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Abstract: In this paper, we propose a fifth-order scheme for solving systems of
nonlinear equations. The convergence analysis of the proposed technique is dis-
cussed. The proposed method is generalized and extended to be of any odd order
of the form 2n� 1. The scheme is composed of three steps, of which the first two
steps are based on the two-step Homeier’s method with cubic convergence, and
the last is a Newton step with an appropriate approximation for the derivative.
Every iteration of the presented method requires the evaluation of two functions,
two Fréchet derivatives, and three matrix inversions. A comparison between the
efficiency index and the computational efficiency index of the presented scheme
with existing methods is performed. The basins of attraction of the proposed
scheme illustrated and compared to other schemes of the same order. Different test
problems including large systems of equations are considered to compare the per-
formance of the proposed method according to other methods of the same order.
As an application, we apply the new scheme to some real-life problems, including
the mixed Hammerstein integral equation and Burgers’ equation. Comparisons
and examples show that the presented method is efficient and comparable to
the existing techniques of the same order.

Keywords: System of nonlinear equations; root finding method; iterative method;
order of convergence; Burgers’ equation

1 Introduction

One popular research area in mathematics is to find the solution a ¼ ða1; a2; . . . ; anÞt of the system of
nonlinear equation F Xð Þ ¼ 0, where F Xð Þ ¼ ðf1 xð Þ; f2 xð Þ; . . . ; fn xð ÞÞt, and X ¼ ðx1; x2; . . . xnÞt 2 Rn. This
type of problems occurs in many applied sciences like engineering, physics, biology and chemistry. Many
researchers developed iterative methods for solving this kind of systems using different techniques. The
most popular iterative method for solving system of nonlinear equations is the well-known Newton’s
method which has second order of convergence [1]. To improve the order of convergence and increase
the accuracy of the solution obtained, many researchers tried to improve Newton’s method. Some authors
used different forms and modifications based on Adomian decomposition technique for solving systems
of nonlinear equations, see for instance [2–6]. Another way to improve some schemes for systems of
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nonlinear equation is by using homotopy analysis method and homotopy perturbation method, see for
example [7,8]. Grau-Sánchez et al. [9] used the harmonic mean of the derivative to improve an iterative
scheme for solving systems of nonlinear equations. By applying some quadrature formulas, some
researchers implement their techniques to solve systems of nonlinear equations, for instance [10–12].
Also, some derivative-free schemes for systems of nonlinear equations were proposed, see for example
[13–15] and the references therein. One of the well-known modifications of Newton method is Jarratt
method of order four. Cordero et al. [16] extended Jarratt method to solve systems of nonlinear equations
preserving the same order of convergence. Many variants of Jarratt type methods have been developed,
see for example [17–19] and the references therein. Many other different orders of convergence schemes
for nonlinear modules can be found in the literature, see for example [20,21] and the references therein.

Some techniques to improve the order of convergence of the iterative schemes for systems of nonlinear
equations have been proposed, for instance, see [22,23]. In general, obtaining a higher-order iterative method
is not the only important thing; as the computational and the time cost are crucial issue also. So, establishing a
high order iterative method based on low computational and time cost is very important.

In this paper, we develop a new multi-step scheme of arbitrary odd order for nonlinear equations. The
proposed method can be used in the multidimensional case preserving the same order. The convergence
analysis of the new scheme is discussed. Several examples are given to show the efficiency of the
generalized method and its comparison with other iterative schemes of the same order. To confirm the
applicability of the new technique, we apply the new technique to some real-life problems.

2 The Proposed Method

In this section we will derive the proposed technique for nonlinear modules. We begin by writing the
function f xð Þ as:

f xð Þ ¼
Z x

xn

f 0 tð Þdt þ f xnð Þ: (1)

As we want f xð Þ ¼ 0, and by using midpoint quadrature formula and writing the equation as an iterative
scheme, one gets

xnþ1 ¼ xn � f ðxnÞ
f 0ðxn þ xnþ1

2
Þ
: (2)

Now, to write the iterative scheme (2) in explicit form, replace f 0
xn þ xnþ1

2

� �
by f 0

xn þ x�nþ1

2

� �
where

x�nþ1 is the Newton step. So, scheme (2) becomes:

yn ¼ xn � 1

2

f ðxnÞ
f 0ðxnÞ ;

xnþ1 ¼ xn � f ðxnÞ
f 0ðynÞ :

8>><
>>: (3)

The iterative method (3) was proposed by Frontini and Sormani [10]. The multidimensional case of
scheme (3) was discussed by Homeier [24] and can be written as:

Yn ¼ Xn � 1

2
F 0ðXnÞ�1FðXnÞ;

Xnþ1 ¼ Xn � F 0ðYnÞ�1FðXnÞ;

8<
: (4)
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where F 0ðXnÞ�1 and F 0ðYnÞ�1 are the inverse of the first Fréchet derivative of F Xnð Þ and F Ynð Þ respectively.
Scheme (4) is of third-order of convergence, and requires at each iteration the evaluation of one function, two
Fréchet derivatives and two matrix inversions. In order to increase the convergence order and the
computational efficiency of scheme (4) Sharma et al. [20] proposed a new scheme of the fifth-order of
convergence by adding one step to scheme (4):

Yn ¼ Xn � 1

2
F 0ðXnÞ�1FðXnÞ;

Wn ¼ Xn � F 0ðYnÞ�1FðXnÞ;
Xnþ1 ¼ Wn � ð2F 0ðYnÞ�1 � F 0ðXnÞ�1ÞFðWnÞ:

8><
>: (5)

Per iteration, scheme (5) requires the evaluations of two functions, two Fréchet derivatives and two
matrix inversions.

