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Abstract: Advances in technology are enabling gene mutations in papillary
thyroid carcinoma (PTC) to be analyzed and clinical outcomes, such as recur-
rence, to be predicted. To date, themost common geneticmutation in PTC is in
BRAF kinase (BRAF). However, whether mutations in other genes coincide
with those in BRAF remains to be clarified. The aim of this study was to find
mutations in other genes that co-exist with mutated BRAF, and to analyze
their frequency and clinical relevance in PTC. Clinical and genetic data were
collected from 213 PTC patients with a total of 36,572 mutation sites in 735
genes. After matchingwith genes fromPTC entries in a global database (NCBI
Gene), 69 genes with mutations in coding regions were chosen for further
study. Through frequency-based analysis, we identified commonly mutated
genes co-existing with mutated BRAF and, using the mutation count correla-
tion matrix (MCCM) method, analyzed their incidence according to age and
gender. We designed Chord diagrams to reveal gene relationships concerning
age and gender, and found that mutations in ALK, ATM, COL1A1, MSTIR,
PRKCA, andWNK1most commonly coincide withmutated BRAF, followed
by APC, AURKA, and AURKB. These findings provide further insight into
the genetic profile of PTC.
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1 Introduction

Acquiring and deciphering patient genomic/molecular data to inform diagnostics, personalized
targeted therapy, and assessment of risks is a rapidly growing area of research [1]. In addition,
to support the quest to conquer cancer, researchers are seeking specific biomarkers [2]. Thyroid
cancer is one of the most common cancers worldwide [3]. In the past, thyroid cancer-related
interests have focused on surgical methods and techniques, complications, treatment outcomes,
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prognoses, and mortality [4]. As genetic analysis technology advances, interest has shifted to
identifying and characterizing genes related to thyroid cancer [5]. To identify the cause of thyroid
cancer, many researchers have studied gene mutations and found representative affected genes
such as BRAF [6]. In thyroid cancer, mutated BRAF affects MAPK and PI3K-AKT signaling
pathways [7] and occurs in 36%–70% of cases [8,9]. Whereas other diseases may have multiple
specific biomarkers, to date mutated BRAF is the only one to be definitively identified in thy-
roid cancer [10], despite many efforts using pyrosequencing, Sanger sequencing, whole genome
sequencing, and genome-wide association studies.

In a recent study, the increase in global mortality and the size of large thyroid cancer were
not sufficiently described by screening programs and overdiagnosis [11]. Thyroid cancer is mostly
indolent, but in some patients the tumor bears genetic mutations and behaves aggressively [12].
With advances in surgical techniques, studies have been actively conducted to analyze gene muta-
tions beyond thyroid cancer, and to predict clinical outcomes such as mortality and recurrence. To
date, genetic variation associated with thyroid cancer is most commonly found in BRAF kinase
(BRAF), NRAS, P53, RET, HRAS, CDKN2A, ATM, KMTSD, PTEN, PIK3CA, NF1, and
KRAS, and that BRAF has a strong relationship with papillary thyroid carcinoma (PTC) [13].

RAF kinase is a component of the RAS, RAF, MEK, and MAP/ERK signaling pathways
involved in cell growth, differentiation, and oncogenesis [14]. Among RAF kinases, BRAF is the
strongest activator in these signaling pathways. Transversion mutation of nucleotide 1796 of exon
15 of the BRAF gene from thymine to adenine is the most common genetic abnormality in
PTC [8]. This mutation is specific for PTC and correlates with high-risk clinicopathological fea-
tures such as lymph node metastases, extrathyroidal invasion, higher recurrence rate, and advanced
clinical stage [15–17]. While there have been many studies related to BRAF, the incidence of other
affected genes in PTC and their relation to BRAF is not well known. Thyroid cancer is associated
with clinical prognosis depending on age and gender [18], and there are not many studies on genes
observed simultaneously with BRAF.

