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Abstract:Cyber Threat Intelligence (CTI) has gained massive attention to col-
lect hidden knowledge for a better understanding of the various cyber-attacks
and eventually paving the way for predicting the future of such attacks. The
information exchange and collaborative sharing through different platforms
have a significant contribution towards a global solution. While CTI and the
information exchange can help a lot in focusing and prioritizing on the use
of the large volume of complex information among different organizations,
there exists a great challenge ineffective processing of large count of different
Indicators of Threat (IoT) which appear regularly, and that can be solved only
through a collaborative approach. Collaborative approach and intelligence
sharing have become the mandatory element in the entire world of processing
the threats. In order to covet the complete needs of having a definite standard
of information exchange, various initiatives have been taken in means of
threat information sharing platforms like MISP and formats such as SITX.
This paper proposes a scoring model to address information decay, which is
shared within TISP. The scoring model is implemented, taking the use case
of detecting the Threat Indicators in a phishing data network. The proposed
method calculates the rate of decay of an attribute through which the early
entries are removed.

Keywords: Information interchange; cyber threat intelligence; indicators of
threats; threat intelligence sharing platform

1 Introduction

Over the last decade, many organizations have carried out emergent research in sharing threat
information and cyber-attacks [1]. There is an urgent need to join the forces on the fight against
these attacks exponentially growing over time. The count and the complexity of these attacks have
also increased through the years that resulted in many intrusions with more severe breaches on the
security aspect. It is a nightmare for detecting these complex and diverged attacks by their own
as an individual organization. Hence, organizations share information that is available on different
incidents and cyber-attacks. These pieces of information are called Cyber Threat Intelligence
(CTI). However, the research shows that it is very challenging to achieve collaborative solutions,
as many incidents reported are inaccurate and incomplete, which are also outdated. Different
empirical analysis has shown that the quality of CTI plays a vital role in achieving continued

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014848


918 CMC, 2021, vol.67, no.1

success in moving towards a collaborative solution [2]. The information exchange and effective
utilization depend on measuring quality. The essentiality is strengthened as the information quality
stated has an impact on response time for an incident.

It is also important for the stakeholders to let know about the quality of CTIs. This can
always help the analysts for narrowing down the information available for acquiring the necessary
knowledge. Hence, analysts can develop better decisions on reacting to incidents reported within
CTI [3]. On the other hand, the knowledge on the domain from security experts is an important
source of “fitness” of a particular CTI artifact. In order to leverage the knowledge of experts, it is
highly necessary for assessing data quality transparent [4]. As a further process, the users’ need to
be allowed to contribute to the quality of threat intelligence which can increase the trust in both
the platform and threat intelligence. Regularly, several new kinds of threats appear in the cyber-
crime without indicators [5]. Fighting against these attacks individually has become impossible
in recent times, which evolved the concept of community sharing, bringing out collaborative
solutions for handling the problems. Collaborative approach and intelligence sharing have become
the mandatory element in the entire world of processing the threats. Obviously, on one side, the
information sharing has become a crucial point due to sensitive data, and on the other side,
combined efforts for handling the problem directly impact the response time and the resources [6].

In order to address the quality of CTI and the Indicators of Threat, A generic attribute
scoring model for information decay in the distributed exchange of information in a common
TISP is proposed in this paper. The MISP is taken as the base sharing platform. The objective
of MISP allows different users say it be from public or private IT-community, for sharing their
information. Indicators of Threats, malware, and other compromised occurring are shared in this
common platform [7]. It is not new that a piece of the given information is transited through
different producer nodes to the target consumer. The MISP gives various other features for sharing
the extra information on this context. Presently there are 59 taxonomies available in MISP for
providing the context on a piece of the given information. The paper presents a scoring model
that can use these operational parameters to help the attributes be given appropriate scores, which
will help in decision-making on the quality of CTI. The rest of the paper is organized as follows:
Section 2 presents the relevant research carried out in the similar domain, Section 3 gives the
basic idea of the MISP, which is followed by the attribute scoring proposed. Section 4 elaborates
on the generic scoring of the indicators of threats, and Section 5 discusses the evaluation through
experiments. Section 6 presents a case study on the malware hashes, and the paper is concluded
in Section 7 with scope for future works highlighted.