Now, to derive the new scheme for solving systems of nonlinear equations, we start by composing
scheme (3) to additional Newton step, that is:

yn ¼ xn � 1

2

f ðxnÞ
f 0ðxnÞ ;

wn ¼ xn � f ðxnÞ
f 0ðynÞ ;

xnþ1 ¼ wn � f ðwnÞ
f 0ðwnÞ :

8>>>>>><
>>>>>>:

(6)

Now, to reduce number of functional evaluations at each iteration, we will use divided difference
approximation to write the derivative f 0 wnð Þ using some already computed functions from the previous
steps. To do that, one can write

f 0 ynð Þ ¼ f ynð Þ � f xnð Þ
yn � xn

¼ f yn; xn½ � � f 0 xnð Þ; (7)

in the same manner, we have

f 0 ynð Þ ¼ f ynð Þ � f wnð Þ
yn � wn

¼ f yn;wn½ � � f 0 wnð Þ; (8)

by adding (7) and (8), one easily can conclude that

f 0 wnð Þ � 2f 0 ynð Þ � f 0 xnð Þ: (9)

Now, if we substitute (9) in (6), then we will have a new scheme for solving nonlinear equations:

yn ¼ xn � 1

2

f ðxnÞ
f 0ðxnÞ ;

wn ¼ xn � f ðxnÞ
f 0ðynÞ ;

xnþ1 ¼ wn � f ðwnÞ
2f 0ðynÞ � f 0ðxnÞ :

8>>>>>><
>>>>>>:

(10)

To generalize scheme (10) to the multidimensional case to solve systems of nonlinear modules, the
scheme becomes:
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Yn ¼ Xn � 1

2
F 0ðXnÞ�1FðXnÞ;

Wn ¼ Xn � F 0ðYnÞ�1FðXnÞ;
Xnþ1 ¼ Wn � ð2F 0ðYnÞ � F 0ðXnÞÞ�1FðWnÞ:

8>><
>>: (11)

Scheme (11) requires at each iteration the evaluation of two functions, two Fréchet derivatives and three
matrix inversions. The proposed scheme is of fifth-order of convergence as we will see in the next section.

If we repeat using the same idea of the derivation of scheme (11), we can write a general scheme for
solving system of nonlinear equations, and this is the main motivation of our work. The general scheme can
be written as:

X1;n ¼ X0;n � 1

2
F 0ðX0;nÞ�1FðX0;nÞ;

X2;n ¼ X0;n � F 0ðX1;nÞ�1FðX0;nÞ;
X3;n ¼ X2;n � ð2F 0ðX1;nÞ � F 0ðX0;nÞÞ�1FðX2;nÞ;
..
.

Xq;n ¼ Xq�1;n � ð2F 0ðX1;nÞ � F 0ðX0;nÞÞ�1FðXq�1;nÞ;
..
.

Xm;n ¼ Xm�1;n � ð2F 0ðX1;nÞ � F 0ðX0;nÞÞ�1FðXm�1;nÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(12)

Per iteration, scheme (12) requires the evaluation of m� 1 functions, two Fréchet derivatives and three
matrix inversions. We will prove in the next section that scheme (12) is of order 2m� 1 for any integer
m � 3.

3 Order of Convergence

We will discuss in this section the order of convergence of the proposed schemes (11) and (12). Assume

for the next theorems that Cj ¼ 1

j!
F 0ðaÞ�1F jð Þ að Þ, j � 2, and en ¼ Xn � a.

Theorem 1 Let a be the solution of the system F Xð Þ ¼ 0 where F : D � Rn ! Rn be a sufficiently
differentiable function on a neighborhood D of a. Suppose that F0 Xð Þ is continuous and nonsingular in a.
If X0 2 D is an initial approximation which is close enough to a, then the sequence Xnf gn�0 obtained by
scheme (11) converges to the root a, and the order of convergence equals 5, with asymptotic equation

ekþ1 ¼ 1

8
4C2

2 � 3C3

� �
4C2

2 � C3

� �
e5k.

Proof. By using the Taylor expansion of F Xnð Þ we can write F Xnð Þ ¼ F 0 að Þ en þ C2e2n þ C3e3nþ
�

C3e3n þ C4e4n þ . . .Þ. Now, we use the following Mathematica code to show the convergence order of scheme
(11) for m ¼ 3:

In[1]:= F[e_]:= dF½a� eþ C2e2 þ C3e3 þ C4e4ð Þ;
In[2]:= y ¼ e� Series 1

2 ðF0½e�Þ�1F½e�; fe; 0; 2g
h i

;

In[3]:= w ¼ e� Series ðF0½y�Þ�1F½e�; fe; 0; 2g
h i

;

In[4]:= enþ1 ¼ w� ð2F0½y� � F0½e�Þ�1F½w� //FullSimplify

Out[4]:= 2C4
2 � 2C2

2C3 þ 3C2
3

8

� �
e5 þ O½e6�:
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the code shows that we have enþ1 ¼ 2C4
2 � 2C2

2C3 þ 3C2
3

8

� �
e5n, which can be written as:

enþ1 ¼ 1

8
4C2

2 � 3C3

� �
4C2

2 � C3

� �
e5n.

By this, we show that scheme (11) is at least of fifth-order of convergence.

Now, we want to discuss the order of convergence of the generalized scheme given by (12).

