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Abstract: Nowadays, renewable energy has been emerging as the major source of
energy and is driven by its aggressive expansion and falling costs. Most of the renew-
able energy sources involve turbines and their operation and maintenance are vital
and a difficult task. Condition monitoring and fault diagnosis have seen remarkable
and revolutionary up-gradation in approaches, practices and technology during the
last decade. Turbines mostly do use a rotating type of machinery and analysis of
those signals has been challenging to localize the defect. This paper proposes a
new hybrid model wherein multiple swarm intelligence models have been evaluated
to optimize the conventional Long Short-Term Memory (LSTM) model in classify-
ing the faults from the vibration signals data acquired from the gearbox. This helps to
analyze the performance and behavioral patterns of the system more effectively and
efficiently which helps to suggest for replacement of the unit with higher precision.
The results have demonstrated that the proposed hybrid modeling approach is effec-
tive in classifying the faults of the gearbox from the time series data and achieve
higher diagnostic accuracy in comparison to the conventional LSTM methods.

Keywords: Gearbox; long short term memory; fault classification; swarm
intelligence; optimization; condition monitoring

1 Introduction

Fault diagnosis has a significance in identifying the degrading parts of the rotating machinery and
replacement of the same well before a total breakdown to reduce the downtime. Especially in wind
turbines, gears, shafts, blades and rolling bearings play a vital role that is widely used in the transmission
of power. Any failures within them would introduce unexpected and unwarranted breakdown time,
expensive maintenance, loss in production and delayed distribution of power. Hence, it is necessary to
identify and predict such faults during the Operation and Maintenance (O&M) at early stages itself and
increase the production of power to prevent power disruptions and catastrophic failures.
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Condition monitoring facilitates collecting the health information of the machinery through different
methods such as vibration, acoustic and thermal imaging analysis. Earlier, the methodology adopted was
through the processing of signals to derive deeper insights into different spectra such as time and
frequency. The transition of Artificial Intelligence (AI) has been extensively investigated in the rotating
machinery devices with versatile machine learning and deep neural network models. AI-led to relate the
spectral insights in identifying the defects, further seeking more insights to categorize, to forecast the
Remaining Useful Life (RUL) of the machinery components, and to replace the required ones.

Few research studies state how the traditional Convolution Neural Network (CNN) model has effective in
the fault diagnosis for the classification of faults based on vibration analysis, by learning the features acquired
from rolling bearings [1] and gearbox [2,3] as well both in time and frequency spectra. The results have been
compared with a few of the peer algorithms such as Support Vector Machine and Random Forest.

New emerging methods in condition monitoring arise, to improve the reliability of gearboxes apart from
the regular signal processing and applying machine learning models to categorize the faults accordingly. In
recent years, Deep Neural Networks such as CNN and LSTM have widely been used to classify the faults and
as well predict the RUL of the machinery too. These neural networks, used for classification of faults were
Deep-Belief Network, Deep-Boltzmann Machines, Restricted Boltzmann Machines and Auto-Encoders [4]
Support Vector Regression [5] and Stacked Multilevel Denoising Auto-Encoders [6] validated on vibration
signals; similarly, Deep Random Forest Fusion [7] applied on both vibration and acoustic signal
characteristics simultaneously for the gearbox fault diagnosis. Torsional vibration signals [8] of gear tooth
have been processed in phase domain to localize the defect and derive the type of fault.

Wavelet analysis integrated with CNN model [9] was used to transform the vibration signals into time-
frequency spectral images, and later capturing the features from the images to classify the faults. Cepstrum
analysis [10] of the processed vibration signals with Hilbert and wavelet transform helped together to derive
the gear faults and cracks in the bearings. Discrete Wavelet Transform [11] on time series vibration signals
and Continuous Wavelet Transform [12] performed on acoustic signals to extract the features.

This paper has been organized as follows: Section 2 states the recent related research works regarding
gearbox fault classification. Section 3 details the proposed hybrid LSTM gearbox fault diagnosis method
along with the optimization techniques utilized for the classification of faults. In Section 4, the evaluated
results of the custom hybrid model have been tabulated with metrics and later discussed the comparison
of the proposed hybrid method with conventional LSTM methods. Finally, the conclusions followed by
the references have been presented.

