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Abstract: Many database applications currently deal with objects in a metric
space. Examples of such objects include unstructured multimedia objects and
points of interest (POIs) in a road network. The M-tree is a dynamic index struc-
ture that facilitates an efficient search for objects in a metric space. Studies have
been conducted on the bulk loading of large datasets in an M-tree. However,
because previous algorithms involve excessive distance computations and disk
accesses, they perform poorly in terms of their index construction and search cap-
ability. This study proposes two efficient M-tree bulk loading algorithms. Our
algorithms minimize the number of distance computations and disk accesses
using FastMap and a space-filling curve, thereby significantly improving the
index construction and search performance. Our second algorithm is an extension
of the first, and it incorporates a partitioning clustering technique and flexible
node architecture to further improve the search performance. Through the use
of various synthetic and real-world datasets, the experimental results demon-
strated that our algorithms improved the index construction performance by up
to three orders of magnitude and the search performance by up to 20.3 times over
the previous algorithm.

Keywords: M-tree; metric space; bulk loading; FastMap; space-filling curve

1 Introduction

Many recent database applications deal with objects that are difficult to represent as points in a Euclidean
space. Examples include the applications of unstructured multimedia objects such as images, voices, and
texts [1–3], as well as those dealing with points of interest (POIs) in road networks [4–6]. These
applications define the appropriate distance (or similarity) functions between two arbitrary objects, and
the complexity of computing the distances is often much higher than that of computing Lp distance in a
Euclidean space. For example, in a road network application, the distance between two objects (vertices)
is defined as the sum of the weights of the edges composing the shortest path between the objects. The
complexity of Dijkstra’s algorithm, which has been widely used for finding the shortest path, is as high as
O E þ V logVð Þ, where E and V are the numbers of edges and vertices, respectively.
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A metric space is formally defined as a pair D; dð Þ, where D is a domain of objects and d : D�D ! R
is a distance function with the following properties:

1) d Oa;Obð Þ ¼ d Ob;Oað Þ (symmetry)

2) d Oa;Obð Þ > 0 a 6¼ bð Þ and d Oa;Oað Þ ¼ 0 (non-negativity)

3) d Oa;Obð Þ � d Oa;Ocð Þ þ d Ob;Ocð Þ (triangle inequality)
The M-tree [7] is a dynamic index structure that facilitates an efficient search for objects in a metric

space [8,9]. As the size of datasets used in recent applications continues to increase, it is crucial to
construct and apply an indexing structure efficiently. Because it is highly inefficient and expensive to
insert many objects into an index structure individually and sequentially, studies have been conducted on
the bulk loading of large datasets in an M-tree [10–12]. However, because previous algorithms have
involved excessive distance computations and disk accesses, they perform poorly in terms of their index
construction and search capability.

Many recent metric space applications deal with highly dynamic datasets. For example, in road network
applications, traffic situations change continuously owing to vehicle movements, unexpected accidents, and
construction projects, etc. [13,14]. For such applications, it is crucial to quickly reorganize the indexes to
reflect any changes in the datasets. When significant changes occur in a dataset as in road network
applications, bulk loading is advantageous compared to updating almost the entire index. Moreover,
many recent applications support various complicated queries, along with traditional proximity queries
(range and k-NN queries). Examples include aggregate nearest neighbor (ANN) and flexible aggregate
nearest neighbor (FANN) queries in road networks [6,14]. Studies have been recently conducted on the
efficient processing of various queries including ANN and FANN using the M-tree [4,5].

In this study, we propose two efficient M-tree bulk loading algorithms that overcome the weaknesses of
the previous algorithms. Our algorithms minimize the number of distance computations and disk accesses
using FastMap [15] and a space-filling curve [16], thereby significantly improving the index construction
and search performance. FastMap is a multidimensional scaling (MDS) method [17,18] that maps every
object in a metric space into a point in a j-dimensional Euclidean space j � 1ð Þ such that the relative
distances are maintained as much as possible. As mentioned above, because the cost of distance
computations in a Euclidean space is much lower than that in a metric space, FastMap helps improve the
index construction and search performance. The space-filling curve is used to define a total order among
j-dimensional points such that nearby j-dimensional points are closely ordered. The one-dimensional
sequence of ordered points is partitioned to form groups of nearby objects, and each group is stored in an
M-tree node.

Our second algorithm is an extension of the first. It incorporates a partitioning clustering technique [19]
and flexible node architecture to further improve the search performance. The clustering technique helps
gather nearby objects and thereby minimize the size of the regions of object groups. The smaller region
also reduces intersections with the search range, resulting in an improved search performance. The
flexible node architecture is an adaptation of the concept of X-tree supernodes [20] composed of multiple
contiguous disk pages, which are generated when it is anticipated to be beneficial to avoid splitting into a
few nodes for a better search performance.

