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Abstract: The Internet of Things (IoT) has numerous applications in every
domain, e.g., smart cities to provide intelligent services to sustainable cities.
The next-generation of IoT networks is expected to be densely deployed in
a resource-constrained and lossy environment. The densely deployed nodes
producing radically heterogeneous traffic pattern causes congestion and col-
lision in the network. At the medium access control (MAC) layer, mitigating
channel collision is still one of the main challenges of future IoT networks.
Similarly, the standardized network layer uses a ranking mechanism based
on hop-counts and expected transmission counts (ETX), which often does
not adapt to the dynamic and lossy environment and impact performance.
The ranking mechanism also requires large control overheads to update rank
information. The resource-constrained IoT devices operating in a low-power
and lossy network (LLN) environment need an efficient solution to handle
these problems. Reinforcement learning (RL) algorithms like Q-learning are
recently utilized to solve learning problems in LLNs devices like sensors.
Thus, in this paper, an RL-based optimization of dense LLN IoT devices
with heavy heterogeneous traffic is devised. The proposed protocol learns the
collision information from the MAC layer and makes an intelligent decision
at the network layer. The proposed protocol also enhances the operation of
the trickle timer algorithm. A Q-learning model is employed to adaptively
learn the channel collision probability and network layer ranking states with
accumulated reward function. Based on a simulation using Contiki 3.0 Cooja,
the proposed intelligent scheme achieves a lower packet loss ratio, improves
throughput, produces lower control overheads, and consumes less energy than
other state-of-the-art mechanisms.
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1 Introduction

Internet of Things (IoT) devices operate in a lossy environment and produce fluctuating and
heterogeneous traffic patterns. The communication functions of these devices are based on the
open systems interconnection (OSI) model layers. The device’s communication capabilities can be
enhanced by improving the lower OSI layers. The medium access control (MAC) and network
layer mechanisms can be described with mathematical equations, but they require complicated
algorithms due to device-constrained resources [1]. IoT nodes use carrier-sense multiple access
with collision avoidance (CSMA/CA) to access a channel. The devices improve network efficiency
by preventing collisions caused by nodes attempting to transmit at the same time. Collisions in
the network represent one of the significant challenges of a wireless communication network.
The collision probability increases as the network becomes denser [2]. The collision problem also
worsens with a rise in the generation of network traffic.

The network layer uses the IPv6-based routing protocol for low-power and lossy networks
(RPL) based on a destination-oriented directed acyclic (DODAG) graph. The RPL uses hop
counts (i.e., objective function zero, OF0) [3] and the minimum rank with hysteresis objective
function (MRHOF) [4], which determines an expected transmission count (ETX)-based link
cost to route the packets. The RPL creates a ranking-based mechanism. These two OFs for
rank calculations perform poor routing decisions. The ranks are updated using a control packet
called a DODAG information object (DIO), which consumes computational and energy resources.
The unbalanced traffic load, high relay burden, and limited communication capability eventually
lead to poor performance. Therefore, designing an intelligent communication protocol for scarce
resource devices is a challenging task [5].

Next-generation technologies need to focus on learning-based mechanisms to support numer-
ous advanced fifth generation (5G) communication applications [6]. By utilizing intelligent pro-
tocols in low-power and lossy network (LLN) devices, the network can be more efficient and
self-sustainable. To achieve this goal, the overall network performance can be enhanced by
improving the device’s capabilities at lower OSI model layers. The devices can learn the collision
probability pattern at the MAC layer to perform efficiently and effectively at the network layer.
The intelligent-learning models need to be extensively analyzed for efficient decision-making by
the devices. Thus, machine learning (ML) is one of the most important artificial intelligence
mechanisms for providing devices with the capabilities to learn and make decisions indepen-
dently [7]. ML has recently attracted much attention due to its success in language processing,
speech recognition, and big data analytics. Significantly, ML’s features for cognitive radios have
given wireless nodes the ability to recursively examine the wireless environment. With ML, IoT
devices can develop an ability to learn a sequence of actions by utilizing data patterns [8].
Therefore, ML can enhance the device’s performance by exploring future actions and learning
from previous experiences. The integration of learning capabilities for a new generation of smart
applications is essential for a self-sustainable optimized network. In this paper, we propose utilizing
a reinforcement learning (RL)-based intelligent algorithm for LLN nodes. The proposed protocol
uses a Q-learning mechanism to optimize the network. The proposed Q-learning-based protocol
uses collision probability at the MAC layer and improves the network layer operation using this
information. The proposed method guarantees a low packet loss ratio (PLR), high throughput,
lower total control overheads, and lower energy consumption by utilizing collision information,
node-ranking states, and a reward function.