2 Related Work

Large amounts of research have been carried out in cyber threats, ranging from auto-
matic derivation of signatures to the exploration of anomaly identification mechanisms with the
Machine learning methods [8,9]. However, only a few types of research have been successful
in the efficient sharing of signatures. MISP [10] was indeed capable of sharing and exporting
the signatures ingested by various IDS. It also gives features where the intrusion and detecting
techniques and humans can prove feedbacks irrespective of the size of information and the
validity. This feedbacks are then distributed among the communities that follow peer-peer data
exchange [11]. The section below provides a gist of relevant research carried out in the interop-
erability issues and data formats for the CTI interchange among different platforms. A relevant
study in cybersecurity [12] shows that one of the key elements for successful CTI is information
interchange in different speculations either by a trusted third party or TISPs. A case study was
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presented in [13] on the sharing of information, where a critical survey was conducted on various
aspects such as hurdles and issues and legal entities in the sharing of information. The major
output from here is that the information exchange remains as a collective activity. In [14], it
is presented that information exchange or sharing has many overheads, particularly in the CTI
perspective. It also presented the key need for any successful TISP lies in the value-added data
and privacy.

In [15], a facility for sharing the information and auto extraction of information is discussed.
A redefinition on the problems of data control into a knowledge concept was also presented.
This highlighted on the importance of non-neglecting of false positives. In [16], an assessment-
based approach for the malware threats is presented based on the scores and different factors of
attribute weight. In [17], a data mining technique was adopted, which uses the similarity metrics
for identifying the statistical relationships among the information being shared. In [18], a data-
driven technique was proposed to evaluate and visualize mixed data from news and other social
media platforms based on emotional intelligence. A common method for the IDS is presented
here that triggers security alarms. In [19], an empirical survey on the weight-based technique
for attribute quality is presented. In [20], A requirement definition was proposed for the CTI
platform. The requirements for such a platform includes certain QA measures and QC processes.
The authors here have not specified the dimensions of the quality for assessing the proposed
architecture’s CTI quality. In [21], the authors have pointed out that support is missing for the QC
in the CTI management. Hence, It is proposed to have standard measures of quality among CTI
sharing. The authors have proposed that it is essential for all organizations to have a definite QC
process for providing multiple QA parameters. Even though QA’s need is discussed in detail, the
authors failed to describe how such an assessment be implemented in a TISP. The Tab. 1 shows
the related work in a comparative manner.

In [22], a series of group discussions were presented, which were conducted among various
threat experts. They have derived several identifications as to how the quality of data can influence
the threat information. Here, the authors suggested that there is no need to identify the new
quality issues specific to the CTI domain. However, the authors have given various recommenda-
tions for future research directions that can bring out quality in data exchange. In [23], a novel
methodology was presented for the evaluation of quality in threat intelligence. It also seems to be
applied to a wider aspect of organizational security as the quality compromise in CTI can be a
major issue. As an outcome of the survey, it can be said that no specific academic research that
addresses the open issues presented above. Further, no TISPs that are commercialized can able to
measure the quality of CTI actively.