Through this study, therefore, our intention was to identify mutations in other genes that
co-exist with those in BRAF in PTC, and to analyze their frequency and clinical correlation with
age and gender. The aim of this integrative analysis was to identify the cancer driving (driver)
genes and their association with the clinically relevant parameters of age and gender to reveal
which affected genes best correlate with a tumor that could lead to the surgery in PTC.

2 Materials and Methods

2.1 Dataset and Method Overview
Archived tumor tissue, clinical, and genetic data were collected from 213 PTC patients seen

at Seoul National University Hospital [19]. The target regions of genomic DNA were captured
using a SureSelect DNA Kinome Kit (Agilent, Santa Clara, CA, USA) and sequenced using an
Hi-Seq 2500 system (Illumina, San Diego, CsA, USA). Among the 213 PTC samples, a total
of 36,572 mutation sites in 735 genes were identified in coding, intronic, untranslated (5′ UTR
and 3′ UTR), intergenic, splice site, and promoter regions. The genetic data were preprocessed
using operations (filtering out, replacing, grouping, transposing, and merging) and then aligned
with the clinical data to enable an integrative analysis using a three-step process, as shown in
Fig. 1. At the first level, genes in the study (local) dataset were checked with genes in the NCBI
Gene (global) database [20] reported for PTC and the common genes (found in both local and
global databases). The common genes were carried out for further analysis and frequency-based
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analysis was performed to find driver genes found simultaneously with BRAF. Second, these driver
genes were integrated with the clinical data, and an integrative analysis was performed using the
mutation count correlation matrix (MCCM) method.

Figure 1: Clinical and genome data integrative analysis framework: (1) Shows driver gene iden-
tification, with (a) showing genes picked up from the local dataset, (b) Showing genes in the
global database (NCBI Gene), and (c) Showing matching function that finds common genes in
local and global databases; (2) Shows the process of data preparation of clinical and genetic data
combination for integrative analysis; and (3) Shows different types of analysis including driver
gene frequency analysis and mutation count correlation analysis

2.2 Identification of Driver Genes
To find the important genes in the local dataset, the genomic data were preprocessed using a

program developed in the Python programming language with the Pandas package for DataFrame
object manipulations. Initially, the dimensionality of the data was reduced by removing the
attributes that are least important for the analysis process, such as chromosome number, names,
and identifiers. Driven by the domain experts’ (i.e., the physicians’) guidance, the three most
important attributes, ‘location,’ ‘symbol,’ and ‘consequence,’ were thus left for further study. The
‘location’ of a gene mutation itself consists of several locations: coding, 3′ UTR, 5′ UTR,
intron, intergenic, promoter, and splice site. All the location values, except that of the coding
location, were filtered out from the analysis due to their least correlation with a tumor that could
lead to the surgery in PTC. Similarly, because of the known strong impact of nonsynonymous
substitutions on tumor occurrence, all other types of gene modifications were filtered out. Thus,
mutations occurring in coding regions with a nonsynonymous consequence were the main focus
for analysis in this study. The values of gene mutations were normalized by grouping the multiple
locations into a single record, with 1 representing the mutation occurrence and 0 representing
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no mutation at this location. The formula for normalizing multiple records into a single record
is given in Eq. (1). The records were grouped using Pandas GroupBy function based on the
gene symbol.

groupedData = data.groupby(‘genesymbol’).sum() (1)

As given in Eq. (2), the grouped data were further processed to normalize the sum values
generated by the GroupBy function to either 1 or 0 values because a value of 1 or > 1 represents
the same effect with respect to mutation occurrence.

normalizedData = groupedData.replace(value > = 1; 1) (2)

The normalized data is a subset of the overall data. From this subset, only those genes that
feature in the gene database [20] were chosen. The gene database was searched for “papillary
thyroid carcinoma” and returned a list of 607 genes. These genes were inspected in the local
normalized data using a match function of Pandas (see Eq. (3)).

matchedGenes = match(globalGeneData, normalizedData) (3)

The subset of matched genes was channeled for further analysis. In the next step, mutations
of BRAF, the most frequently identified thyroid cancer-causing mutations, including in PTC [14],
were the main focus. To identify any association of BRAF with other genes in the data, all records
in which BRAF was not mutated were filtered out. Among the records with BRAF mutation,
frequency-based analysis identified highly mutated genes throughout.