2 Literature Review

Some of the recent existing methodologies proposed for gearbox fault classification have been reviewed
in this section.

Chen et al. [13] stated three deep neural network models Deep Belief Networks, Deep Boltzmann
Machines and Stacked Auto-Encoders to assess rolling bearing fault conditions. Multiple pre-processing
schemes time domain, frequency domain, and time-frequency domain have been applied for feature
extraction. A single dataset of 7 fault patterns has been considered to test the efficiency of deep learning
models to derive the health condition of rotating mechanical machinery. The evaluated results have
demonstrated with a reliable model accuracy that was relevant for the bearing diagnostics.

Merainani et al. [14] performed an in-depth comparison of Hilbert Empirical Wavelet Transform
(HEWT) and Hilbert Huang Transform (HHT) on the gearbox vibration signals. HEWT, a self-adaptive
time-frequency analysis was applied to the vibration signals to obtain the instantaneous amplitude
matrices. The fault feature vectors were acquired on decomposition from the vibration signals and later
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classified using Self-Organizing Map model to derive the state of gear condition such as healthy gear, tooth
cracking, input shaft slant crack and tooth surface pitting.

Liu et al. [15] proposed the Stacked Auto-Encoders (SAE) model for the resolution of gearbox fault
diagnosis. This model was useful in extracting the salient characteristics from the frequency-domain signals.
To reduce the challenge of overfitting during the training process of SAE and improve the performance
with a tiny dataset, dropout technique and Rectified Linear Unit (ReLU) activation function has been
introduced herewith. The effectiveness of this proposed model approach was derived with two gearbox
datasets. The capability of the proposed model performed superior in comparison to the existing raw SAE.

Malik et al. [16] described fault diagnosis one of the widely used technique to identify the faults of
gearbox, that would support in minimizing the operation cost and as well improve the reliability and
feasibility of the wind turbine gearbox. Here the observed vibration signals of the gearbox were utilized
to perform fault diagnosis by extracting the features in an Empirical Mode Decomposition technique and
then the Artificial Neural Network model was utilized for the classification of faults.

Medina et al. [17] addressed the application of symbolic dynamics algorithms for the analysis of features
from the vibration signals of gearbox. The key features were extracted from the vibration signals using a peak
symbolic dynamics algorithm subdividing the phase space. Two different experiments were evaluated
herewith with 10-fold cross-validation. In the first experiment, the dataset was partitioned randomly into
10-fold sets wherein 9 sets were considered for training and 1 set for the validation using the multi-class
support vector machine model. In the second experiment, classification was performed by considering the
signals at different load conditions.

Johnson et al. [18] analyzed the classification of faults using six variants of K-Nearest Neighbors (KNN)
such as fine, weighted, medium, cosine, coarse and cubic. The processing of signals and analysis was
performed on a MATLAB simulated high-voltage DC transmission line data.

One of the researchers, (Tang et al. [19]) introduced a custom model approach integrating K-Means with
bio-inspired optimization models such as Ant Colony, Firefly, Cuckoo, Wolf, and Bat. Comparison of results
enlisted by evaluating it on multiple datasets such as iris, wine, Libras, Haberman, synthetic and mouse. This
research revealed how to overcome the key drawbacks of standard K-Means wherein the local optima is
considered, and considering the global optima integrating with bio-inspired optimization models.

Liu et al. [20] acquired the vibration signals of multiple gears from an experimental test rig for the
diagnosis of gears. This study highlights the application of ensemble empirical mode decomposition method
to decompose the signals of multiple gear teeth at different levels to intrinsic mode functions. The extracted
feature vectors were distinguished by a multi-class support vector machine to classify the health status of
the gears. The resulting outputs with respective inputs were evaluated and compared herewith.

The existing literature has used different approaches in evaluating the gearbox fault diagnosis.
Moreover, several kinds of research exist applying the vanilla deep learning models with few having in-
depth customization. Hence, proposed herewith a novel approach by fine-tuning the parameters and
activation functions of the conventional LSTM recurrent neural network model.