In this paper, Section 2 explains the related research work, and Section 3 presents the prelim-
inaries related to the machine learning-based RPL mechanism. The proposed protocol is defined
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in Section 4, and Section 5 provides the performance evaluation results. Finally, Section 6 presents
our conclusions and future directions.

2 Related Work

In recent years, several protocols have been introduced to enhance the performance and relia-
bility of LLN devices. For example, at the network layer, queue-utilization-based RPL (QU-RPL)
improves end-to-end delivery performance by balancing the routing tree through the utilization
of queue information and the hop count as a routing metric [9]. Similarly, Ancillotti et al. [10]
proposed a link quality estimation (LQE) strategy for the RPL. The LQE-based RPL uses a
received-signal strength indicator (RSSI) and ETX metric to improve the RPL network link repair
procedure. This method improves the RPL link quality but increases the control overhead. Tang
et al. [11] proposed the (congestion avoidance) CA-RPL, which is a composite metric. The CA-
RPL is based on the weight of each path along with ETX-based link quality estimation. This
method also increases the control overhead. Another, the congestion-aware objective function
(CoA-OF), uses ETX, QU, and the remaining energy metric for path selection [12]. This protocol
enhances the packet delivery ratio (PDR), energy consumption, and throughput but introduces
frequent parent changes that result in more control overhead. Taghizadeh et al. [13] also proposed
utilizing the QU factor. Their proposed method reduces the energy consumption and packet loss
ratio but with an increase in the control overhead. Ghaleb et al. [14] proposed a mechanism to
improve load balancing by introducing a fast propagation timer to update the list of child nodes.
In this way, it improves the packet reception ratio but also increases the network convergence time.
The (stability-aware load-balancing) SL-RPL mechanism also improves load-balancing to enhance
RPL network performance [15]. The SL-RPL routing metric is based on the packet transmission
rate and ETX mechanism. The SL-RPL objective is to provide load balancing and to reduce
frequent parent changing.

Similarly, a genetic-based algorithm uses a weighted queue length, hop counts, ETX, delay,
and a residual energy metric [16]. This method enhances the end-to-end delay, the average success
ratio of a packet, and the remaining energy. However, the control overhead is not improved
in this mechanism. Additionally, Aziz et al. [17] presented a multi-armed bandit (MAB)-based
clustering technique for improving the ETX-probing method. This technique is based on a cluster-
ing mechanism, and communicating with the cluster heads incurs additional overhead. An ETX
and energy-based ranking method that uses fuzzy logic has also been proposed [18]. Though the
fuzzy-based method improves network throughput, it also increases overall energy consumption.
Similarly, an aggregation RPL scheme was proposed to modify the standardized RPL [19]. In
this mechanism, the nodes communicate to the aggregator, which is connected to the fog node.
The proposed scheme shows a high PDR and fewer hop counts and delays. However, the control
overhead, which is one of the most important aspects of IoT communication, was not evaluated.

All these solutions cannot improve the RPL-based network control overhead, which affects
the network performance and energy consumption. In next-generation networks, such as 5G and
beyond, there must be a shift in focus from rule-based methods to learning-based protocols.

3 Preliminaries

3.1 Machine Learning for IoT-Based Systems
ML algorithms can be grouped into supervised learning, unsupervised learning, and RL.