We compared the performance of our algorithms and the previous algorithm proposed by Ciaccia et al. [10]
through experiments using synthetic and real-world datasets. The synthetic datasets were composed of
objects in eight Gaussian clusters in a Euclidean space. For various dataset sizes (N) and dimensions
(d), we compared the elapsed execution time and the number of distance computations and disk
accesses for both index construction and k-nearest neighbor (k-NN) search. The results showed that our
algorithms improved the index construction performance by up to three orders of magnitude over the
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previous algorithm. In particular, our second algorithm achieved a 20.3-fold improvement in the search
performance. The real-world datasets were road networks (graphs) of various sizes obtained from the
District of Columbia and five states in the United States. We conducted the experiments using these
datasets in the same manner as the experiments using the synthetic datasets. The results demonstrated
that our algorithms also improved the index construction performance by up to three orders of
magnitude and that our second algorithm improved the search performance by up to 2.3 times.

The remainder of this paper is organized as follows. Section 2 describes the architecture of the M-tree
and previous M-tree bulk loading algorithms. Sections 3 and 4 provide the details regarding our bulk loading
algorithms. Section 5 describes the results of the experiments comparing the performance of index
construction and k-NN search using various datasets. Finally, Section 6 concludes this paper.

2 Related Work

The M-tree has a multilevel balanced tree structure similar to the R-tree [21]. Fig. 1a shows the structure
of an M-tree leaf node entry, which corresponds to an object Oi in the dataset. In the figure, f Oið Þ is the
feature value(s) representing Oi; oid Oið Þ is the object ID of Oi; and d Oi;Op

� �
is the distance between Oi

and the parent object Op. The parent object Op is an object that represents all objects Oi in the same leaf
node and is determined using Eq. (1).

Op ¼ Oj 8i;max
i
fd Oi;Oj

� �
g is minimum

���� �
(1)

A leaf node is represented as a circular region centered by Op with radius r Op

� �
= maxifd Oi;Op

� �
g.

This region is minimized to reduce the intersection with the query range based on a query object Q and,
thus, to improve the search performance by avoiding access to unnecessary nodes. Fig. 1b shows a leaf
node represented as a region containing all objects Oi and a parent object Op. If an object that satisfies
Eq. (1) were found in the Euclidean space, it would be close to the center of all objects Oi in the leaf
node. However, unlike in a Euclidean space, the concept of “center” is not defined in the metric space.

Fig. 2a shows the structure of an M-tree non-leaf node entry, which corresponds to a leaf or non-leaf
node R in an M-tree. In the figure, f Orð Þ indicates the feature value(s) representing the routing object Or;

Figure 1: M-tree leaf node. (a) Leaf node entry. (b) Region corresponding to a leaf node
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r Orð Þ is the radius, which is called the covering radius; ptr T Orð Þð Þ is the pointer to the sub-tree T Orð Þ rooted
by R corresponding to the entry; and d Or;Op

� �
is the distance between Or and the parent object Op. The

routing object is chosen as the parent object of the node R corresponding to the entry. The parent object
Op in a non-leaf node, similar to that in a leaf node, is an object that represents all entries Ei in the same
node and is determined as a routing object satisfying Eq. (2).

Op ¼ Ej:Or 8i;max
i
fd Ei:Or;Ej:Or

� �
þ Ei:r Orð Þ þ Ej:r Orð Þ

��� g is minimum

� �
(2)

A non-leaf node is also represented as a circular region centered by Op with radius
r Op

� �
= maxifd Ei:Or;Op

� �
þ Ei:r Orð Þ þ Ej:r Orð Þg. Fig. 2b shows a non-leaf node represented as a

region containing the regions of R and a parent object Op. The leaf and non-leaf nodes of an M-tree are
typically saved in a disk page of 4 KB size similarly to other index structures.

The first M-tree bulk loading algorithm, which is abbreviated as BulkLoad herein, was proposed by
Ciaccia and Patella [10]. In BulkLoad, k arbitrary sample objects Ofi (i = 1..k) are initially extracted from
a dataset D of size N, and each of the remaining objects is assigned to the nearest sample object, thereby
creating k sample sets F i. Then, for each sample set, the same task is recursively conducted to create a
sub-tree T i. Finally, an M-tree is constructed by creating a root node containing the entries corresponding
to all root nodes R of the k sub-trees. In this algorithm, to create the initial k sample sets, distance
computations of O kNð Þ complexity have to be performed. This task has to be recursively conducted until
all leaf nodes are created in each sample set, that is, all the lowest level sub-sample sets have no more
than M objects. Thus, assuming an even distribution of objects, the complexity of the entire algorithm is
O khNð Þ, where h is the height of the M-tree. By setting k = M, because h � logMN , the complexity of
the algorithm is O MN logMNð Þ, where M is the maximum number of entries in a leaf or non-leaf node
M � 1ð Þ. The problem of BulkLoad is that the final M-tree is highly dependent on the initial and
subsequent selection of the sample objects. Moreover, because the objects among the sample sets are not
evenly distributed, the final tree is not balanced. To solve this problem, BulkLoad redistributes the objects
across sample sets; however, this incurs a large number of disk accesses, thereby significantly degrading
the overall performance [11].

Sexton et al. [12] proposed an M-tree bulk loading algorithm to enhance the search performance. This
algorithm generates an M-tree node by gathering nearby objects using a hierarchical clustering technique.