This novel approach constitutes of hybrid LSTM based model wherein optimization has been applied with
swarm intelligence algorithms. Detailed evaluations and comparison of the results are performed using a
gearbox condition monitoring data set to classify the faults accordingly. This article highlights the following:

� Proposal of a custom hybrid LSTM model with swarm intelligence for fault diagnosis of gearbox.

� In-depth analysis on a restricted subset of gearbox data with hybrid LSTM on 10 different load
conditions.

� Evaluation on different LSTM activation function, i.e., Sigmoid, hyperbolic tangent (tanh), Rectified
Linear Unit (ReLU); optimized with Particle Swarm Optimization (PSO), Firefly Algorithm (FA),
Cuckoo Search Optimization (CSO), and Ant Colony Optimization (ACO) algorithms in
combination with specified LSTM activation functions.

CMC, 2021, vol.66, no.2 2043



� Observations of each group of optimization and activation functions on all different 10 loads for the
classification of faults.

� Tabulation of performance metrics such as accuracy, precision, recall, specificity, sensitivity, F-Score,
weight, bias and activation functions such as default sigmoid, hyperbolic tangent, and ReLU
activation functions along with its customized parameters.

3 Proposed Methodology

This proposed hybrid fault diagnosis methodology explains the approach of how the swarm intelligence
algorithms have been combined with LSTM network model to classify the faults of gearbox. The proposed
gearbox fault diagnosis method applying Hybrid-LSTM network model comprises of four steps and is
illustrated in Fig. 1. Initially, the given dataset has been converted into a time series data and then given
as input to the proposed Hybrid-LSTM network model.

3.1 Long Short-Term Memory Network

Long Short-Term Memory (LSTM) network is one of the variants of recurrent neural network. This has
been widely applied on time series datasets recently and has been proven as a highly efficient learning neural
network model among others.

Figure 1: Flowchart of the proposed Hybrid-LSTM network model
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An LSTM network enables to input sequence data into a network and make predictions based on the
individual time steps of the sequence data. For conventional or default activation functions like sigmoid
and tan h functions, the gradients decrease quickly with training error propagating to forward layers. The
activation functions for sigmoid and hyperbolic tangent and its differential functions are formulated as
in Eqs. (1)–(4) as:

f ¼ 1

1þ e�xð Þ (1)

df ¼ f � 1� fð Þ (2)

f ¼ tan hðxÞ (3)

df ¼ 1� f 2
� �

(4)

Recently, the ReLU activation function gained tremendous recognition, especially in the last few years.
This is because its gradient will not decrease with the independent variables increasing. Hence, the network
with ReLU activation function can overcome the vanishing of the gradient. The ReLU and its differential
functions are mathematically formulated in the Eqs. (5) and (6).

f ¼ maxð0; xÞ (5)

df ¼ doubleðx > 0Þ (6)

A five-layer LSTM customized neural network is implemented with one sequence input layer, one bi-
directional LSTM layer other than the default LSTM layer for standardization, one fully connected layer, one
softmax layer and one output layer for classification. Each LSTM unit has an input gate, the forget gate, and
the output gate along with the memory unit that is being read and updated periodically [21]. The formulated
equations of LSTM have been listed as Eqs. (7)–(12):

ft ¼ q wfxxi þ wfhht�1 þ bf
� �

(7)

it ¼ q wixxi þ wihht�1 þ bið Þ (8)

gt ¼ m wgxxi þ wghht�1 þ bg
� �

(9)

ot ¼ q wfxxt þ wohht�1 þ bo
� �

(10)

ct ¼ ft � ct�1 þ it � gtÞ (11)

ht ¼ ot � m ctð Þ (12)

wherein xi is the input of the memory cell, ht is the input of the memory cell, ft , it and Ot is the output of
forget gate, input gate, and output gate respectively, Ct is the state of the memory cell. q is the gate activation
function, Υ denotes Hadamard product, m denotes the output activation function, wfx, wfh, wix, wih, wgx,
wgh and woh represent the corresponding weight matrix, bf , bi, bg and bo are bias vectors. This is
pictorially illustrated in Fig. 2.