Theorem 2 Let a be the solution of the system F Xð Þ ¼ 0 where F : D � Rn ! Rn be a sufficiently
differentiable function on a neighborhood D of a. Suppose that F0 Xð Þ is continuous and nonsingular in a.
If X0 2 D is an initial approximation which is close enough to a, then the sequence Xnf gn�0 obtained by
scheme (12) converges to the root a, and the order of convergence equals 2m� 1, for any integer m � 3,

with asymptotic equation of the form ekþ1 ¼ 1

2m
ð4C2

2 � 3C3Þm�2 4C2
2 � C3

� �
e2m�1
k .

Proof. We will use the mathematical induction to prove the convergence order of scheme (12).

Firstly, we will prove that scheme (12) is convergent for m ¼ 3, and the convergence order satisfies
2 3ð Þ � 1 ¼ 5. Note that for m ¼ 3, scheme (12) reduces to scheme (11) which we have been proved that
it has the fifth-order of convergence in the previous theorem. Now, to complete the proof using the
mathematical induction, suppose that scheme (12) is true and converges for all m � r for some positive
r > 3 and satisfy the given asymptotic equation. We need to show that the scheme converges for
m ¼ r þ 1, and satisfy the given asymptotic equation. To do so, consider the following code of Mathematica:

In[1]:= F[e_]:= dF½a� eþ C2e2 þ C3e3 þ C4e4ð Þ;
In[2]:= y ¼ e� Series 1

2 ðF0½e�Þ�1F½e�; fe; 0; 6g
h i

;

In[3]:= w ¼ e� Series ðF0½y�Þ�1F½e�; fe; 0; 6g
h i

;

In[4]:= x[m_]:=x[m] ¼ 1

2m
ð4C2

2 � 3C3Þm�2ð4C2
2 � C3Þe2m�1

n //FullSimplify

In[5]:= enþ1 ¼ x½r� � ð2F0½y� � F0½e�Þ−1F½x½r�� //FullSimplify

Out[5]:=
1

2rþ1
ð4C2

2 � 3C3Þr�2ð4C2
2 � C3Þe2r�1

n

Hence, this shows that for m ¼ r þ 1, we have ekþ1 ¼ 1

2rþ1
ð4C2

2 � 3C3Þr�1 4C2
2 � C3

� �
e2rþ1
k .

4 Computational Efficiency

In this section, we compare the efficiency index of our proposed method with other methods in the

literature. Commonly in the literature, the efficiency index EI ¼ p
1
d is used, where p is the order of

convergence of the iterative scheme, and d is the number of functions needed to be found per iteration in
the iterative scheme. Another common index that can be used in the comparison between iterative

scheme is the computational efficiency index CEI ¼ p
1

dþop, where op is the number of operations per
iteration in the iterative scheme. The evaluation of any scalar function is considered as an operation.

To find the number of functions required to be found per iteration in an iterative scheme, the following
rules applied: Any computation of F Xð Þ needs n evaluations of scalar functions. Any computation of the
Jacobian F 0 Xð Þ needs n2 evaluations of scalar functions. Also, the floating points for obtaining the LU
factorization are 2

3 n
3, and to solve the triangular system we need n2 floating points operations. Finally, n2

operations required to find a matrix-vector multiplication, and n3 operations needed to find a matrix-
matrix multiplication.

We compare the efficiency index and the computational efficiency index for the proposed method (PM)
(11) to the following iterative schemes:
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• The third-order Frontini-Sormani method (FS) [10] given by (4).

• The fifth order scheme (CHMT) proposed by Cordero et al. [23], given by

Yn ¼ Xn � F 0ðXnÞ�1F Xnð Þ;
Wn ¼ Xn � 2ðF 0 Ynð Þ þ F 0 XNð ÞÞ�1F Xnð Þ;
Xnþ1 ¼ Wn � F 0ðYnÞ�1F Wnð Þ:

8<
: (13)

• The fifth order scheme (MMK) proposed by Waseem et al. [4], which is given by:

Yn ¼ Xn � F 0ðXnÞ�1F Xnð Þ;
Wn ¼ Yn � F 0ðXnÞ�1F Ynð Þ;
Zn ¼ Wn � F 0ðXnÞ�1F Wnð Þ;
Xnþ1 ¼ Zn � F 0ðXnÞ�1F Znð Þ:

8>><
>>: (14)

• The fifth-order iterative scheme (SG) presented by Sharma et al. [20], which is defined by scheme (5).

A comparison of the number of functional evaluations of the selected iterative schemes is illustrated in
Tab. 1. Also, the computational efficiency indices of the selected schemes are compared (for
n ¼ 2; 3; 4; 5; 10; 20; 50), see Fig. 1. Note that the proposed scheme does not attain the best efficiency in
this comparison, especially for small n. We will see in the next two sections that this issue does not affect
the scheme negatively when applied to some numerical tests.

Figure 1: Computational efficiency indices for different sizes of system

Table 1: Comparisons of required functional evaluations per iteration

FS CHMT MMK SG PM 5

Order of convergence 3 5 5 5 5

Number of functional evaluations nþ 2n2 2nþ 2n2 4nþ n2 2nþ 2n2 2nþ 2n2

Efficiency index 1
3nþ2n2 5

1
2nþ2n2 5

1
4nþn2 5

1
2nþ2n2 5

1
2nþ2n2

Computational efficiency index
3

1
4
3n
3þ6n2þn 5

1
2n3þ8n2þ2n 5

1
2
3n

3þ9n2þ4n 5
1

4
3n
3þ6n2þ2n 5

1
2n3þ8n2þ2n
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Fig. 2 illustrates the efficiency indices for the selected methods. Note that CHMT, SG and our proposed
method have the same efficiency indices. However, this does not guarantee that they have the same behavior,
accuracy and computational time cost.