Supervised learning allows an agent to learn the input values in order to predict output values
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for future use. In this way, the agent learns to perform actions for a new unseen dataset. An
agent utilizing a supervised learning mechanism predicts unseen events by using classification
and regression techniques. The agent uses classification to specify groupings (i.e., classes) of data
elements. Similarly, a regression mechanism is used to find outputs that are real variables [20].
Various types of regression algorithms include linear regression [21], logistic regression [22], and
polynomial regression [23]. Similarly, classification problems can be solved with techniques such
as k-nearest neighbor (KNN) [24], linear classifiers [25], support vector machines (SVMs) [26],
random forest [27], and Bayesian learning (BL). In unsupervised learning, no label data are given
to the agent; the agent finds the hidden patterns solely from the unlabeled input data set. The
objective is to create symmetries in the dataset to form groups. Unsupervised learning techniques
include principal component analysis (PCA) [28], k-means clustering [29], and independent com-
ponent analysis (ICA) [30]. The main objective of unsupervised ML algorithms is to decrease
the features in the dataset. The ML mechanism models and applications for IoT networks are
depicted in Fig. 1.
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Figure 1: Machine learning for IoT networks

3.2 Reinforcement Learning
In RL, an agent learns the actions to maximize the expected sum of rewards. The agent

learns the optimal actions to map the situations in an unknown environment. The states, actions,
rewards, and state-transition probabilities describe the unknown environment. The unknown envi-
ronment learning model could be a multi-armed bandit (MAB), Markov decision process (MDP),
or partially observable Markov decision process (POMDP). If the environment has static states
or has only one state, it is referred to as a stateless RL. These problems are solved with bandit
techniques. In learning mechanisms, there should be an optimal exploration and exploitation.
During exploration, it is possible to find an action that returns a poor reward, and it is also
possible to become stuck in an optimal local action. The tasks are stochastic, and every action
must be performed several times to obtain a reasonable estimation of future rewards [25].

The RL algorithm typically has four key sub-elements: the policy, reward, value function,
and environment model (optional). The policy defines a method for a learning agent to behave
in an environment. Similarly, with each action, there is an associated reward. The reward is a
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numerical value, and the goal of an agent is to receive a maximum positive reward. The value
function describes the long-term future reward for a given action. The reward might be small
for the current action, but it could be a high-value function in the future. A model is useful in
planning by evaluating possible future situations before they are experienced. RL problems could
be either model-based or model-free (i.e., trial-and-error learners). Q-learning is a model-free RL
mechanism to solve decision problems. The “Q” in Q-learning represents quality; it shows the
quality or usefulness of the current action in obtaining a high reward. A Q-table is based on
state and action values. The table is updated for each iteration or episode, and the device takes
the next action based on the predicted state and action. To update a Q-value, the Q-learning
algorithm utilizes the learning rate, discount factor, reward, and change in Q-value, represented
as ΔQ [31]. The Q-learning technique has been used effectively to optimize cognitive radios [32]
and the wireless channel access technique [33].

3.3 RPLMechanism
The RPL routing protocol is based on a ranking mechanism. In a standardized version of

RPL, the ranks are based on either OF0 (hop counts) or MRHOF (ETX). These two OFs for
rank calculation perform poor routing decisions [5]. The RPL protocol uses control messages to
construct a DODAG. These control messages are DIOs, destination advertisement objects (DAOs),
DAO acknowledgments, and destination information solicitations (DISs). The objectives of these
control messages and their transmission directions are depicted in Fig. 2a. The transmission
sequence diagram of these control messages for the child and parent connection is shown in
Fig. 2b. The exchange of these control messages consumes energy and valuable computational
resources. Therefore, the optimization of control message transmission is vital for sensor network
communication. The ranks are updated using DIO control messages. The frequency of DIO
messages is adjusted using a trickle timer [34,35]. The trickle timer has a redundancy counter,
redundancy coefficient, and interval length I . It picks a random transmission period from [I/2; I ]
and increments the consistency counter according to the network consistencies. The DIO overhead
is transmitted if the counter is less than the redundancy. The trickle timer algorithm exponentially
increases the rate of DIO transmissions if the network is inconsistent and decreases the transmis-
sion rate to the initial value if the network is consistent. Inconsistent means there is a change in
the rank value. Frequent DIO messages would cause delays, and the nodes would be consuming
valuable computational resources.