3 MISP Overview

MISP is one of the open-sourced TISP where the users from different communities could
share all the information on the threats, especially on the Threat Indicators. It also offers a sharing
platform for the financial mules that are used for money laundering. The data model of MISP
is implemented in such a way that it can share information easily. The users here can decide the
granularity of the information that he wishes to share with MISP, and at the same time, the level
of sharing can also be set for the information he wishes to share. For getting familiar with the
commonly used terminology of MISP, a few terms on the same are discussed. MISP follows a
peer-peer architecture where various instances can exchange information among each other. The
protocol used for synchronization in MISP results from the trial-error method, where the main
conditions are aimed to be accurate, consistent, and scalable.
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Table 1: Overview of the literature analysis

Authors &
reference

Year of
publication

Major contribution Remarks

Adham
Albakri
et al. [12]

2018 Empirical survey on the CTI
sharing interchange

Insisted on the need for an
efficient platform to share CTI and
presented the disadvantages of
existing methods.

Nweke
et al. [13]

2020 Case study on sharing of
Cyberthreat information

Hurdles and issues along with
legal entities in sharing of
information were discussed.

Wagner
et al. [14]

2017 Literature survey on the methods
and hindrances in threat
information sharing

Overheads of the information
sharing mainly CTI discussed.

Zhengjun
et al. [15]

2020 Method for auto extraction of
information from CTI proposed

The proposed method introduced
takes up the data controller as a
knowledge that mostly helps
information-sharing duplication
avoidance.

Fernández
et al. [16]

2018 Assessment based approach for
malware detection proposed

The proposed model was based on
the scores and different factors of
attribute weight, which gave
excellent output.

Riesco
et al. [17]

2019 Data mining technique for the
statistical information sharing on
CTI is proposed

The proposed method was able to
identify the relationships among
the information being shared in
CTI.

Eunsoo
et al. [18]

2018 the data-driven technique for the
visualization of IDS data on CTI
is proposed

The method performed efficiently
with much higher TPR and FNR.

Wagner [19] 2019 An empirical survey on the
weight-based technique for CTI
sharing is proposed

The proposed method had
drawbacks such as lack of
standard of measures.

Skopik
et al. [20]

2017 A requirement definition in the
interoperability of data
interchange is presented

The authors failed to specify the
dimensions of the quality for
assessing the CTI quality of the
proposed architecture.

SyamAppala
et al. [21]

2016 Method of standard measures of
quality among the CTI sharing
was presented

The need for QA and QC on the
CTI was discussed with a novel
method.

Andrian
et al. [22]

2017 Data quality enhancement in CTI Discussed in detail on the impact
of the quality of data in CTI.

Lemieux
et al. [23]

2015 QA in threat intelligence The quality of the information
sharing in CTI was the
majorly addressed.
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Any piece of information that is shared is called an event. An event usually comprises of
attributes (IP addresses, hashes). Presently there are 145 types of attributes available in MISP. An
attribute is usually identified with the tuple that is associated with it. An event can also be linked
to context information such as the date, level of threat, description, and organization about the
threat indicators. To effectively handle the information over load on the MISP and remove the
burden of additional time load in filling the form, a text import option is also integrated, which
allows the users to insert raw data by just copying and pasting. This text can then be analyzed
using a heuristic technique for extracting the attributes that can be validated. In order to filter
out the events, taxonomies are used. Fig. 3 shows the MISP interface.

Figure 1: MISP user interface [24]

4 Generic Scoring of Indicators of Threat

A basic understanding of the overhead of correctness handling in the information that is
shared is needed. Few numbers provided from the MISP community discussed for this purpose.
The case taken for the study is a consortium with 15312 users and 785 organizations. The users
from these organizations have shared 9785 events, and there are supposed to be 135685 attributes
until the latest dump (June 2019). The fact which makes tough for handling the attributes are
more tedious is because of the non-homogeneous users. On one side, the user needs to use
the data to implement security solutions such as to perform some blocking accesses based on
the attributes that are shared, such as the hashes and IP address. Here, the False Negatives
are not important as the data should be correct and more reliable. On the other side, some
organizations need correlations among the attributes and inter-connect them with some additional
Threat indicators. Hence reliable information on the data history is needed.
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A generic attribute scoring method is proposed for the attributes that decay overtime in MISP,
including the sightings and taxonomies and the reliability of sources. The lifetime of different
attributes are not found to be homogeneous. For example, the hosts of some machines that are
related to the IP address are altered and cleaned. The IPs ad the domains are traded and have got
used variously over time. Hence, every attribute will have a decay function. The hash files usually
do not tend to vary across time. Never a given shared file can be considered false-positive over a
given time by the organization with an individual trust level. In order to thoroughly evaluate the
attribute’s score, some of the predefined criteria are taken, which are as follows:

The initial score of the given attribute is termed as InitialScore It is the weight of the initial
confidence of the source and different taxonomies attached to it. It also indicates the initial value
in the life cycle of a Threat indicator. It is also represented as the new score of an indicator as
and when a new sight is inserted.

• The period that is expressed between the time a particular attribute was first identified to
the time it is identified lastly.

• The Endtime of a given attribute represented as Ta gives the time where the total score is 0.

The rate of decay denoted by ∂a gives the speed in which the total score gets decreased in
due course of time. It is always preferable that the speed of decay is a variable and changes
over time. For illustrating the same, the context of the IP address is considered. The decay rate
of the given IP must be low in the initial hours, but are expected to decay faster as time goes
on. When coming into the sighting, this IP’s initial activities have better prospects of being the
threat indicators remain active or are executing the operations to be followed up. When these IPs
are shared with the target community from the threat actors, more victims can take appropriate
measures to block the IP. Hence, the effects of the attack here are minimized by forcing the actors
to use another IP. In case the IP is compromised, the reassignment of the same to a genuine
customer is avoided, which could have significant damage due to the malicious activity of this IP.

MISP follows peer-peer architecture where the people are free to produce and to consume
much information on threats in a shared manner. Hence, it is entirely for the transition of
information over the multiple instances of MISP till it reaches the consumer. The information pro-
ducers can then add tags defined in various taxonomies on the confidence or the reliability of the
source of given information encoded. The consumers will get this information and have various
levels of trust. The InitialScoreA in a given attribute is represented in Eq. (1) as InitialScoreε[0, 100].
Here, it depicts that the score of an attribute under consideration before it decays starter. It is
comprised of tags that are weighted along with the confidence value of the source represented
as s.confidence.

The weight of a taxonomy applied here defines the predicate level and represents the accep-
tance inside a given community. For example, if a tag is of taxonomy given the namespace as
admirable_scale and the predicate reliable_source is often used, a low weight is usually assigned.
However, inside the same taxonomy, the predicate credible_information tags that frequently used
get more weight. The s.confidence can also influence an additional factor called the ∂sc. This factor
takes into consideration of more stable evaluation of the trust. For instance, in the scenario, a
given organization has goodwill, but due to some situation in a given time frame, its trust has
decreased. The best scenario being an organization is compromised by an attacker and taken over.

InitialScoreA =Wtg ·Tag+ ∂sc · s.confidence (1)

The InitialScore presented in the Eq. (1) is described as follows
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• ∀Wg ε [0, 100], ∀ ∂sc [0, 100t], Wg + ∂sc = 100, Wg = 100$ or ∂sc = 100, a way of adjusting
the focus on tag or the source confidence. As the rebalancing of trust in a organization is
researched on a distributed threat information sharing, the factor ∂sc is set to $100−Wg.

• Tag ε [0, 1], The score that are derived out of the taxonomies are presented in Eq. (2).
• s.confidenceε[0, 1], represents the confidence that is allotted for the source which publishes
the attribute. The s.confidence presented in the Eq. (1) provides a possibility for influencing
the InitialScore, which is supposed to be a number in-between 0 and 100. Every source in
the range of 1 to N has the s.confidence. In case if a given source is wholly trusted, the
confidence is assigned as 1. If there is no trust associated, the level of source is then set
to 0. The user is also allowed to set the intermediate values that could approximate how far
the source is reliable. The given learning in the confidence of a particular source is based
on the information produced in sue coursed of time that needs more research.