5 Basins of Attraction

The concept of basins of attraction is a method to show how different starting points affect the behavior
of the function. In this way, we can compare different root-finding schemes depending on the convergence
area of the basins of attraction. In this sense, the iterative scheme is better if it has a larger area of
convergence. Here, we mean by the area of convergence, the number of convergent points to a root a of
f xð Þ in a selected range.

To check the stability and the area of convergence of our proposed method, we select the case m ¼ 3 of
scheme (12). We denote the proposed method by PM5. For comparison, we compare PM5 with the following
schemes of the same order of convergence: The scheme CHMT given by Cordero et al. (13), the scheme SG
proposed by Sharma and Gupta (5), and the scheme MMK presented by Waseem et al. (14). We choose three
test examples to visualize the basins of attraction. All examples are polynomials with roots of multiplicity
one. The test polynomials are

• P1 zð Þ ¼ z3 � z, with roots z ¼ 0, 	1.

• P2 zð Þ ¼ z4 � 1, with roots z ¼ 	i, 	1.

• P3 zð Þ ¼ z5 þ 2z� 1, with roots z ¼ �0:945068	 0:854518i, 0:486389, 0:701874	 0:879697i

A 4
 4 region is centered at the origin to cover all the zeros of the selected polynomials. The step size
selected is 0:01; thus, 401
 401 ¼ 160801 points in a uniform grid are selected as initial point for the
iterative schemes to generate the basins of attraction. The exact roots were assigned as black dots on the
graph. If the scheme needs less number of iterations to converge to a specific root, then the region of that
roots appears darker. The convergence criterion selected is a tolerance of 10�3 with a maximum of 100
iterations. All calculations have been performed on Intel Xeon CPU-E5-2690 0@2.90 GHz with 32 GB
RAM, using Microsoft Windows 10, 64 bit based on X64-based processor. Mathematica 9 has been used
to generate all graphs and computations. The dynamics of the four test problems are shown in Figs. 3–5
respectively.

Figure 2: Efficiency indices for different values of n
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Basins of attraction of PM5 shows that the proposed method is comparable to other methods of the same
order, with an area of convergence which is larger or the same as the areas of convergence of the other
methods used in the comparison.

6 Numerical Tests and Applications

In this part, we consider some numerical problems to clarify the computational efficiency and
convergence behavior of the proposed scheme. All calculations have been performed using 4000
significant digits on Mathematics 9. For comparisons, we find the number of iterations n needed to satisfy
the stopping criterion k Xn � Xn�1 k þ k F Xnð Þ k< 10�150 for each selected method. Also, we use the
approximated computational order of convergence for each iterative scheme, which can be found by

ACOC � ln k Xnþ1 � xnð Þ k = k Xn � Xn�1ð Þ kð Þ
ln k Xn � Xn�1ð Þ k = k Xn�1 � Xn�2ð Þ kð Þ :

Finally, we compare for the selected schemes the distance between two consecutive iterations
k Xn � Xn�1 k and the value of k F Xnð Þ k for n ¼ 1; 2; 3.

Figure 3: Basins of attraction of P1 zð Þ ¼ z3 � z. The top row from left to right: CHMT and MMK. The
bottom row from left to right: SG and PM5
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To be consistent in the comparison, we compare the proposed scheme PM5 defined by scheme (12)
for m ¼ 3, to the original method which we derived from, that is, FS scheme given by (4). Also, we use
the following fifth-order iterative schemes in the comparison: CHMT5 method defined by scheme (13),
MMK method defined by (14), and SG method defined by (5). To test the efficiency of the extension of our
proposed scheme to higher orders schemes, we compare the proposed scheme PM 7 of seventh-order given
by scheme (12) for m ¼ 4, to the extension of CHMT5 to the seventh-order scheme CHMT7 given by:

Yn ¼ Xn � F 0ðXnÞ�1F Xnð Þ;
Wn ¼ Xn � 2ðF 0 Ynð Þ þ F 0 XNð ÞÞ�1F Xnð Þ;
Zn ¼ Wn � F 0ðYnÞ�1F Wnð Þ;
Xnþ1 ¼ Zn � F 0ðYnÞ�1F Znð Þ:

8>><
>>: (15)

Figure 4: Basins of attraction of P2 zð Þ ¼ z4 � 1. The top row from left to right: CHMT and MMK. The
bottom row from left to right: SG and PM5
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6.1 Numerical Tests

To be not selective in our examples, we choose most test problems from the same papers which contain
the schemes used in the comparisons, see [4,20,23]. Also, we choose two distinct initial guesses for all
problems to test the validity and the applicability of iterative schemes. We consider the following test
problems and applications:

Example 1 Consider the following system of two nonlinear equations:

xþ 1� ey ¼ 0;
xþ cos yð Þ � 2 ¼ 0;

�

with initial guesses X0 ¼ f0; 0gt and X0 ¼ f2; 2gt. The exact solution of this problem is
a ¼ f1:3401918575555883401 . . ., 0:8502329164169513268 . . . gt.

Example 2 Consider the following system of three nonlinear equations:

Figure 5: Basins of attraction of P3 zð Þ ¼ z5 þ 2z� 1. The top row from left to right: CHMTandMMK. The
bottom row from left to right: SG and PM5
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cos yð Þ � sin xð Þ ¼ 0;

zx � 1

y
¼ 0;

ex � z2 ¼ 0:

8><
>:
We consider as an initial solution X0 ¼ f1; 1; 2gt and X0 ¼ f1; 1

2
; 1gt. The exact solution of this

problem is a ¼ f0:90956949452004488381 . . ., 0:66122683227485173542 . . .,
1:5758341439069990361 . . . gt.