2.3 Integration of Clinical and Genomic Data
The driver genes found using frequency-based analysis were combined with clinical data.

The MCCM method was used to determine relationships among the driver genes based on the
patient age and gender. Data were first prepared in the form of a correlation matrix using Python
DataFrame, where each cell of the matrix represents the number of samples with a mutation in
each of the genes. The further steps of the MCCM method were as follows:

(a) Exclusion of genes which are mutated in an equal or higher number of samples than
BRAF from the analysis, as the focus of the study was on mutated genes that are related
to BRAF but occur at a lower frequency than mutated BRAF.

(b) Exclusion from the analysis of all genes having no mutation in the coding region.
(c) Splitting of the data into four different groups: Two age groups (<45 and >45 years) and

two gender groups.
(d) Development of a relation for each group to find order pair between genes in terms of

mutation count as defined in Eq. (4):

R = {(a,b)| a and b mutated}, (4)

where a and b are two genes, and R is their relationship, which represents the number of
patient samples in which both a and b are mutated in the coding region.

(e) Using the relationship R in Eq. (4), a MCCM for each group (as shown in Tab. 1) was
calculated. Each cell represents the relationship R between two genes (G1–Gn) based on
the number of samples with mutations. For instance, G1 R G2 represents the number of
samples in which both G1 and G2 are mutated.
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(f) Based on the mutation count in Tab. 1, a script in R programming language was developed
to design Chord diagrams [21] for learning the outgoing and incoming connections between
one gene and another.

Table 1: Mutation count correlation matrix of driver genes

R G1 G2 . . . Gn

G1 G1 R G1 G1 R G2 . . . G1 R Gn
G2 G2 R G1 G2 R G2 . . . G2 R Gn
. . . . . .

Gn Gn R G1 Gn R G2 . . . Gn R Gn

3 Results

3.1 Patient Demographics
Tumor samples included 183 (85.9%) of classical-type and 30 (14.1%) follicular-variant PTCs.

The mean age of the patients was 47.5±13.4 years, and the male-to-female ratio was 1:6.6. Mean
tumor size was 1.42 ± 0.96 cm, and lymph node metastasis was found in 99 (46.5%) patients.
Twenty-three patients (10.8%) experienced recurrences. 3.2 Display style.

3.2 Gene Mutation Frequency
As described earlier, the 69 genes that were selected for the analysis, we filtered out all

those genes mutated in less than one patient, which left 62 genes. Using frequency-based analysis,
we identified driver genes and mapped them with their corresponding frequencies, as shown in
Fig. 2. Mutations in BRAF, and in PRKCA, ALK, ATM, WNK1, MST1R, and COL1A1, among
the overlapping genes, were found in the greatest number of samples, occurring in 142 samples,
followed by mutated APC, which was found in 141 samples; these were the most ‘commonly
mutated genes.’ The second tier of driver genes with 100–129 samples comprised AURKA,
AURKB, TPS3, EGFR, KDR, FLT4, and IRS2. The third tier of driver genes with 44–79 samples
encompassed BRCA1, SPHK2, IRAK1, KSR1, ERBB2, and RET. The fourth tier was composed
of the remaining 41 genes.

3.3 Integrative Analysis: Correlation of Age and Gender with Genomic Data
Age and gender are clinically important in thyroid cancer. Therefore, we combined each of

these two factors with genomic data making four groups to determine the clinical significance of
mutations in BRAF and the other affected genes. These four groups are labeled as: (i) <45 years
age group, (ii) ≥45 years age group; (iii) male group, and female group with distribution of 42, 72,
15, and 99 samples, respectively. It should be noted that in the integrative analysis, we excluded
the genes overlapping with BRAF (i.e., the first-tier driver mutated genes found in 142 samples).
Thus, of the 62 total overlapping genes, data from 55 were included in the integrative analysis.