(a) (b)
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Figure 2: (a) RPL network control messages and (b) control message sequence diagram
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4 Proposed Collision Observation-Based Optimization of Low-power and Lossy IoT Networks

4.1 Problem Formulation and System Model
IoT-based networks have wide-ranging application areas, such as smart, sustainable cities.

Each node generates data based on its application and requirements. Therefore, the traffic pattern
that is produced is unpredictable, which causes imbalanced load problems. The network layer
defines the path and rules for the LLN node’s efficient delivery of packets. In standardized
protocols, the routing metric is based on OFs that perform poor routing decisions with high
packet loss ratios (PLRs), overhead, and energy consumption.

In the proposed protocol, each node iteratively observes the environment to learn the collision
information. The collision probability depends on the link (i.e., both the transmitter and receiver).
The node uses the collision information at the network layer for rank formulation. Using collision
information, the node generates ranks of potential parent nodes and, thus, automatically updates
the routing table entries. We utilize the Q-learning mechanism to learn the state-action values to
evaluate how desirable specific actions are in the current environment. The proposed framework
is based on a DODAG graph. The graph is based on a parent–child network topology. Fig. 3
describes the Q-learning model and its elements for the proposed method. There are N = PUC
nodes in the network, where P = (p1,p2,p3, . . . ,pi) are parent nodes, and C = (c1, c2, c3, . . . , cj)
represents child nodes. In the proposed scheme, the agent is the LLN IoT device, and the
environment is a wireless medium. The ranks of the node represent its states. Each node has
a set of m states, S = {0, 1, 2, . . . ,m}. Each action represents a selection of a parent node for
forwarding-path decisions. Each action generates a reinforcement signal or reward that describes
whether the action is favorable or not. The reward is either positive or negative. The reward
function is based on MAC protocol collision information at the parent node. Each node uses
the CSMA/CA binary exponential backoff (BEB) method to access the channel for contention.
The transmission frequency of each node is different; some nodes generate data packets with a
high transmission rate, while others produce low traffic. Therefore, the overall traffic rate produced
is heterogeneous with varying transmission rates. The link layer allows a maximum of eight
re-transmission attempts, and the MAC layer maximum back off exponent is five.

4.2 Proposed Collision Observation-Based Optimization Mechanism
We explain our proposed collision observation-based learning mechanism for more efficient

LLNs in this subsection. The proposed protocol is a Q-learning-based mechanism that iteratively
finds the optimal state-action pair based on a reward system. We first replaced the ETX metric
as a path cost with a less computationally expensive metric based on collision information in our
proposed mechanism. Second, in the standardized protocol, the nodes create control overhead for
each interval in announcing the rank status. Aide by the RL technique, we designed an algorithm
to alleviate the need for a computationally expensive routing metric and a dependence on creating
control overhead. The proposed Q-learning-based mechanism learns the node’s collision status and
utilizes it at the network layer to generate the routing table.

Consequently, it significantly reduces the control overhead. The transmission of data packets
requires a large number of control overhead transmissions, and similarly, the transmitted data is
often lost due to collisions in a dense networking environment. These problems can be addressed
by integrating the learning capabilities in LLN nodes. Thus, Q-learning, which does not require
large memory space and computational cost, is utilized efficiently. The Q-learning elements of the
proposed mechanism are summarized in Tab. 1.
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Table 1: Optimization of LLN nodes using the Q-learning model

Q-learning
model

Optimization of LLN nodes

Agent Sensor nodes
States Node ranks
Action Selection of parent node
Reward Probability of collision
Objective Minimize the collision probability