The Tag represented in Eq. (1) is derived from the existing taxonomies that a producer shall
attach to the given information. A few of the used taxonomies are also allowed to add more
reliability and confidence to reproduced information. The tags presented in the taxonomy can then
be attached to each of the individual attributes that are encoded. The taxonomies available in
MISP for deriving the confidence and the reliability are shown in Tab. 2.

Table 2: Confidence and reliability

Attribute description Values Attribute description Values

MISP OSNIT
Fully confidence 100 Most certainty 100
Almost confidence 80 Certainly 94
Partly Confidence 60 Almost certain 76
Seldom confidence 40 Partly certain 50
Not confidence 0 Impossible 0

The taxonomies here used are the MISP tag , admirable scale and OSINT. These taxonomies
use by a large community, and hence a scoring model is a need as an alternative to the suggestion
of new taxonomies. Once a value of confidence is not defined, the InitialScoreA incomputable and
hence undefined. The total score becomes undefined, leading to the cancellation of other scoring
factors that are in tags.

The scores derived from the given taxonomies are represented in Eq. (2). Here, G represents
the count of taxonomy in predefined groups, and T gives the count of taxonomies that are used
in a single group. The weights are then defined on a predicate and must be an integer between
0–100.

Tag=
∑n=G

m=1
∑m=T

n=1 Taxi ∗Wi∑n=G
m=1

∑m=T
n=1 100 ∗Wi

(2)

The objective is to make the Initialscore as minimum as possible over a given time. When the
value reaches 0, the concerned indicator of threat is discarded. The overall value of score to be
used in Eq. (3) is given as

i.Scorea = Initialscorea −�a (Tt+Tt+ 1) (3)
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InitialScoreA ε [0, 100]$, which is described in Eq. (1) is described as

1. �a ε [0, +∞] that represents the rate of decay or the same expressed as the rate at which
the given score in an attribute comes down over time.

2. Tt and Tt + 1 are the representation of the timestamp. The Tt represent the present time
and Tt + 1 describes the last time the attribute receives a sighting. It is noted that Tt <

Tt+ 1.

Fig. 2 depicts the rate of decay of an attribute ‘a’ with Initialscorea as 80 and the rate of
decay ∂sc. The parameter evaluation shows that the end_time or the decay rate, which is a variable,
can be kept under control. By keeping the decay rate constant, the end_time could not be specified
for a score in an attribute. Similarly, even when the decay rate is kept controlled using a constant,
the decay can be fixed. To address the latter issue, digression can be implemented, as shown
in Eq. (4).

i.Scorea = Initialscorea · e−∂a.t (4)

Figure 2: Decay score plot

Here, the rate of decay can be kept as a variable. The non-linear slope in Fig. 4 seems to
be high initially and comes down as the time elapses. However, the rate of decay cannot be kept
influenced. The expression will not be used to get a slower decay at the beginning, followed by
a speedy digression. Behavior which can be identified in a dynamic IP allotment by the threat
actor as already discussed. Also, the actual time when the total score of an attribute must be 0
is controlled by the decay rate. Hence, manipulation of slope and the end_time as well are not
possible. It can also be seen that the choice of parameter ‘a’ will be in a range kept between 0
and 1 owing to the digression tendency happening exponentially to become 0 suddenly. The final
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value of the score is defined in Eq. (5) with all the conditions captured.

i.Scorea = Initialscorea ·
(
1− t

ta

)
· e 1

∂a (5)

Considering the term ∂a ε [0,+∞], as the rate of decay,

• �a ε [0,+∞], is the end_time or the time required for the Scorea = 0. The end_time defined
by any sighting, where a given organization knows when can an indicator expires. The best
example will be the grace time taken by the ISP to resolve the issue.

• The sane derived from the present sighting where the organization provides data about the
sighting over the past. The time factor t=Tt−Tt−1, is an integer >0.