Example 3 Consider the following system

xixiþ1 � 1 ¼ 0; i ¼ 1; 2; . . . ; n� 1;
xix1 � 1 ¼ 0; i ¼ n:

�

For odd n, the exact zeros of F(X) are a ¼ f1; 1; . . . ; 1gt
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{49�times

and a ¼ f�1;�1; . . . ;�1gt
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{49�times

. For n ¼ 49, we

select as an initial guess X0 ¼ f2; 2; . . . ; 2gt
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{49�times

and X0 ¼ � 1

2
;� 1

2
; . . . ;� 1

2

� 
t
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{49�times

.

Example 4 Consider the nonlinear boundary value problem:

y00 þ y3 ¼ 0; y 0ð Þ ¼ 0; y 1ð Þ ¼ 1:

Assume the following partitioning for the interval 0; 1½ �:

u0 ¼ 0 < u1 < u2 < � � � < um < umþ1 ¼ 1; ujþ1 ¼ uj þ h;

where h ¼ 1

mþ 1
is the step size, m is the system size. Let yi ¼ y uið Þ for i ¼ 0; 1; 2; . . . ;mþ 1. We use the

finite difference method to solve the problem, in which the second derivative y00 will be replaced by the

central difference y00 � yi�1 � 2yi þ yiþ1

h2
, i ¼ 1; 2; . . . ;m. By this, we obtain m
m system given by:

yi�1 � 2yi þ yiþ1 þ h2y3i ¼ 0; i ¼ 1; 2; . . . ;m:

We solve this system for m ¼ 10 by selecting X0 ¼ �1;�1; . . . ;�1f gt
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{10�times

, and X0 ¼ 5

3
;
5

3
; . . . ;

5

3

� 
t
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{10�times

as

initial guesses. The exact solution for this problem is a ¼ f0:680945648372 . . ., 1:359281828740 . . .,
2:016862032948 . . ., 2:606640128407 . . ., 3:050046273378 . . ., 3:258957241540 . . ., 3:181812502482 . . .,
2:838449171715 . . ., 2:306087498753 . . ., 1:672371573489 . . . gt.

Tabs. 2–5 show that our proposed methods PM5 and PM7 are efficient with a good performance and
comparable to the other methods of the same order. The proposed methods converge to the desired
solution either by less number of iterations based on the convergence criterion (Examples 1 and 2), or by
the same number of iterations needed to satisfy the convergence criterion with more accurate answers
(Examples 3 and 4).

CMC, 2021, vol.66, no.2 1437



Table 2: Comparisons between different methods for Example 1

Method X 0 n k X1 � X0 k k X2 � X1 k k X3 � X2 k k F X1ð Þ k k F X2ð Þ k k F X3ð Þ k ACOC

FS f0; 0gt 6 1:65 0:07 2:56E-8 0:088 6:94E-8 8:41E-24 3

f2; 2gt 7 1:01 0:315 0:00378 0:495 0:00914 3:03E-8 3

CHMT5 f0; 0gt 5 1:56 0:0341 1:08E-8 0:0738 2:46E-8 7:92E-41 5

f2; 2gt 6 1:19 0:135 4:75E-6 0:218 0:0000108 1:31E-27 5

MMK f0; 0gt 5 1:60 0:0547 3:28E-8 0:140 7:64E-8 5:33E-38 5

f2; 2gt 6 1:10 0:226 0:0000968 0:313 0:000198 1:02E-20 5

SG f0; 0gt 5 1:58 0:00283 1:82E-17 0:00257 5:04E-17 3:43E-85 5

f2; 2gt 6 1:19 0:135 3:33E-6 0:224 9:23E-6 1:12E-28 5

PM5 f0; 0gt 5 1:58 0:00215 7:37E-17 0:00125 1:28E-16 2:66E-86 5

f2; 2gt 5 1:27 0:0607 8:03E-8 0:152 1:46E-7 1:34E-40 5

CHMT7 f0; 0gt 5 1:58 0:00581 2:55E-17 0:0122 5:82E-17 2:12E-117 7

f2; 2gt 5 1:27 0:0576 1:18E-10 0:0952 2:68E-10 9:39E-71 7

PM7 f0; 0gt 4 1:59 0:000406 3:75E-29 0:000238 6:50E-29 2:13E-207 7

f2; 2gt 5 1:31 0:0195 7:78E-15 0:0452 1:38E-14 7:36E-107 7

Table 3: Comparisons between different methods for Example 2

Method X0 n k X1 � X0 k k X2 � X1 k k X3 � X2 k k F X1ð Þ k k F X2ð Þ k k F X3ð Þ k ACOC