3.2 Optimization Algorithms

In this research, few of the swarm intelligence algorithms Particle Swarm, Firefly, Cuckoo Search, and
Ant Colony in combination with specified custom LSTM activation functions (in multiple combinations as
well) by replacing their regular activation functions, i.e., Sigmoid, hyperbolic tangent and ReLU have been
discussed and evaluated herewith. Using the parameters achieved by the respective equations mentioned
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below (13,14,15,16) each for different customized activation functions, defining the layered network and the
network is trained, validated, tested and executed for 5 epochs.

3.2.1 Particle Swarm Optimization with LSTM
This optimization method commonly recognized as PSO [22] is an adaptive computational optimization

technique that inspired from the psychological behavior of the birds flocking together. The objective function
of PSO is formulated mathematically as in Eq. (13):

f ¼ ðx� 20Þ2 (13)

3.2.2 Cuckoo Optimization with LSTM
This optimization technique is derived from one of the bird’s species known as Cuckoo following their

strategy of laying eggs in the nests of different other bird species [23]. The objective function of cuckoo
search is expressed mathematically as in Eq. (14):

f ¼ ð10 � size x; 2ð Þ þ
X

x2 � 10 � cos 2pxð Þ� �
(14)

3.2.3 Firefly Algorithm Optimization with LSTM
Firefly Algorithm (FA) proposed here is based on the behavior of fireflies employing flashing signals to

interact with light emitted by another brighter partner moving towards it. The attraction is commensurate to
the brightness, i.e., both increase as their distance decreases [24,25]. Following this principle, the objective
function of FA is mathematically formulated as in Eq. (15):

f ¼
X

ðx� 1Þ2 (15)

3.2.4 Ant Colony Optimization with LSTM
The behavior of ants moving randomly by laying their pheromone and searing for an optimal path

commonly recognized as Ant Colony Optimization. The advantage of ACO is that it shows prior success
in evolving general RNNs for time series data prediction [26]. The equation for ACO utilized by the
activation functions is formulated mathematically in Eq. (16):

f ¼
X

�x � sinð
ffiffiffiffiffi
xj j

p
Þ

� �
(16)

q q tanh q

X X

X +

tanh

Ct-1 Ct Ct

ht-1 ht

xt

ft
ot

Forget 
gate

input
gate output

gate

it

Figure 2: The LSTM Memory Cell Structure
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4 Simulation Results and Discussions

In this section, two fault conditional cases such as the healthy tooth and broken tooth have been
considered with the gearbox fault diagnosis dataset [27] for classification. The upcoming subsections
describe about the dataset details and the proposed hybrid method performance.

4.1 Dataset Description

This open source gearbox fault diagnosis dataset comprises of the vibration dataset recorded by using
Spectra Quest’s Gearbox Fault Diagnostics Simulator. Dataset has been recorded with the help of
4 vibration sensors placed in four different directions. Additionally, the dataset has been observed under
variation of loads at a frequency of 30 Hz from ‘0’ to ‘90’ percent with two different scenarios: 1)
Healthy condition and 2) Broken Tooth Condition.

4.2 Performance Metrics

Initially, the gearbox fault diagnosis dataset is converted to time series data to perform LSTM
classification. The evaluation has been performed considering restricted data available in the dataset. To
classify the two health conditions of the gearbox data, 70% samples have been employed to train the
proposed hybrid network and the rest have been used for testing. That is for this work; Training and
Testing dataset are of the order 4�14000ð Þ samples containing and (4�6000Þ samples that have been used
as an input to the neural network. The learning rate is 1 and the iteration number or number of epochs is 5.