The polynomial has a couple of advantages on the exponential factor. Initially, the
end_time Ta could be controlled easily. The rapid digression in the initial stage can be acquired;
a slower digression follows that opposite. An example of the varying rate of decay ∂a is depicted
in Fig. 3. It is seen from the figure that as the ∂a is increased, the total score tends to come down
in the beginning stage. The rate ∂n approaches zero if the total score exponentially decreases in
the beginning. The score will be 0 for all the rates at a given Ta.

Figure 3: Plot for varying decay rate

The example considered for the experiment is the attribute of an IP, which is compromised.
The attribute that belong to a shared event in the MISP belong to the activity with the type
ip-destination, which means the IP of the destination of a web server which has been compro-
mised. Few organizations that have spotted the same have to share that information. The IPs are
encoded in lists that are open to public. The threat indicators might have noticed the detection
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and would have started to move the services to another server. It is assumed that ISP gives the
consumer 1 week of time for fixing the web server. If the same is not fixed in the given time,
The IP will be 0-routed, which means that it cannot be accessed further. Hence, Ta = 7.28 h.
Considering the hypothesis that blacklisting takes 48 h for being applied in browsers, the total
score is halved in a couple of days.

Hence, ∂a can take a value of 1.81. At last, if the total score of an attribute is taken as the
Initialscorea = 80 based on taxonomy and .confidence, the Eq. (5) is reduced as in Eq. (6). Where
t denotes the time frame between the present and the last appearance of sighting expressed in
hours. The decay rate plot of the attribute of the IP which is compromised is presented in Fig. 4

i.Scorea = 120 ∗
(
1− t

7.68

)
e

1
1.81 (6)

Figure 4: Decay plot for compromised IP

5 Parameter Fine Tuning

The efficiency of scoring relies on the tuning of parameters. It is achieved through a statistical
approach to real-time data. The data considered for the study is taken from the phishing data
repository. The statistics on the dataset is showed in Tab. 3.

The dataset is processed for detecting the end of every attribute by making use of the
sightings. For all of the attributes, the end time is calculated as in Eq. (7).

EndETime= (tn− t0)+�MAX (7)

Here, the t0 denote the time where the given attribute is seen the first time and similarly, tn
is the last time an attribute is seen and �MAX denotes the long time that is elapsed in-between
the sightings.
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Table 3: Data set statistics for parameter tuning

Attribute Value/range

Time span 05-05-2020→ 30-06-2020
Attribute count 425878
Sighting count 5221358
Mean of attribute 14
Standard deviation 51

From the CSIRT view, it is critical to note down the servers that are compromised as quickly
as possible. Fig. 5 depicts the elapsed time sequence of the events occurrence. Even if the URLs
with a long lifetime are critical, only the shorter URLs are considered for evaluation. Longer
living URLs are considered unique and are not considered in this section and kept as outliers.
The processed data is then used for deducting the parameters. Initially, the first parameter, which
is given more importance, is the end_time. The histogram presented in Fig. 6 shows the computed
end_time’s re-partition overtime on a larger scale. It is also seen that the count of attributes that
has an end_time more than 7 days drops with a constant factor.

Figure 5: Elapsed time sequence

If we have a closer look at the histogram, the initial week gives more useful information. As
seen before, the initial focus is kept on the initial week since a large number of attributes that has
similar end-timeliest there. The CDF is the figure indicates that approximately 90% of the total
attributes start decaying in the first five days. The value of the next parameter is then estimated
after looking at the shape of the histogram obtained. The slope’s cavity is then directed down
bottom, which indicates an increase in the rate at which decay happens. Even before computing, ∂

we can conclude that the parameter is a positive integer. Also, 50% of all attributes’ total end_time
in the first 7 days are present within the initial 72 h. Hence after 3 days, half the total attributes
have been expired. The score ∂ can be computed as

Score= InitialScore ∗ (1− (1/t))1/∂) (8)

Finally, the attributes belonging to type URL that is concerned with phishing data can use
these parameters for scoring. The evaluation can be made used by the Intrusion detection system
for rule formation. Practically, these IDS have limited entry and hence only a particular part
of the attributes can be used as a rule. An evaluation of the IDS’s table is performed as a
support for the proposed model. In order to do so, the subset of the data is replayed in the IDS
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and evaluations were recorded. The experimental data consists of original data where only the
sightings for a month are considered. The results are presented in Fig. 7.

