for

software defect prediction,” Applied Soft Computing, vol. 49, pp. 1085–1093, 2016.
[46] H. Erdogmus and O. Tanir, Advances in Software Engineering: Comprehension, Evaluation, and Evolution,

1st ed. Germany: Springer Science & Business Media, 2013.
[47] M. M. Mkhinini, O. Labbani-Narsis and C. Nicolle, “Combining uml and ontology: An exploratory

survey,” Computer Science Review, vol. 35, pp. 1–14, 2020.
[48] J. A. Vallejos and S. D. McKinnon, “Logistic regression and neural network classification of seismic

records,” International Journal of Rock Mechanics and Mining Sciences, vol. 62, pp. 86–95, 2013.
[49] A. R. Gilal, J. Jaafar, L. F. Capretz, M. Omar, S. Basri et al., “Finding an effective classification

approach to develop a software team composition model,” Journal of Software: Evolution and Process,
vol. 30, no. 1, e1920, 2018.

[50] M. Mahdieh, S. H. Mirian-Hosseinabadi, K. Etemadi, A. Nosrati and S. Jalali, “Incorporating fault-
proneness estimations into coverage-based test case prioritization methods,” Information and Software
Technology, vol. 121, pp. 1–12, 2020.

https://mvnrepository.com/


1068 CMC, 2021, vol.67, no.1

[51] J. H. Andrews, L. C. Briand and Y. Labiche, “Is mutation an appropriate tool for testing experiments?,”
in Proc. of the 27th Int. Conf. on Software Engineering, St. Louis, USA, pp. 402–411, 2005.

[52] D. Shin, S. Yoo, M. Papadakis and D. H. Bae, “Empirical evaluation of mutation-based test case
prioritization techniques,” Software Testing, Verification and Reliability, vol. 29, no. 1, pp. 1–23, 2019.

[53] Eclipse SDK 3.7.2, 2012. [Online]. Available: http://archive.eclipse.org/eclipse/downloads/drops/
R-3.7.2-201202080800/.

[54] S. Schleimer, D. S. Wilkerson and A. Aiken, “Winnowing: Local algorithms for document fingerprint-
ing,” in Proc. of the 2003 ACMSIGMOD Int. Conf. onManagement of Data, San Diego California, USA,
pp. 76–85, 2003.

[55] W. T. Cheung, S. Ryu and S. Kim, “Development nature matters: An empirical study of code clones
in javascript applications,” Empirical Software Engineering, vol. 21, no. 2, pp. 517–564, 2016.

[56] PureMVC Java MultiCore Framework. [Online]. Available: https://github.com/PureMVC/puremvc-java-
multicore-framework/wiki.

[57] Moss Program. [Online]. Available: https://github.com/genchang1234/How-to-cheat-in-computer-science-
101/blob/master/README.md.

[58] M. David, Building Games with Flash for the Mobile Market, NY, USA: Taylor & Francis, pp. 115–
153, 2011.

[59] A. Boucher and M. Badri, “Software metrics thresholds calculation approaches to predict fault-
proneness: An empirical comparison,” Information and Software Technology, vol. 96, pp. 38–67, 2018.

[60] S. Moustafa, M. Y. ElNainay, N. El Makky and M. S. Abougabal, “Software bug prediction using
weighted majority voting techniques,” Alexandria Engineering Journal, vol. 57, no. 4, pp. 2763–
2774, 2018.

[61] M. Bruntink and A. van Deursen, “An empirical study into class testability,” Journal of Systems and
Software, vol. 79, no. 9, pp. 1219–1232, 2006.

[62] J. Chi, Y. Qu, Q. Zheng, Z. Yang, W. Jin et al., “Relation-based test case prioritization for regression
testing,” Journal of Systems and Software, vol. 163, pp. 1–18, 2020.

[63] E. R. Q. Fernandes and A. C. P. L. F. de Carvalho, “Evolutionary inversion of class distribution
in overlapping areas for multi-class imbalanced learning,” Information Sciences, vol. 494, pp. 141–
154, 2019.

[64] S. Saha, M. Saha, K. Mukherjee, A. Arabameri, P. T. T. Ngo et al., “Predicting the deforestation
probability using the binary logistic regression, random forest, ensemble rotational forest and REPTree:
A case study at the Gumani river basin,” India Science of theTotal Environment, vol. 730, pp. 1–20, 2020.

[65] M. Hasnain, I. Ghani, M. F. Pasha, C. H. Lim and S. R. Jeong, “A comprehensive review on regression
test case prioritization techniques for web services,” KSII Transactions on Internet and Information
Systems, vol. 14, no. 5, pp. 1861–1885, 2020.

[66] C. Hettiarachchi, H. Do and B. Choi, “Risk-based test case prioritization using a fuzzy expert system,”
Information and Software Technology, vol. 69, pp. 1–15, 2016.

[67] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold, “Prioritizing test cases for regression testing,”
IEEE Transactions on Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[68] B. Miranda and A. Bertolino, “Scope-aided test prioritization, selection and minimization for software
reuse,” Journal of Systems and Software, vol. 131, pp. 528–549, 2017.

[69] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu et al., “To be optimal or not in test-case prioritization,”
IEEE Transactions on Software Engineering, vol. 42, no. 5, pp. 490–505, 2015.

[70] F. Zhang, J. Bai, X. Li, C. Pei and V. Havyarimana, “An ensemble cascading extremely randomized
trees framework for short-term traffic flow prediction,” KSII Transactions on Internet and Information
Systems, vol. 13, no. 4, pp. 1975–1988, 2019.

http://archive.eclipse.org/eclipse/downloads/drops/R-3.7.2-201202080800/
http://archive.eclipse.org/eclipse/downloads/drops/R-3.7.2-201202080800/
https://github.com/PureMVC/puremvc-java-multicore-framework/wiki
https://github.com/PureMVC/puremvc-java-multicore-framework/wiki
https://github.com/genchang1234/How-to-cheat-in-computer-science-101/blob/master/README.md
https://github.com/genchang1234/How-to-cheat-in-computer-science-101/blob/master/README.md