The proposed hybrid LSTM network has been trained on different conventional activation functions
sigmoid, hyperbolic tangent (tanh) and ReLU. Additionally, this training has also been extended to other
proposed customized activation functions such as sigmoid PSO, sigmoid Cuckoo, sigmoid FA, and
sigmoid ACO; tanh PSO, tanh Cuckoo, tanh FA, and tanh ACO; ReLU PSO, ReLU Cuckoo, ReLU FA
and ReLU ACO. The results have been evaluated for load, weight and bias values on a gearbox vibration
data acquired at different loads 0, 10, 20, 30, 40, 50, 60 70, 80 and 90. The accuracy of each has been
computed and best of the results were obtained taking into consideration every state of load. Especially,
the best results were achieved with load 10 and 40. The results observed have been tabulated in Tab. 1
and are also depicted in Fig. 3.

Table 1: Evaluation of proposed hybrid LSTM network model

S. No. Activation Function Load Bias Weight Accuracy

1 ReLU 0 0.2500 –0.0016 0.6250

2 Sigmoid-PSO 0.2502 –0.0019 0.6250

3 Sigmoid-Cuckoo 0.2503 –0.0035 0.7500

4 Sigmoid-Firefly 0.2502 0.0017 0.6250

5 Sigmoid-ACO 0.2502 0.0002 0.5000

6 ReLU-PSO 0.2500 0.0005 0.6250

7 ReLU-Cuckoo 0.2504 –0.0023 0.6250

8 ReLU-Firefly 0.2504 0.0006 0.6250

9 ReLU-ACO 0.2500 0.0005 0.1250

10 tanh-PSO 0.2503 –0.00268 0.6250

11 tanh-Cuckoo 0.2500 0.0015 0.5000

12 tanh-Firefly 0.2504 0.0022 0.6250

13 tanh-ACO 0.2506 0.0014 0.7500
(Continued)
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Table 1 (continued).