The CSMA/CA protocol uses a distributed coordination function (DCF) technique with BEB
to avoid channel collision. In a wireless environment, collision happens when multiple trans-
missions occur simultaneously. The number of collisions is directly proportional to the network
density. The collision information is derived from the information of the average contention
window (CW) size and the number of nodes in its vicinity [36,37]. The information of nodes
present in the vicinity is obtained using the IPv6 neighbor discovery function (RFC 4861) [38].
The backoff exponent (BE) increases with each collision. The value of the BE is within 0–5. The
collision probability function uses BE stages and CW information during a given time slot. The
CW information is obtained as follows:

CW = 2BE − 1 (1)
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Using (1), the CW range is 0–31. The collision probability is calculated using the CW
information as follows:

Pcoll = 1− (1− 1/CWavg)
K−1, (2)

where K represents the number of neighboring nodes, Pcoll is the probability of collision, and
CWavg is the average CW of the transmission interval. The nodes utilize the collision information
in the DIO message for the rank measurement as follows:

R
(
cj

) = h+R (pi)+Pcoll, (3)

where R (pi) is the parent node rank, Pcoll is the probability of collision at the receiver, and h
represents a one-hop distance. It is an RPL_min_hoprankinc parameter defined in Section 6.1 of
RFC 6719 [4]. If the value of RPL_min_hoprankinc is enormous, the advertised rank will be a
simple hop count. RFC 6719 has carefully selected this parameter to balance the rank equation.
Each node updates its rank using (3). Each node rank depends on its parent node’s chosen rank
value, path cost, and hop distance from the root node, as depicted in Fig. 4a. Fig. 4b provides the
example scenarios in which a child node C has three potential parent nodes (i.e., p0, p1, p2). As a
result, the child node has three potential ranks (i.e., Ro, R1, R2). With the selection of any of the
parent nodes for path forwarding, the child rank is updated accordingly. With each iteration, the
child’s rank either remains the same or changes according to the parent selection. Thus, we utilize
rank value as a state in the Q-function. The child node in this example can transit between three
states (i.e., s0, s1, s2). With each action, the child node receives a reward in collision probability
at a parent node. Using the state action and reward value, the node updates the Q-table. This
state transition can also be expressed using the Markov decision process (MDP) mathematical
framework (Fig. 5). The nodes interact with the environment in a sequence of time steps (t =
0, 1, 2, 3, . . . ,n). With each action, the agent transmits its state, referred to as a state-transition
probability, P

(
s′|s,a)

.

(a) (b)

R
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N1 _Rank = 128 + Root _rank + path_cost
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State: s1
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Figure 4: (a) RPL network rank update mechanism in DODAG and (b) example scenario depict-
ing potential ranks and states of child node C

For Q-value generation, nodes use a Bellman equation that evaluates the optimal policy and
value function, as shown in the following:

Qπ∗ (st,at)=E{rt+β ×maxa′Q
π∗ (

s′,a′
) |st = s,at= a}, (4)
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where β is a discount factor (0 ≤ β ≤ 1) that affects the weights given to future rewards, and
rt is the reward of the action at. The Q-learning evaluates the reward as the aggregated reward
as follows:

Q (st+1,at+1)= (1−α)×Q (st,at)+α×ΔQ (st,at) (5)

where α is the learning rate (0≤ α ≤ 1), representing the weights given to new values compared to
the previous one. The ΔQ(s,a) value represents a learning estimate and is calculated as follows:

ΔQ (st,at)=
{
rt (st,at)+β ×minaQ

(
s′,a′

)}
, (6)

where minaQ
(
s′,a′

)
is the best-estimated value of the state-action pair, and rt (st,at) indicates the

obtained reward of state s and action a. This reward is described as follows:

reward ∈
{
r+, if collision decreases
r−, otherwise

(7)