FS f1; 1; 2gt 8 0:790 0:471 0:0420 0:149 0:0372 0:000122 3

f1; 1
2
; 1gt 7 0:561 0:0703 0:00105 0:235 0:000902 1:87E-9 3

CHMT5 f1; 1; 2gt 6 0:555 0:0638 0:0000172 0:0606 0:0000114 151E-23 5

f1; 1
2
; 1gt 5 0:599 0:0147 4:79E-8 0:0370 3:32E-8 2:79E-36 5

MMK f1; 1; 2gt Div. � � � � � � �
f1; 1

2
; 1gt 6 0:500 0:109 9:72E-6 0:364 0:0000259 2:89E-26 5

SG f1; 1; 2gt 8 1:63 0:334 1:09 0:398 0:343 0:231 5

f1; 1
2
; 1gt 6 0:581 0:0289 7:18E-7 0:106 5:47E-7 1:81E-30 5

PM5 f1; 1; 2gt 5 0:553 0:0303 4:98E-8 0:0355 3:51E-8 3:01E-37 5

f1; 1
2
; 1gt 5 0:600 0:0195 4:77E-8 0:0397 4:17E-8 1:04E-36 5

CHMT7 f1; 1; 2gt 5 0:554 0:0607 3:99E-7 0:0453 2:69E-7 7:66E-44 7

f1; 1
2
; 1gt 5 0:605 0:00794 1:82E-13 0:00769 1:21E-13 3:02E-88 7

PM7 f1; 1; 2gt 5 0:549 0:0188 1:83E-11 0:0189 1:62E-11 5:49E-75 7

f1; 1
2
; 1gt 5 0:606 0:0112 1:00E-13 0:00905 9:65E-14 8:98E-91 7
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Table 4: Comparisons between different methods for Example 3

Method X0 n k X1 � X0 k k X2 � X1 k k X3 � X2 k k F X1ð Þ k k F X2ð Þ k k F X3ð Þ k ACOC

FS f2; 2; . . . ; 2gt 7 6:46 0:538 0:000711 1:12 0:00142 3:67E-12 3

f� 1

2
;� 1

2
; . . . ;� 1

2
gt 7 3:00 0:499 0:000711 0:964 0:00142 3:67E-12 3

CHMT5 f2; 2; . . . ; 2gt 5 6:91 0:0911 3:16E-10 0:183 6:31E-10 3:26E-52 5

f� 1

2
;� 1

2
; . . . ;� 1

2
gt 5 3:39 0:114 1:06E-9 0:227 2:12E-9 1:41E-49 5

MMK f2; 2; . . . ; 2gt 5 6:82 0:176 3:19E-8 0:357 6:37E-8 1:37E-41 5

f� 1

2
;� 1

2
; . . . ;� 1

2
gt 6 1:67 1:81 0:0151 3:18 0:0302 3:32E-13 5

SG f2; 2; . . . ; 2gt 5 6:87 0:130 3:61E-9 0:262 7:22E-9 1:28E-46 5

f� 1

2
;� 1

2
; . . . ;� 1

2
gt 5 3:14 0:362 7:75E-7 0:706 1:55E-6 5:84E-35 5

PM5 f2; 2; . . . ; 2gt 5 6:91 0:0911 3:16E-10 0:183 6:31E-10 3:26E-52 5

f� 1

2
;� 1

2
; . . . ;� 1

2
gt 5 3:39 0:114 1:06E-9 0:227 2:12E-9 1:41E-49 5

CHMT7 f2; 2; . . . ; 2gt 5 6:98 0:0178 2:92E-19 0:0355 5:84E-19 1:93E-136 7

f� 1

2
;� 1

2
; . . . ;� 1

2
gt 5 3:48 0:0236 2:20E-18 0:0471 4:39E-18 2:62E-130 7

PM7 f2; 2; . . . ; 2gt 5 6:98 0:0178 2:92E-19 0:0355 5:84E-19 1:93E-136 7

f� 1

2
;� 1

2
; . . . ;� 1

2
gt 5 3:48 0:0236 2:20E-18 0:0471 4:39E-18 2:62E-130 7

Table 5: Comparisons between different methods for Example 4

Method X0 n k X1 � X0 k k X2 � X1 k k X3 � X2 k k F X1ð Þ k k F X2ð Þ k k F X3ð Þ k ACOC

FS f�1;�1; . . . ;�1gt 7 4:55 0:349 0:000285 0:0288 0:0000219 1:56E-14 3

f5
3
;
5

3
; . . . ;

5

3
gt 7 2:96 0:825 0:00726 0:0751 0:000552 2:56E-10 3

CHMT5 f�1;�1; . . . ;�1gt 5 4:59 0:315 9:42E-8 0:0246 7:40E-9 1:72E-41 5

f5
3
;
5

3
; . . . ;

5

3
gt 6 2:50 0:873 0:00667 0:106 0:000845 9:74E-15 5

MMK f�1;�1; . . . ;�1gt 5 4:86 0:0205 4:64E-13 0:00160 3:59E-14 3:02E-67 5

f5
3
;
5

3
; . . . ;

5

3
gt 5 4:05 0:455 6:91E-9 0:146 1:34E-9 6:52E-47 5

SG f�1;�1; . . . ;�1gt 5 4:73 0:166 3:65E-8 0:0124 2:82E-9 1:85E-42 5

f5
3
;
5

3
; . . . ;

5

3
gt 8 1:55 14:3 4:39 0:160 0:725 0:163 5

PM5 f�1;�1; . . . ;�1gt 5 4:79 0:101 2:66E-9 0:00765 2:06E-10 2:5E-48 5

f5
3
;
5

3
; . . . ;

5

3
gt 5 3:42 0:333 1:40E-6 0:0272 1:08E-7 1:21E-34 5

CHMT7 f�1;�1; . . . ;�1gt 5 5:01 0:139 2:81E-13 0:0106 2:23E-14 3:08E-96 7

f5
3
;
5

3
; . . . ;

5

3
gt 5 3:00 0:327 2:52E-7 0:0533 3:16E-8 4:63E-51 7

PM7 f�1;�1; . . . ;�1gt 5 4:85 0:0305 2:11E-16 0:00229 1:63E-17 1:36E-116 7

f5
3
;
5

3
; . . . ;

5

3
gt 5 3:61 0:125 4:57E-12 0:0106 3:54E-13 3:10E-86 7
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6.2 Applications

To check the applicability of the proposed scheme on real-life problems, we apply it on the mixed
Hammerstein integral equation and Burgers’ equation.