Using the MCCM method described in the Materials and Methods section, we generated a
correlation matrix for the age and gender groups according to the incidence of affected genes. The
matrix shown in Tab. 2 represents a partial list of mutated genes in the <45 years age group. In
this matrix, each relationship (cell) shows the number of samples in which the mutation is found
in relation to other genes. The higher the value, the more frequently among the PTC samples that
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the genes are mutated together. For instance, BRAF and APC had a correlation count value of
42, which means that these genes are both mutated in 42 samples from patients in the <45 years
age group.

Figure 2: Mutated genes in the local dataset matched in the global gene database are shown with
a frequency value. The genes in the top-left positions are the driver genes (commonly mutated) as
compared with the genes in the smaller boxes in the bottom-right positions

Table 2: A snippet of the mutation count correlation matrix showing a partial list of genes (age
<45 years group)

Genes AKT1 AKT2 APC AURKA AURKB BRAF BRCA1 . . . TEK TERT TP53

AKT1 4 0 4 4 4 4 3 . . . 2 0 3
AKT2 0 1 1 0 1 1 1 . . . 1 0 1
APC 4 1 42 39 40 42 19 . . . 7 1 36
AURKA 4 0 39 39 38 39 17 . . . 6 1 33
AURKB 4 1 40 38 40 40 18 . . . 7 1 34
BRAF 4 1 42 39 40 42 19 . . . 7 1 36
BRCA1 3 1 19 17 18 19 19 . . . 3 1 17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TEK 2 1 7 6 7 7 3 . . . 7 0 4
TERT 0 0 1 1 1 1 1 . . . 0 1 1
TP53 3 1 36 33 34 36 17 . . . 4 1 36
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We computed the correlation matrices thus, for each of the age and gender groups. Based
on the computed matrices, we developed a script in R programming language to design Chord
diagrams as shown in Figs. 3 and 4, to reveal the outgoing and incoming connections between
one gene and another. The outer fragmented arc on the circle represents the number of samples
with mutations in each individual gene. The size of the fragment is proportional to the dominance
of the gene: The larger the fragment, the more samples in which the mutated gene occurs.

Figure 3: Chord diagrams representing the correlations between mutated BRAF and other genes,
and among themselves, in the <45 years age group (a) and the ≥45 years age group (b)

Figure 4: Chord diagrams representing the correlations between mutated BRAF and other genes,
and among themselves, in the male group (a) and the female group (b)
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For example, BRAF and APC (mutated in 100% of cases) were the most mutated genes
having the highest proportion of mutations in the samples from the <45 years age group (See
Fig. 3a). IDH2 (mutated 2.4% of cases), NFKB1 (mutated 2.4% of cases), and others were the
less mutated genes, with a smaller number of samples detected with these mutations. Furthermore,
BRAF (mutated in 100% of cases) and APC (mutated 98.61% of cases) were also the driver genes
in the ≥45 years age group (See Fig. 3b).

Figure 5: Connections between genes with mutations including mutated BRAF (mutated in all
samples) in the <45 years age-group samples

Gene dominance according to gender is represented in Figs. 4a and 4b. In the male group,
BRAF and APC (mutated in 100% of cases), were the most mutated genes, while MAP3K5
(mutated 6.7% of cases) and NTRK3 (mutated 6.7% of cases) were the least mutated genes.
Similarly, for the female group, BRAF (mutated 100% of cases) and APC (mutated 98.98% of
cases) were the most mutated genes.