The reward indicates the action desirability. The reward r+ is obtained if the collisions
decrease at the parent node and vice versa. The collisions are measured using the information of
average CW of a transmission interval (CWavg) and the number of neighboring nodes. During the
state transition of the proposed mechanism (Fig. 5), the node transits from one state to another
with r+ and r− as rewards. The optimal Q-value can be found in a greedy manner. The policy for
an epsilon-greedy (ε-greedy) action selection is to pick one of the actions with the best measured
Q-value (i.e., exploitation) or select an action in a non-greedy manner (i.e., exploration) [39]. In
the proposed mechanism, the exploration is performed using (3), and the exploitation phase uses
the next state-action Q-values obtained from (5). We train the network during the exploration
phase and then use the trained information to exploit the environment. In the proposed scenario,
it is not efficient to choose a forwarding path randomly for training. It can have a routing-loop
problem, which leads to a high packet loss ratio. During exploration, it is more efficient to select
a forwarding path based on an RPL-based ranking mechanism that contains a ranking-based
loop avoidance procedure. Thus, we utilize two equations for the exploration and exploitation
phases, respectively.

s0 s1 sm
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0|
s 0
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Figure 5: State-transition diagram of the proposed method
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Limiting control overhead is one of the crucial requirements of IoT communication. The
transmission of DIO control overhead is adjusted using a trickle timer mechanism. The LLN
nodes are very limited in terms of their energy and computational resources. Therefore, it is highly
preferable to limit the transmission of overhead packets without decreasing network performance.
The DIO control packets carry the rank information of each node. Since the proposed learning
mechanism does not require the rank information to perform the actions during exploitation,
instead, it utilizes learned Q-values. Thus, the DIO transmissions are suppressed during the
exploitation phase. The DIO transmissions continue again during the exploration phase. This
suppression technique removes costly DIO packets during the exploitation phase and consequently
significantly decreases the total percentage of network control overhead.

5 Performance Evaluation

The Contiki 3.0 Cooja simulator was used to evaluate the proposed protocol [40]. There was
one root node and several client nodes. The network size was varied over a range of 20–100 client
nodes. The simulation parameters utilized to evaluate the proposed protocol are listed in Tab. 2.
The nodes were placed randomly, and the network was considered a varying traffic environment.
These nodes were based on the Zolertia Z1 mote platform with a ROM size of 96 KB that
supported 140 bytes of payload [41]. The nodes utilized MSP430 low-power microcontrollers.
The simulation results of the proposed mechanism were compared with a standardized RPL (i.e.,
MRHOF and OF0), a queue utilization-based RPL (QU-RPL) [9], and an SL-RPL [15].

Table 2: Simulation parameters

Parameters Value

Emulator Contiki 3.0 Cooja
Packet size 127 bytes
Buffer occupancy 4 packets
Simulation time 3600 s
DAG size 20–100
PHY & MAC protocol 802.15.4 with CSMA
Packet size 127 bytes
uIP payload buffer size 140 bytes
Max back-off stages 5
Mote Z1 Zolertia
CWmin 0
CWmax 31
RPL_min_hoprankinc (h) 128
Maximum retry limits 8
Packet transmission Heterogeneous transmission
Script text analysis Python 3.7

Fig. 6 describes network PLR for different-sized DAG networks in an LLN environment.
The PLR is highly affected by congestion, collision, and other environmental factors. As shown
in Fig. 6, the proposed protocol performed better compared to the other protocols. The per-
formance of SL-RPL, QU-RPL, and MRHOF was also reliable when compared to OF0. The
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OF0 used only hop counts to select a forwarding path. SL-RPL and QU-RPL used ETX with
packet transmission rates and a queue-utilization factor, respectively. The proposed mechanism
provided a low PLR, as shown in Fig. 6. The performance enhancement came from the learned
collision information using the Q-learning technique. Network throughput in different-sized DAG
networks is presented in Fig. 7. Throughput is related to PLR, and in the proposed protocol,
one of the reasons for high throughput was a low PLR. The proposed mechanism measured the
forwarding path according to the environment condition and thus led to better estimation than
other protocols. The results of the PLR and throughput indicate that the collision metric had a
significant impact on the network performance. OF0, which relied only on the hop-count metric,
showed low throughput in the network environments, regardless of size.
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Fig. 8 shows the total percentage of control overhead compared to the number of data
packets. The proposed mechanism generated significantly less complete control overhead compared
to other protocols. The RPL-based network incurred three types of control overhead (i.e., DIO,
DAO, and DIS). The transmission of DIO packets increases if the network is inconsistent, and
fewer DIOs are transmitted if the network is stable and consistent. In the Q-learning method, the
nodes estimated the routing table entries using the Q-value and eliminated DIO control packet
transmissions. In this way, the nodes incurred the lowest percentage of total control overhead
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(7%–9%) while maintaining a low PLR. OF0 had the highest PLR and thus developed an unstable
network that required more transmissions of control packets.
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Figure 8: Total control overhead percentage with respect to different data packet transmissions