Problem 1 Consider the mixed Hammerstein integral equation:

x sð Þ ¼ 1þ 1

5

Z 1

0
G s; tð ÞxðtÞ3dt;

such that x 2 C 0; 1½ �, and s; t 2 0; 1½ �, and the kernel G s; tð Þ is given by

G s; tð Þ ¼ 1� sð Þt; t � s;
1� tð Þs; s � t:

�

The integral equation is transformed into a finite-dimensional problem using the Gauss-Legender
quadrature formula given by

R 1
0 f tð Þdt � P8

j¼1
xjf tj

� �
;

where the abscissas tj and the weights xj are determined for n ¼ 8 by the Gauss–Legendre quadrature
formula. If we set x tið Þ ¼ xi, for i ¼ 1; 2; . . . ; 8, then we obtain the following system of nonlinear equations

xi � 1� 1

5

X8
j¼1

aijx
3
j ¼ 0; j ¼ 1; 2; . . . ; 8;

where

aij ¼ xjtj 1� tið Þ; j � i;
xjti 1� tj

� �
; i < j;

�

where the abscissas tj and the weights xj are known and presented in Tab. 6 for m ¼ 8. The initial solutions
considered are X0 ¼ f0; 0; 0; 0; 0; 0; 0; 0gt and X0 ¼ f2; 2; 2; 2; 2; 2; 2; 2gt. The exact solution of this
problem is a ¼ f1:002096245031 . . ., 1:009900316187 . . ., 1:019726960993 . . ., 1:026435743030 . . .,
1:026435743030 . . ., 1:019726960993 . . ., 1:009900316187 . . ., 1:002096245031 . . . gt.

Comparisons in Tab. 7 show that the proposed schemes have a good functioning and comparable to the
other iterative methods of the same order.

Table 6: Abscissas and weights and of Gauss-Legendre quadrature formula for m ¼ 8

j t j xj

1 0:01985507175123188415821956571526350478 . . . 0:05061426814518812957626567715498109 . . .

2 0:10166676129318663020422303176208478158 . . . 0:11119051722668723527217799721312044 . . .

2 0:23723379504183550709113047540537682547 . . . 0:15685332293894364366898110099330065 . . .

4 0:40828267875217509753026192881990800966 . . . 0:1813418916891809914825752246385978060 . . .

5 0:59171732124782490246973807118009199033 . . . 0:1813418916891809914825752246385978060 . . .

6 0:76276620495816449290886952459462317452 . . . 0:15685332293894364366898110099330065 . . .

7 0:89833323870681336979577696823791521841 . . . 0:11119051722668723527217799721312044 . . .

8 0:98014492824876811584178043428473649521 . . . 0:05061426814518812957626567715498109 . . .
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Problem 2 Consider the following Burgers’ equation selected from [25]:

ut þ uux ¼ Duxx

u x; 0ð Þ ¼ 2Dbpsin pxð Þ
aþ bcos pxð Þ ; 0 � x � 1

u 0; tð Þ ¼ 0; t � 0

u 1; tð Þ ¼ 0; t � 0:

8>>>>>><
>>>>>>:

We use discretization to solve this problem. Let h ¼ b� a

N
, and k ¼ T

M
be the spatial and temporal step

sizes respectively, where N and M are numbers of subintervals in x and t directions respectively. Therefore,
for this problem we select points xi; tj

� �
from a grid of domain 0; 1½ � 
 0;T½ �, where, xi ¼ 0þ ih,

i ¼ 0; 1; . . . ;M and tj ¼ 0þ jk, j ¼ 0; 1; . . . ;N . Let wij be the approximate solution at xi; tj
� �

. By
applying the central differences to ux and uxx, and the backward difference to ut, we get the following
nonlinear system:

wij � wi;j�1

k
þ wij

wiþ1;j � wi�1;j

2h

� �
¼ D

h2
wiþ1;j � 2wij þ wi�1;j

� �
:

If we let r ¼ Dk

h2
, and zi ¼ wij, then we are trying to solve the following system of equations:

Fi z1; z2; . . . ; zMð Þ ¼ zi þ k

2h
zi ziþ1 � zi�1ð Þ � r ziþ1 � 2zi þ zi�1ð Þ � wi;j�1 ¼ 0.

For the unknowns z1; z2; . . . ; zM . The last term wi;j�1 is known from the previous time step. The first and
the last equations in the system can be replaced by using the given boundary conditions. In our problem, the
first and the last equations in the system are

F1 ¼ z1;

FM ¼ zM :

Table 7: Comparisons between different methods for Problem 1

Method X0 n k X1 � X0 k k X2 � X1 k k X3 � X2 k k F X1ð Þ k k F X2ð Þ k k F X3ð Þ k ACOC