The thickness of the band reflects the number of patient samples that have mutations in
those two connected genes. To understand the relationships between genes at a micro level, we
took an example of the <45 years age group as shown in Fig. 5, where mutations in BRAF
most commonly coincide with mutations in APC and AURKB, as indicated by the thickest
bands. Whereas, the thinner bands used with AKT2, IDH2, and some other genes indicate that
mutations in BRAF less commonly coincide with mutations in these genes. It is important to
note that absence of a band connection between two genes indicates that they are not both
mutated simultaneously. This is more obvious with that are mutated in fewer samples and is less
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likely to coincide with other mutated genes. For example, in the <45 years age group, NFKB1
(mutated in 2.4% of cases) mutations are uncommon and the rarest gene with smallest number
of connections with other genes. So far as BRAF (mutated in 100% of cases), APC (mutated in
100% of cases), AURKB (mutated in 95.2% of cases), and EGFR (mutated in 78.6% of cases)
are sharing mutation with all other genes and hence maximum inbound and outbound band
connections are reflected in the Chord diagram.

4 Discussion and Conclusion

The presence of mutated BRAF is associated pathologically with the tall cell subtype of
thyroid cancer, infiltrative growth, and intraglandular tumor spread, and clinically with lymph
node metastases, extrathyroidal invasion, high recurrence rate, and advanced stage [15–17,22]. In
addition, patients without the BRAF mutation have a mortality rate of 1.1%, whereas the rate
for those with a mutation is 5.3% [6]. To date, genes with mutations known to be associated
with thyroid cancer include BRAF, NRAS, P53, RET, HRAS, CDKN2A, ATM, KMTSD, PTEN,
PIK3CA, NF1, and KRAS [13]. However, most have been reported as the percentage frequency
observed in entire cohorts. In a large cohort from 19,000 samples, the NRAS gene was affected
in 11.3%, RET in 9.72%, HRAS in 4.91%, PTEN in 3.73%, PIK3CA in 3.44%, NF1 in 2.9%,
and NRAS in 2.65% [13]. While the genes affected can be identified in the cohort, it is not
known which occur simultaneously with or how they relate to mutated BRAF, the most important
genetic marker for thyroid cancer. Our objective was, therefore, to identify gene mutations in which
synergy with BRAF was observed; thus, our analysis focused on patients with BRAF mutation
and the correlations of BRAF with other affected genes, based on patient age and gender.

We identified the driver genes in the samples from the PTC patient dataset that matched those
in the NCBI gene database [20]. In line with the global gene database, we found that there were
69 affected genes coincident with mutated BRAF. We categorized these genes into four groups: the
group consisting of ALK, ATM, PRKCA, WNK1, MST1R, COL1A1, and APC was the most
frequently observed; that of AURKA, AURKB, TP53, EGFR, KDR, FLT4, and IRS2 was the
second most frequently observed; and that of BRCA1, SPHK2, IRAK1, KSR1, ERBB2, and RET
was the third most frequently observed. The remaining least frequently observed genes comprised
the fourth group.

To reveal clinical correlations with the most frequently affected genes, we visualized the results
using Chord diagrams to highlight the frequency of each mutated gene correlated with mutated
BRAF and with the other mutated genes. All the genetic variations correlated with each other,
and differences in the correlations between different genes were observed depending on age and
gender. Comparing the <45 and ≥45 years age groups, mutated APC, AURKA, and AURKB
were common in both groups but with varied frequency. For instance, after BRAF, APC was the
second most affected gene observed in both age groups, but it was more frequent in the <45
years group. Similarly, the third most frequently observed mutated gene was AURKB in the <45
years group, whereas it was AURKA in the ≥45 years group. In addition, comparison by gender
revealed a unique correlation pattern of the most frequently affected genes. The male group was
characterized by the highly correlated genes BRAF, APC, and AURKB, whereas in the female
group, we observed a strong correlation between BRAF, APC, and AURKA. Thus, overall, APC,
AURKA, and AURKB were highly correlated with BRAF in our study.

Our study is limited by its retrospective design. Larger-scale prospective studies are now
required to confirm our findings. In addition, we did not differentiate the observed gene mutations
into germ line and somatic mutations, and this work is currently underway in a follow-up study.
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In conclusion, this study provides a foundation for revealing cancer driver gene correlations as
well as for integrative analysis of patient demographic information with genetic variations, which
could aid discovery of the mechanisms underlying thyroid carcinogenesis and help to improve the
precision of clinical decisions.
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