The energy consumption was directly related to control packet transmissions, which is evident
in Fig. 9. Nodes consume energy during four modes of communication (i.e., low-power, CPU
idle, transmission, and reception). The proposed mechanism’s total energy consumption was the
lowest due to the lower number of transmissions of control packets. Similarly, OF0 incurred the
highest energy consumption due to its high PLR and high control overhead. SL-RPL, QU-RPL,
and MRHOF consumed higher energy than the proposed method due to the CPU computation
required to calculate the ETX measurements. The size of the data packets was more significant
than the control overhead; thus, it required more energy to transmit the data packets. OF0 had
very high PLR and control overhead, and the nodes consumed most of the energy in control
overhead transmissions. The PLR and control overhead were lower in the proposed mechanism;
the nodes spent most of the energy in data packet transmissions. The average end-to-end (E2E)
packet deliver delays (in milliseconds) of different-sized DAG networks are shown in Fig. 10. The
E2E delay was slightly higher in the proposed mechanism in comparison to QU-RPL, SL-RPL,
and MRHOF due to the time spent in the learning process. However, the delay did not exceed
that of OF0.
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Figure 9: Total energy consumption in different-sized DAG networks
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Figure 10: End-to-end (E2E) packet delivery delay in different-sized DAG networks

The simulation graphs show enhanced performance using the proposed mechanism. The
improvement in the results shows the effectiveness of the RL mechanism. Using the RL-based
approach, the control overhead can be reduced significantly. The improvement in PLR, through-
put, control overhead, and energy consumption indicates that the proposed mechanism has
potential in numerous IoT-based applications, such as smart city architecture.

6 Conclusion and Future Work

IoT networks for future generation protocols are expected to be densely deployed in a
dynamic and lossy environment. The sensor’s networks are highly constrained in their computa-
tional capabilities, energy, and memory consumption. Currently, IEEE 802.15.4 uses DCF with
the BEB algorithm for channel access. Similarly, the network layer uses the RPL mechanism
for routing decisions. Studies on optimizing sensor network performance, particularly in a lossy
environment that is densely deployed with heterogeneous traffic applications, are still minimal.
In such a densely deployed and uncertain wireless environment, high packet collision probability,
congestion, and packet losses are still the key challenges. IoT devices can be optimized for
next-generation networks by enhancing their communication capabilities at lower layers. Recently,
RL-based protocols have shown promising applications and approaches to improve cognitive
radios. Motivated by such applications, we proposed the utilization of an RL-based algorithm for
LLNs. To handle the probability of collision caused by the increasing density of sensor networks,
an RL technique (i.e., Q-learning method) is utilized. The proposed learning algorithm uses an
intelligent-learning approach to optimize the LLN node performance using the RPL network
ranking and MAC layer collision information. The proposed mechanism performs actions to select
the forwarding path, and with each action, it updates the Q-table of state-action pairs to generate
routing table entries. Contiki 3.0 Cooja simulation results indicated the optimized performance of
the proposed protocol in an LLN environment. In the future, we plan to further optimize the
network by improving the trickle timer mechanism using an RL-based approach.
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