Figure 6: Endpoint histogram

The Fig. 7 shows the estimation on the accuracy front of the removal of entries. The
calculations were performed based on the following rules.

• Each removal of entry is recorded separately in a set {expired}
• Each addition of entry is pre-checked for its availability in the {expired} set.

If it is so, the record is labelled as added_bits. The part that expired so soon actually
corresponds to the count of entries available in the added_bits and the parts that are correctly
done correspond to the total entries present in {entries} set but not present in added_bits. It is
also seen that approximately 50% of those entries are removed correctly of the IDS tables, while
almost 50% of them are removed when pre-matured. In regard to the experimental data, the
success rate obtained is very encouraging, and thus the attribute scoring model can work in a
production environment.

6 Case Study

A case study of the Intrusion detection table of the malware hashes is presented to ensure
the proposed model’s effectiveness. In order to perform the experiment, the subset of data run on
the IDS environment and the results in the table were recorded. The data set used is from the
original set of data presented in Tab. 3 where only the sighting of a particular month, i.e., from
February to March, is considered. The hypothesis here is that if the Hash value is not having a
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False Positive, the malware is not supposed to be decayed. It could be taken for consideration
that the presented attribute could not have any record after a span of 60 days. The rate of decay
hence would be τa= 2 ∗ 30 and ∂ = 0.3. it is considered that the case has the same initial_score
as that of the previous value of 120. Hence, we have,

Score= 120 ∗
(
1−

(
1
t
∗ 2 ∗ 30

)
1/∂

)1/3

(9)

Figure 7: Accuracy comparison

The focus is made on the initial 7 days of the attribute decay. The CDF shoes that approx-
imately 90% of the attributes fall tend to decay in the first 5 days. Then as per the proposed
model, the end-time for total decay would be 5 days i.e., 120 h. The value of the score is then
obtained by the hypothesis that if the slope of the decay is tending to the bottom, there is an
increased speed in the decay rate over time.

Again, if half of the total lifetime is expired, the CDF will be 50%; It can see that half of
the attributes have already decayed. Hence at this juncture, the score point will be 50. We can
now calculate the value of ∂ as

FinalScore = InitialScore ∗
(
1−

(
1
t

))
e1/∂ (10)

→ 50= 100 ∗ (1− (1/0.72)e1/∂

== 1.3

Similarly, the decay score of all the attributes of the malware hashes can be calculated, and
the attribute whose score tending to zero are considered to be decaying and are removed from
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the malware hash tables, which helps greatly in providing more space and also reduces the time
complexity in the detection of malware.

7 Conclusion

Threat Information Sharing has become vital in obtaining a collaborative solution for cyber
threats. The MISP is a unique open-source platform that allows the information exchange and
users to contribute to the community over a trusted space. In this paper, an initial proposal is
made on the scoring of attributes shared within the MISP. Taking into consideration that the
MISP is peer–peer, different trust aspects have to be maintained. The fact that the producer has
some taxonomy inside MISP for adding more credibility to the attribute, this paper presents a
scoring method for combining the aspects of trust. As the lifetime of attributes corresponding to
the Threat Indicators is different, a generic scoring method is proposed. The proposed method
calculates the rate of decay of an attribute through which the early entries are removed. Future
research is planned to apply Machine Learning techniques for the automated scoring of attributes
and train the system to eliminate the unwanted attributes to participate in the evaluation of data
shared by the organizations for attaining a collaborative solution for cyber threats.
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