Figure 2: M-tree non-leaf node. (a) Non-leaf node entry. (b) Region corresponding to a non-leaf node
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However, the algorithm performs distance computations for all possible object pairs to find the closest pair,
and the complexity is O N2ð Þ. Because this task should be repeated until all objects are contained in clusters,
the complexity of the entire algorithm is O N3ð Þ, which is extremely high. Sexton et al. [12] compared the
search performance of their algorithm only with the sequential insertion version of the M-tree generation
algorithm [7] but not with BulkLoad [10]. Qiu et al. [11] proposed a parallel extension of BulkLoad.
However, this algorithm merely splits the tasks of BulkLoad among multiple cores; thus, the
disadvantages of BulkLoad persist. In particular, a significant degradation in the performance occurs not
only by saving the intermediate results for object redistribution in a disk, but also due to I/O conflicts
occurring when several threads try to access the same intermediate results simultaneously [11].

As described above, previous M-tree bulk loading algorithms apply excessive distance computations and
disk accesses, thereby heavily degrading their performance. Our algorithms proposed in this study improve the
bulk loading and search performance by reducing the number of distance computations and disk accesses
significantly. In addition, the performance of our algorithms can be further improved in a multi-core
environment through a simple parallelization. We describe our algorithms in detail in the next two sections.

3 FastLoad: Fast Bulk Loading Algorithm

Our first M-tree bulk loading algorithm, which is called FastLoad here, is designed to improve the index
construction and search performance by minimizing the number of distance computations and disk accesses.
Alg. 1 shows the structure of FastLoad, and Tab. 1 summarizes the notations in this study.

Algorithm 1: FastLoad Algorithm

1: Map every object Oj in the dataset D into a point bOj in a j-dimensional Euclidean space using
FastMap.

2: Generate a one-dimensional sequence S composed of all j-dimensional points bOj using a space-filling
curve.

3: Split the sequence S into a series of groups of contiguous points bOj.

4: Make a leaf node (of corresponding objects Oj) and a non-leaf entry for each group.

5: while the number of non-leaf entries > M do

6: Split the sequence of non-leaf entries into a series of groups of contiguous entries.

7: Make a non-leaf node and a non-leaf entry (for higher-level nodes) for each group.

8: end while

9: Make a root node with the remaining entries.

Table 1: Summary of notations

Notation Description

D dataset in a metric space

N number of objects in D N � 0ð Þ
j FastMap dimension in a Euclidean space j � 1ð Þ
M maximum number of entries in a leaf or a non-leaf node M � 1ð Þ
l minimum ratio of M-tree node storage utilization 0 < l � 1ð Þ
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Each step of Alg. 1 is described in detail. In line 1, FastLoad maps each object Oj ( j = 1..N) in a dataset
D in a metric space to a point bOj in a j-dimensional Euclidean space using FastMap. With respect to the
arbitrary j � 1ð Þ given in advance, FastMap finds the points such that the relative distances are
maintained as much as possible [15].

In line 2, the j-dimensional points obtained above are sorted to generate a one-dimensional sequence S
of the points. FastLoad uses a space-filling curve [16] to have the points that are close to each other in the
j-dimensional space remain at a minimal distance in the one-dimensional sequence. The space-filling curve
sequentially visits each object once on the j-dimensional grid, and the order of each point is determined
based on the visiting order. Among many space-filling curves including Z curve, Hilbert curve, and Gray-
code curve, FastLoad uses the Hilbert curve.

In line 3, the one-dimensional sequence S is partitioned to create a series of groups of contiguous
lM � M points, where l 0:0 < l � 1:0ð Þ is the minimum storage utilization ratio. In line 4, a leaf node
is created for each group with the objects Oj in the metric space corresponding to all points bOj in the
group. Since the one-dimensional sequence was generated such that the relative distances of the objects
in the original metric space are closely maintained, it is highly probable that the objects corresponding to
the points in a group are actually close to each other in the metric space also.

In line 3, the one-dimensional sequence S is partitioned into groups as follows. S is scanned from the
beginning and the first lM � M contiguous points in S are extracted to form a group G of the points.
For the sequence S � G of the remaining points, the same task is performed repetitively until there are
lM or less points in the sequence. To maximize the space utilization of an M-tree, it is best to include M
points in every group. However, even for the points cOa and cOb in the same group, their corresponding
objects Oa and Ob in the metric space may be distant from each other. In such a case, the size of the node
region corresponding to the group will increase, thereby degrading the search performance. In this study,
we propose three partition methods, named FULLPAGE, HEURISTIC, and RIGOROUS, as follows:

• FULLPAGE All groups are fully filled with M contiguous points.

• HEURISTIC Each group is initially filled with lM points, and d=n is computed, where d is the
distance between the first and the last points in the group, and n ¼ lMð Þ is the number of points. For
each subsequent point extracted from S and added in the group, d0=n0 is computed, where d0 is the
distance between the first and the newly added points, and n0 is the number of points. If d0=n0 > d=n, it
indicates that the average region size for each point increases; therefore, the group is finalized with
n0 � 1ð Þ points.

• RIGOROUS Among the candidate groups containing lM ; lM þ 1; . . . ; M contiguous points,
the one with the smallest r=n is chosen, where r is the radius of the corresponding region, and n is the
number of points.