FS f0; 0; . . . ; 0gt 5 2:86 0:0140 6:64E-9 0:0654 3:10E-8 3:63E-27 3

f2; 2; . . . ; 2gt 5 2:75 0:0422 1:91E-7 0:197 8:94E-7 8:71E-23 3

CHMT5 f0; 0; . . . ; 0gt 4 2:87 0:0000848 1:79E-26 0:000396 8:34E-26 0 5

f2; 2; . . . ; 2gt 4 2:79 0:0000881 2:10E-26 0:000412 9:83E-26 0 5

MMK f0; 0; . . . ; 0gt 4 2:87 0:0000132 4:19E-30 0:0000615 1:96E-29 0 5

f2; 2; . . . ; 2gt 4 2:78 0:00442 1:80E-17 0:0207 8:40E-17 0 5

SG f0; 0; . . . ; 0gt 4 2:87 0:000490 9:53E-22 0:00229 4:45E-21 0 5

f2; 2; . . . ; 2gt 4 2:78 0:00417 4:35E-17 0:0195 2:03E-16 0 5

PM5 f0; 0; . . . ; 0gt 4 2:87 0:000484 7:34E-22 0:00226 3:43E-21 0 5

f2; 2; . . . ; 2gt 4 2:79 0:00243 2:40E-18 0:0113 1:12E-17 0 5

CHMT7 f0; 0; . . . ; 0gt 3 2:87 2:72E-7 0 1:27E-6 0 0 7

f2; 2; . . . ; 2gt 3 2:79 1:56E-6 0 7:31E-6 0 0 7

PM7 f0; 0; . . . ; 0gt 3 2:87 0:0000170 0 0:0000796 0 0 7

f2; 2; . . . ; 2gt 3 2:79 0:000137 0 0:000642 1:00E-33 0 7
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So, we have M equations with M unknowns.

We find the approximate solution of the problem using the proposed method PM5 at x ¼ 0:5 and t ¼ 0:2.
To check the effect of the temporal step sizes on the solution, we select different values for k, which means a
different number of steps to reach the wanted time. Consider for our problem that the diffusion coefficient
D ¼ 0:05, a ¼ 5, and b ¼ 4. The exact solution of the given Burgers’ equation is given by:

u x; tð Þ ¼ 2Dbpe�Dp2tsin pxð Þ
aþ be�Dp2tcos pxð Þ :

The exact solution for this problem is u 0:5; 0:2ð Þ ¼ 0:2277071734 . . .. Based on spatial step size equals

1

10
, we choose X0 ¼ 0:6; 0:6; � � � ; 0:6f g

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{10�times

. Tab. 8 illustrates the numerical results of this problem. The effect of

the selected k is clear. The results become better whenever we have a smaller temporal step size. Based on
that, we will compare our proposed schemes to the other schemes for h ¼ 0:1 and k ¼ 0:01. We compare the
approximate solutions at x ¼ 0:5 and t ¼ 0:2 for n ¼ 3 and n ¼ 4, that is X3 and X4. Also, we find the norms
of the functions F X3ð Þ and F X3ð Þ. Finally, we find the norm of the difference between the two consecutive
iterations X4 � X3 for each selected method. Comparisons results are shown in Tab. 9. It is clear that the
proposed schemes perform in a good way, and in general, give results which are better than the other
selected schemes.

Table 8: Numerical results for Problem 2

h k n u 0:5; 0:2ð Þ w 0:5; 0:2ð Þ Error k F X nð Þ k k X 4 � X 3 k
0:1 0:04 3 0:227707 . . . 0:227014 . . . 0:000693 . . . 1:89E-165 1:59E-165

0:1 0:04 4 0:227707 . . . 0:227014 . . . 0:000693 . . . 7:06E-829

0:1 0:02 3 0:227707 . . . 0:226946 . . . 0:000761 . . . 1:10E-195 2:00E-195

0:1 0:02 4 0:227707 . . . 0:226946 . . . 0:000761 . . . 1:37E-980

0:1 0:01 3 0:227707 . . . 0:226918 . . . 0:000789 . . . 6:10E-229 1:77E-228

0:1 0:01 4 0:227707 . . . 0:226918 . . . 0:000789 . . . 1:00E-1147

Table 9: Comparisons between different methods for Problem 2

Method X 3 0:5; 0:2ð Þ X 4 0:5; 0:2ð Þ k F X 3ð Þ k k F X 4ð Þ k k X 4 � X 3 k
FS 0:2269178 . . . 0:2269178 . . . 5:51E-52 8:23E-158 1:82E-51

CHMT5 0:2269178 . . . 0:2269178 . . . 6:10E-229 1:00E-1147 1:39E-228

MMK 0:2269178 . . . 0:2269178 . . . 1:60E-213 3:80E-1070 5:38E-213

SG 0:2269178 . . . 0:2269178 . . . 4:12E-226 2:74E-1133 1:18E-225

PM5 0:2269178 . . . 0:2269178 . . . 6:10E-229 1:00E-1147 1:77E-228

CHMT7 0:2269178 . . . 0:2269178 . . . 4:51E-628 0 2:56E-627

PM7 0:2269178 . . . 0:2269178 . . . 4:51E-628 0 2:56E-627
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7 Conclusion

In this study, we have proposed an iterative scheme for systems of nonlinear equations of fifth-order of
convergence. We have improved the proposed scheme to a generalized scheme of arbitrary odd order. The
proposed method is based on Frontini–Sormani iterative method and developed using additional step with
the usage of first derivative approximation. The software Mathematica has been used to show the order of
convergence of the proposed method. Different comparisons were used to compare our proposed scheme
to the other schemes of the same order, including the efficiency index, computational efficiency index,
basins of attractions and several numerical problems. Comparisons show that the efficiency index and the
computational efficiency index need not be proper tools for the efficiency of the iterative scheme. As an
application, we test the proposed method on the mixed Hammerstein integral equation and Burgers’
equation. Comparisons show that the proposed scheme is of excellent performance and overall, it is
comparable to the other iterative techniques used in the comparisons regarding the convergence speed,
accuracy and the area of convergence in the basins of attraction.
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