In the HEURISTIC and RIGOROUS methods, since the actual distance d() between two objects Oa and
Ob in the metric space is expensive to compute, it is replaced with d̂() between two points cOa and cOb in the
j-dimensional Euclidean space. By sacrificing a small degree of correctness, the speed of distance
computation is improved.

A leaf node for a point group is generated as follows. While j-dimensional points bOj were used for
generating groups of contiguous points, the original objects Oj in the metric space are used for M-tree
node generation. A leaf node is represented by a circular region centered by Op with radius r Op

� �
. The

distance is computed for all object pairs to determine the object Op that satisfies Eq. (1), and the
complexity is as high as O M2ð Þ. Therefore, in FastLoad, Op is set to be an object Oj corresponding to the
point bOj that minimizes d̂ Ĉ; bOj

� �
, where Ĉ is the j-dimensional Euclidean center of the region

containing all points bOi in the group, and r Op

� �
is computed using the actual distance d(),
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i.e., r Op

� �
¼ maxifd Oi;Op

� �
g. The complexity for computing “cheap” distances d̂() to find Ĉ and Op is

O Mð Þ, and that for computing “expensive” distances d() is reduced to O Mð Þ. The complexity of distance
d() computations for all groups is O Nð Þ, assuming that the total number of groups is N=M . Note that M
is not changed depending on the application and dataset size N, which is much larger than M M 	 Nð Þ.

For each leaf node generated in line 4, one non-leaf node entry is generated. In lines 6 and 7, the tasks
similar to those in lines 3 and 4 are performed for the sequence of non-leaf entries. When splitting the
sequence into a series of groups of contiguous entries in line 6, one of FULLPAGE, HEURISTIC, and
RIGOROUS methods is chosen as in line 3. While only the distance between two points in each group is
considered in line 3, the radius of the region for each entry is also considered in line 6 as shown in
Eq. (2), i.e., d̂ Ei;Ej

� �
= d̂ Ei:cOr;Ej:cOr

� �
þ Ei:r Orð Þ þ Ej:r Orð Þ, where Ei and Ej denote any two entries

in the group. In line 7, the tasks similar to those in line 4 are performed, except that Eq. (2) is used to
determine the parent object. Lines 6 and 7 are executed repeatedly, and when the number of non-leaf
entries is less than or equal to M, the entries are stored in the root node.

The overhead of distance computations in FastLoad is as follows. The complexity of FastMap in line
1 of Alg. 1 is O jNð Þ [15]. The complexity of HEURISTIC and RIGOUROUS methods in lines 3 and
4 is O Nð Þ as explained above (O 1ð Þ for FULLPAGE). Therefore, the overall complexity of FastLoad is
O jNð Þ, which is lower than the complexity O MN logMNð Þ of BulkLoad since j < M in most cases.

The complexity presented above is related to the “number” of distance computations. The overall
computational complexity should be the product of the number of distance computations and the cost of a
single distance computation. In general, applications dealing with objects in metric spaces have various
definitions of “expensive” distances d() as mentioned in Section 1, and in most applications, the complexity
of computing distance d() is much higher than that of computing “cheap” distance d̂(), which is at most
O jð Þ. Therefore, in our study, we contributed in reducing the overall computational overhead by reducing
the number of “expensive” distance computations from O M2ð Þ to O Mð Þ when making each node.

The overhead of disk accesses in FastLoad is as follows. In Alg. 1, lines 4, 7, and 9 access the disk, i.e.,
store the M-tree nodes in the disk. Since the leaf nodes generated in line 4 do not have to be referred to
anywhere else, they are stored in the disk sequentially. The same is also true for the non-leaf nodes
generated in lines 7 and 9. Therefore, the number of disk accesses in FastLoad is equal to the number of
nodes in the final M-tree. In general, sequential access of disk pages (or M-tree nodes) is much faster
than random access of the same number of pages. The performance of FastLoad can be improved further
by saving the nodes in a memory buffer and later flushing them altogether simultaneously in the disk at
an appropriate time point, rather than storing each of them immediately and separately in the disk. In case
of sufficient memory size, only a single sequential disk access can store the entire M-tree in the disk,
thereby further improving the performance of FastLoad.

The performance of FastLoad can be improved further, by simple parallelization in a multi-core
environment, as follows. In lines 1 and 2, the computations of distances in FastMap and space-filling
curves can be performed in parallel in multiple concurrent threads as they are independent for each
object. In lines 3 and 4, the one-dimensional sequence S is divided into a few sub-sequences of possibly
different sizes, and each sub-sequence is assigned to one of concurrent threads to construct the
corresponding sub-tree in parallel. In the parallel algorithm by Qiu et al. [11], since the number of objects
assigned to each thread is not constant, the objects or sub-trees should be exchanged among threads,
which dramatically reduces the degree of parallelization. In contrast, FastLoad is more efficient, since all
operations in each thread can be run independently of the others.
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4 FlexLoad: Flexible Bulk Loading Algorithm

Our second bulk loading algorithm, which is called FlexLoad here, is designed to improve the search
performance further by gathering nearby objects in a node using a partitioning clustering technique [19].
In case the number of objects in a node exceeds the capacity of a disk page, the node is stored in
multiple contiguous disk pages. This feature of FlexLoad is an adaptation of the concept of X-tree
supernodes [20]. Berchtold et al. [20] found that as the dimension of a Euclidean space increases, the
overlap between the node regions in an R-tree storing the points in the space also increases, thereby
degrading the search performance heavily. An X-tree supernode is made when it is anticipated to be
beneficial to avoid splitting into a few nodes for better search performance. The M-tree built by FastLoad
also suffers from a similar phenomenon when dealing with the datasets originating from a high-
dimensional Euclidean space or real-world datasets requiring high dimension j for FastMap. In general,
accessing sequential disk pages is much more efficient than randomly accessing the same number of disk
pages, and the cost of accessing a few sequential disk pages is almost equal to that of accessing one disk
page. Therefore, FlexLoad is anticipated to have a better search performance; the experimental results
will be shown in the next section.

Alg. 2 shows the structure of FlexLoad, which is very similar to that of FastLoad; lines 3 and 6 of Alg.
1 are replaced with lines 3~4 and 7~8 of Alg. 2, respectively. In line 3 of Alg. 2, the point sequence S
generated in line 2 is evenly split into a set of point groups of equal size lM without using any specific
splitting method, such as FULLPAGE, HEURISTIC, and RIGOROUS, in FastLoad. In line 4, the points in
the groups are re-distributed to gather nearby points and thereby minimize the size of regions of the point
groups, as shown in Alg. 3. Lines 7~8 of Alg. 2 perform the same operations for non-leaf entries as lines 3~4.

Algorithm 2: FlexLoad Algorithm

1: Map every object Oj in the dataset D into a point bOj in a j-dimensional Euclidean space using
FastMap.

2: Generate a one-dimensional sequence S composed of all j-dimensional points bOj using a space-filling
curve.

3: Evenly split S into initial point groups of size lM .

4: Re-distribute points bOj into their nearest groups.

5: Make a leaf node (of corresponding objects Oj) and a non-leaf entry for each group.

6: while the number of non-leaf entries > M do

7: Evenly split the sequence of non-leaf entries into initial entry groups of size lM .

8: Re-distribute entries into their nearest groups.

9: Make a non-leaf node and a non-leaf entry (for higher-level nodes) for each group.

10: end while

11: Make a root node with the remaining entries.
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In Alg. 3, the “while” loop continues until there is no change in the point groups or for pre-specified
times. In the experiments detailed in the next section, we obtained good groups by repeating the loop
only 2~3 times. In each iteration, the j-dimensional Euclidean center bCi of the region containing all
points of each group Gi is computed as in FastLoad. Then, the closest center bCi is found for each pointbOj in all the groups, and the latter is moved into the corresponding group Gi. Here, we use the “cheap”
distance d̂() for efficient index construction as in FastLoad.

The groups obtained by Alg. 3 contain a variable number of points depending on the actual object
distribution, and some groups may contain more than M points. In such a case, even when the overfull
group is split into a few groups of sizes � M , those groups are very likely to be accessed together during
the search owing to the locality of the points in the groups. Moreover, if the split groups are stored in the
nodes scattered in the disk and/or the sum of the regions of the split groups is larger than the region of
the before-split group, there will be a severe degradation in overall search performance. Therefore,
FlexLoad stores the point group of size > M in a node composed of multiple contiguous disk pages in a
manner similar to that by the X-tree [20].

FlexLoad has almost the same cost for distance d() computations and disk accesses as FastLoad. Lines
3~4 and 7~8 in Alg. 3, which are the only portions different from Alg. 1, compute only d̂() distances as
explained above. The nodes created by FlexLoad are only stored in the disk and never accessed again as
in FastLoad. Lines 3~5 of Alg. 3 incur substantial computational overhead since d̂() distance must be
computed for each combination of centers bCi and points bOj and it is repeated a few times in the “while”
loop. However, since each distance computation is independent and can be performed concurrently with
the others, the overall execution time of FlexLoad can be reduced by simple parallelization; the distance
computations in lines 3~5 are distributed in many concurrent threads. Our experimental result revealed
that the parallelization improved the performance of FlexLoad by 2.4 times on average. Since FastLoad is
parallelized similar to FlexLoad, we believe that the performance of a parallel extension of FastLoad is
improved to a similar degree.

The spatial complexity of our algorithms, FastLoad and FlexLoad, isO Njð Þ, which is needed for storing
all j-dimensional points bOj obtained using FastMap, as shown in line 1 of Algs. 1 and 2. In our experiments,
the largest number of objects in the synthetic datasets is N = 1 M, and the largest dataset dimension is
d = j = 20. By representing each coordinate value as 8-byte double data type, the main memory of size
1 GB is sufficient for running our algorithms. The size (number of POIs) of the largest real-world dataset
in our experiments is approximately N = 1 M, and the size of the entire US road network is
approximately N = 22.8 M [13,14]. By setting j = 8 and using the same data type for coordinate values,
the main memory of size 2 GB is sufficient. Since most recent computers are equipped with main
memories of considerably larger sizes, the performance of our algorithms is affected only slightly by the
size of the main memory.

Algorithm 3: Re-distribution of points in FlexLoad

1: while no change or pre-specified times do

2: Compute the Euclidean center bCi for each point groupGi.

3: for each point bOj in all groups do

4: Find the closest center bCi and move bOj into Gi.

5: end for

6: end while
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If an M-tree node is stored in disk whenever it is created by our algorithms, only the representative
values shown in Fig. 2a are preserved in the main memory for each node, and the respective nodes are
deallocated. In lines 4 and 8 in Alg. 2, when the points are re-distributed, FlexLoad maintains only the
center and radius for each point group. These aspects also reduce the effect of the main memory on the
performance of our algorithms.

If eachM-tree node is stored separately in disk, it incurs random disk accesses. If all the M-tree nodes are
gathered in a main memory buffer and are stored in disk together in the end, it incurs only a single sequential
disk access. In general, sequential access on HDDs and SSDs is more efficient than a random access of the
same size at the cost of the main memory buffer. The sizes (in MBs) of the M-trees built by using our
algorithms are small, as shown in Tabs. 2, 4, and 6; i.e., our algorithms require only a small amount of
the main memory even when they gather all the M-tree nodes in a buffer for efficient disk accesses.
Therefore, we can see once more that the size of the main memory only slightly affects the performance
of our algorithms.

5 Experimental Evaluation

In this section, we demonstrate through experiments that our algorithms FastLoad and FlexLoad outperform
BulkLoad [10] in M-tree construction and search by reducing the number of distance computations and disk
accesses. The platform for the experiments is a workstation with an Intel i7-6950X CPU, 64 GB memory, and
512 GB SSD. The CPU has 10 cores and can run 20 concurrent threads. We implemented FastLoad and
FlexLoad in C/C++ and used the source code of BulkLoad written in C/C++ by the original authors1.

Table 2: Sizes (in MB) of M-trees built by our algorithms for various dataset sizes (N)

N 4 K 16 K 64 K 256 K 1M

FastLoad-F 0.102 0.383 1.527 6.094 24.340

FastLoad-H 0.125 0.480 1.906 7.539 30.395

FastLoad-R 0.109 0.426 1.629 6.492 25.766

FlexLoad 0.202 0.819 3.260 13.076 52.182

Table 3: Value of M for each dimension d

d 2 5 10 15 20

M (Leaf node) 170 85 46 31 24

M (Non-leaf node) 102 63 39 28 22

Table 4: Sizes (in MB) of M-trees built by our algorithms for various data dimensions (d)

d 4 K 16 K 64 K 256 K 1 M

FastLoad-F 3.051 6.129 11.434 17.141 22.359

FastLoad-H 3.832 7.137 12.582 18.52 23.832

FastLoad-R 3.254 6.273 11.613 17.277 22.523

FlexLoad 6.526 11.557 20.104 29.034 34.915

1
http://www-db.deis.unibo.it/Mtree/
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We use both synthetic and real-world datasets for experiments in this study. The synthetic datasets used
in the first through fourth experiments consist of d-dimensional objects contained in eight Gaussian clusters
generated using the ELKI dataset generator2. The centers of the Gaussian clusters were randomly chosen in a
d-dimensional cube 0:1; 0:9½ 
d, such that the distance between any two centers was not less than 0:15

ffiffiffi
d

p
. The

standard deviation for each cluster was chosen randomly in the range 0:03
ffiffiffi
d

p
; 0:09

ffiffiffi
d

p
 �
. We set “expensive”

distance d() as the Euclidean distance (L2 metric) between two objects for all algorithms FastLoad, FlexLoad,
and BulkLoad, whose computational complexity is as low as O dð Þ, where d is data dimension, considered to
ensure the same settings as in the previous studies. Although such a low complexity is favorable for
BulkLoad, we show that FastLoad and FlexLoad outperform BulkLoad.

The first experiment compares the execution time and the number of distance computations and disk
accesses while building the M-trees for various dataset sizes N. FastLoad is tested separately for each of
the three methods in Section 3. We use two-dimensional synthetic datasets and set j = 2 for FastMap.
The minimum storage utilization ratios for FastLoad/FlexLoad and BulkLoad are set as l = 0.5 and 0.4,
respectively, and their disk page sizes are 4 KB. Fig. 3 shows the result of the first experiment. The
FastLoad algorithms using the FULLPAGE, HEURISTIC, and RIGOROUS methods are denoted as
FastLoad-F, FastLoad-H, and FastLoad-R, respectively. FlexLoad-P stands for a parallel version of
FlexLoad as described in Section 4. Note that the vertical axis of Fig. 3a is represented in the logarithmic
scale. Tab. 2 summarizes the sizes of the M-trees built by our algorithms for various N. BulkLoad could
not finish building the M-tree for a dataset of size 1M. FastLoad-R performed a larger number of distance
computations and required longer execution time than the other FastLoad algorithms as expected.
FlexLoad also took a long execution time due to d̂() computations, while it performed almost the same
number of d() computations and disk accesses as the other algorithms. Figs. 3a–3c show the superiority
of our algorithms; especially, FastLoad-F and FastLoad-H outperformed BulkLoad by up to three orders
of magnitude.

The second experiment compares the k-nearest neighbor (k-NN) search performance for various k
values. The dataset of size 256 K used in the first experiment is also used in this experiment. For each k,
k-NN search is performed for each of 10,000 random query objects. Fig. 4a shows the average execution
time per query in milliseconds. Figs. 4b and 4c show the average number of distance computations and
disk accesses. FlexLoad exhibited the best search performance of all algorithms due to gathering manner
of nearby objects in the same node described in Section 4. FlexLoad outperformed BulkLoad by up to
20.3 times for k = 1. Among FastLoad algorithms, although FastLoad-R required longer execution time

2

http://elki.dbs.ifi.lmu.de/wiki/DataSetGenerator

Figure 3: Comparison of M-tree construction performance for various dataset sizes (N). (a) Execution time
(seconds). (b) Number of distance computations. (c) Number of disk page accesses
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for M-tree construction than the others, its performance for k-NN search was the best. FastLoad-R
outperformed BulkLoad by up to 1.85 times for k = 50; FastLoad-F and FastLoad-H also demonstrated
similar performances.

The third experiment compares the M-tree construction performance for various data dimensions d. The
dataset of size 128 K in this experiment is generated in the same manner as in the first experiment. We set
j ¼ d for FastMap. The value of M for each dimension d in FastLoad/FlexLoad is summarized in Tab. 3.
Fig. 5 shows the result. Note that the vertical axis of Fig. 5a is represented in the logarithmic scale. Tab. 4
summarizes the sizes of the M-trees built by our algorithms for various d. In Fig. 5b, as the data dimension
increases, the number of distance computations of FastLoad/FlexLoad also increases since j for FastMap
increases. In Fig. 5c, the number of disk accesses increases since as the data dimension increases the size
of an object increases, the number of objects in a disk page of a fixed size decreases, and the number of
disk pages to store all objects increases. In Fig. 5a, the execution time of FastLoad-R decreases for
d � 10 since the number of objects in a disk page decreases, and the number of distance d̂()
computations to determine Op for all object pairs in the page also decreases. The execution time of
FastLoad-R increases for d � 10, owing to the increase in distance d() computations and disk page
accesses similar to FastLoad-F and FastLoad-H. Similar to the first experiment, FastLoad-F and
FastLoad-H outperformed BulkLoad by up to three orders of magnitude and was faster than even
FlexLoad-P. Tab. 3 shows that as d increases, M decreases. With small M values, the performance of an
algorithm becomes more sensitive to the cost of an “expensive” distance computation rather than the
value of M. Therefore, since FastLoad performs a smaller number of “expensive” distance computations
than BulkLoad, we can conclude that FastLoad is superior to BulkLoad.

Figure 4: Comparison of k-nearest neighbor search performance using the M-trees (N = 256 K). (a)
Execution time (milliseconds). (b) Number of distance computations. (c) Number of disk page accesses

Figure 5: Comparison of M-tree construction performance for various dimensions (d). (a) Execution time
(seconds). (b) Number of distance computations. (c) Number of disk page accesses
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The fourth experiment compares k-NN search performance in the same manner as in the second
experiment using a 20-dimensional dataset of size 128 K. The result is shown in Fig. 6. FlexLoad again
exhibited the best search performance of all algorithms; it outperformed BulkLoad by up to 4.08 times
for k = 1. FastLoad algorithms showed worse search performance than BulkLoad. Nevertheless, the
difference in searching time for FastLoad and BulkLoad for a single k-NN search is as tiny as about
25 milliseconds. Therefore, FastLoad algorithms are useful in most applications that fast index
construction matters and a slight delay in search can be ignored.

The real-world datasets used in our fifth and sixth experiments are road networks (graphs) from five
states and the District of Columbia in the United States, as released by the US Census Bureau and used
for the 9th DIMACS Implementation Challenge3 and in many previous studies [13,14]. The datasets are
summarized in Tab. 5. Each dataset is composed of a set of vertices (geographic points) and a set of
undirected edges (road segments connecting two points). Each vertex consists of its ID and geographical
coordinates (longitude and latitude); each edge consists of (source ID, target ID), travel time (weight),
spatial distance in meters, and road category (e.g., interstate, local). The datasets include noise such as
self-loops and unconnected components as noted in [14]; we cleaned this up in the pre-processing step.

In our experiments, the distance d() between two vertices is defined as their shortest path distance. As
explained in Section 1, the complexity to find the shortest path is as high as O E þ V logVð Þ, where E and V
are the number of edges and vertices, respectively. There have been many studies on reducing the
computational overhead of the shortest path problem [22–25]. We adopted the pruned highway labeling

Figure 6: Comparison of k-nearest neighbor search performance using the M-trees (d = 20). (a) Execution
time (milliseconds). (b) Number of distance computations. (c) Number of disk page accesses

Table 5: Road network datasets

Acronym Name Vertices Edges

DC District of Columbia 9,559 14,909

AK Alaska 69,082 78,100

NH New Hampshire 116,920 133,415

NV Nevada 261,155 311,043

MN Minnesota 547,028 670,443

FL Florida 1,048,506 1,330,551

3

http://users.diag.uniroma1.it/challenge9/data/tiger/
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(PHL) algorithm [26,27], which is known to perform the best at computing the shortest path distance [13,14].
PHL extracts representative shortest paths, such as interstate or highway paths with a small travel time, from
the graph; for each vertex, it then stores the distances to the representative shortest paths from the vertex in
the index. We used the PHL source code written in C/C++ by the original authors4.

The fifth experiment compares the M-tree construction performance for each of the road network datasets
in Tab. 5. We set j = 8 for FastMap and the minimum storage utilization ratio as l = 0.5 and 0.1 for FastLoad/
FlexLoad and BulkLoad, respectively. The results are shown in Fig. 7. Note that the vertical axis of Fig. 7a is
represented in the logarithmic scale. Tab. 6 summarizes the sizes of the M-trees built by our algorithms for
various road networks. BulkLoad could not finish building an M-tree for the datasets larger than NV, and
the higher l made it unstable. BulkLoad had a smaller number of distance computations than FastLoad-R
and FlexLoad, as shown in Fig. 7b; however, since it made many more disk accesses, as in Fig. 7c, both
FastLoad and FlexLoad demonstrated a much better overall performance, as shown in Fig. 7a. FlexLoad
needed a longer execution time than FastLoad owing to a number of d̂() distance computations, as in the
previous experiments. FastLoad-F and FastLoad-H outperformed BulkLoad by up to three orders of
magnitude, as it did in the first and third experiments, and it was also faster than even FlexLoad-P.

The sixth experiment compares the k-NN search performance using the NV dataset in the same manner
as the second and fourth experiments. Fig. 8 shows the result. FlexLoad demonstrated the best performance,
outperforming BulkLoad by up to 2.3 times for k = 1. FastLoad algorithms were slightly slower than
BulkLoad, as they were in the fourth experiment; however, the difference in execution time for a single
k-NN search between the two was only 0.35 milliseconds, which is almost negligible. Therefore,
FastLoad is more appropriate than BulkLoad for most applications given its faster index construction.

We did not compare the performance of our algorithms, FastLoad and FlexLoad, with that of the
algorithms in [11,12] since it is evident that our algorithms significantly outperform them. The objective

Figure 7: Comparison of M-tree construction performance for various real-world road networks. (a)
Execution time (seconds). (b) Number of distance computations. (c) Number of disk page accesses

Table 6: Sizes (in MB) of M-trees built by our algorithms for various road networks

Dataset DC AK NH NV MN FL

FastLoad-F 0.332 1.688 3.813 7.637 15.055 27.180

FastLoad-H 0.367 1.836 4.176 8.574 17.113 31.445

FastLoad-R 0.344 1.789 4.008 8.004 15.922 28.922

FlexLoad 0.255 1.609 3.536 7.911 17.451 35.967

4
https://github.com/kawatea/pruned-highway-labeling
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of the algorithm by Sexton et al. [12] is to improve the search performance using the M-tree, rather than fast
construction of the M-tree. As mentioned in Section 2, the complexity of constructing an M-tree using the
algorithm [12] is as high as O N3ð Þ, which is considerably higher than the complexity
O MN logMNð Þ N � Mð Þ of BulkLoad [10]. In addition, there is no claim regarding the performance for
constructing M-trees in [12]. The algorithm by Qiu et al. [11] simply splits the tasks of BulkLoad among
multiple CPU cores, as described in Section 2. Thus, the ratio of the performance improvement cannot be
higher than the number of CPU cores, and an experimental result showed that the performance improved
by up to 2.33 times when using a quad-core CPU [11]. Since our algorithms outperform BulkLoad by up
to three orders of magnitude, it is clear that they also dramatically outperform the algorithms by [12] and [11].

6 Conclusions

In this study, we proposed two efficient M-tree bulk loading algorithms, FastLoad and FlexLoad, which
outperform previous algorithms. Our algorithms minimize the numbers of distance computations and disk
accesses using FastMap [15] and a space-filling curve [16], thereby significantly improving the index
construction and search performance. We experimentally compared the performance of our algorithms
with that of a previous algorithm, BulkLoad, using various synthetic and real-world datasets. The results
showed that both FastLoad and FlexLoad improved the index construction performance by up to three
orders of magnitude and that FlexLoad improved the search performance by up to 20.3 times.

FlexLoad required a longer execution time for index construction than the FastLoad algorithms owing to
a number of d̂() distance computations, as described in Section 4, even under similar numbers of distance d()
computations and disk accesses. Additionally, FastLoad-F and FastLoad-H were shown to be faster than
FlexLoad-P. However, as anticipated, FlexLoad achieved a better search performance than the FastLoad
algorithms. Furthermore, although the FastLoad algorithms were slightly slower than BulkLoad for
certain datasets, the difference was mostly negligible. In conclusion, we believe that both FastLoad and
FlexLoad can be used in a variety of database applications.
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Figure 8: Comparison of k-nearest neighbor search performance using the M-trees (road network = NV). (a)
Execution time (milliseconds). (b) Number of distance computations. (c) Number of disk page accesses
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