S. No. Activation Function Load Bias Weight Accuracy

1 ReLU 10 0.2502 0.0005 0.6250

2 Sigmoid-PSO 2.50E-01 –2.92E-03 0.8750

3 Sigmoid-Cuckoo 2.50E-01 –7.90E-04 0.5000

4 Sigmoid-Firefly 2.50E-01 6.06E-04 0.5000

5 Sigmoid-ACO 2.50E-01 –2.83E-03 0.5000

6 ReLU-PSO 2.50E-01 –3.03E-03 0.5000

7 ReLU-Cuckoo 2.50E-01 6.81E-04 0.2500

8 ReLU-Firefly 2.50E-01 –4.26E-03 0.5000

9 ReLU-ACO 2.50E-01 1.08E-03 0.7500

10 tanh-PSO 0.2500 –0.0023 0.5000

11 tanh-Cuckoo 2.50E-01 –7.58E-05 0.3750

12 tanh-Firefly 2.50E-01 9.34E-04 0.5000

13 tanh-ACO 2.50E-01 1.66E-03 0.5000

1 ReLU 20 0.2501 –0.0019 0.6250

2 Sigmoid-PSO 2.50E-01 –1.33E-03 0.6250

3 Sigmoid-Cuckoo 2.50E-01 2.21E-03 0.6250

4 Sigmoid-Firefly 2.50E-01 –1.52E-05 0.7500

5 Sigmoid-ACO 2.50E-01 –1.33E-03 0.6250

6 ReLU-PSO 2.50E-01 1.79E-03 0.5000

7 ReLU-Cuckoo 2.50E-01 –1.49E-03 0.3750

8 ReLU-Firefly 2.50E-01 1.32E-05 0.5000

9 ReLU-ACO 2.50E-01 –9.22E-04 0.7500

10 tanh-PSO 2.50E-01 0.0027 0.7500

11 tanh-Cuckoo 2.50E-01 –1.64E-04 0.6250

12 tanh-Firefly 2.50E-01 –2.17E-03 0.7500

13 tanh-ACO 2.50E-01 1.08E-03 0.5000

1 ReLU 30 0.2499 –0.0038 0.5000

2 Sigmoid-PSO 2.50E-01 7.58E-04 0.5000

3 Sigmoid-Cuckoo 2.50E-01 –1.74E-03 0.1250

4 Sigmoid-Firefly 2.50E-01 2.83E-03 0.5000

5 Sigmoid-ACO 2.50E-01 1.58E-03 0.6250

6 ReLU-PSO 2.50E-01 –3.03E-03 0.5000

7 ReLU-Cuckoo 2.50E-01 –3.20E-03 0.5000

8 ReLU-Firefly 2.50E-01 1.35e-03 0.6250

9 ReLU-ACO 2.50E-01 2.68E-03 0.7500
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Table 1 (continued).

S. No. Activation Function Load Bias Weight Accuracy

10 tanh-PSO 2.50E-01 –2.07E-03 0.5000

11 tanh-Cuckoo 2.50E-01 –1.35E-03 0.3750

12 tanh-Firefly 2.50E-01 –9.23E-04 0.5000

13 tanh-ACO 2.50E-01 4.30E-04 0.6250

1 ReLU 40 0.2498 –0.0019 0.5000

2 Sigmoid-PSO 2.50E-01 –5.22E-04 0.5000

3 Sigmoid-Cuckoo 2.50E-01 –2.25E-03 0.5000

4 Sigmoid-Firefly 2.50E-01 –1.61E-04 0.7500

5 Sigmoid-ACO 2.50E-01 –1.46E-03 0.6250

6 ReLU-PSO 0.2502 –5.30014 0.7500

7 ReLU-Cuckoo 2.50E-01 2.64E-03 0.8750

8 ReLU-Firefly 2.50E-01 1.97e-03 0.7500

9 ReLU-ACO 2.50E-01 7.12E-04 0.7500

10 tanh-PSO 2.50E-01 1.54E-03 0.5000

11 tanh-Cuckoo 2.50E-01 –1.35E-03 0.7500

12 tanh-Firefly 2.50E-01 –2.82E-03 0.6250

13 tanh-ACO 2.50E-01 1.35E-03 0.7500

1 ReLU 50 2.51E-01 1.00E-04 0.3750

2 Sigmoid-PSO 2.50E-01 1.52E-04 0.5000

3 Sigmoid-Cuckoo 2.50E-01 3.61E-04 0.6250

4 Sigmoid-Firefly 2.50E-01 1.17E-03 0.3750

5 Sigmoid-ACO 2.50E-01 –1.78E-03 0.2500

6 ReLU-PSO 2.50E-01 –4.84E-04 0.2500

7 ReLU-Cuckoo 2.50E-01 3.53E-03 0.6250

8 ReLU-Firefly 2.50E-01 6.33E-04 0.5000

9 ReLU-ACO 2.50E-01 4.54E-04 0.3750

10 tanh-PSO 2.50E-01 3.36E-03 0.5000

11 tanh-Cuckoo 2.50E-01 –1.15E-03 0.3750

12 tanh-Firefly 2.50E-01 –4.92E-04 0.6250

13 tanh-ACO 2.50E-01 –2.35E-03 0.2500

1 ReLU 60 2.50E-01 –3.54E-03 0.6250

2 Sigmoid-PSO 2.50E-01 –2.31E-03 0.6250

3 Sigmoid-Cuckoo 2.50E-01 2.28E-03 0.6250

4 Sigmoid-Firefly 2.50E-01 –1.46E-04 0.3750

5 Sigmoid-ACO 2.50E-01 –3.14E-03 0.1250
(Continued)
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Table 1 (continued).

S. No. Activation Function Load Bias Weight Accuracy

6 ReLU-PSO 2.50E-01 –1.30E-03 0.5000

7 ReLU-Cuckoo 2.50E-01 –1.64E-04 0.7500

8 ReLU-Firefly 2.50E-01 1.05E-04 0.7500

9 ReLU-ACO 2.50E-01 –1.23E-03 0.5000

10 tanh-PSO 2.50E-01 –1.20E-04 0.7500

11 tanh-Cuckoo 2.50E-01 –1.17E-03 0.7500

12 tanh-Firefly 2.50E-01 1.18E-03 0.5000

13 tanh-ACO 2.50E-01 –2.02E-04 0.5000

1 ReLU 70 2.50E-01 –233E-03 0.5000

2 Sigmoid-PSO 2.50E-01 1.51E-04 0.3750

3 Sigmoid-Cuckoo 2.50E-01 7.72E-04 0.5000

4 Sigmoid-Firefly 2.50E-01 –1.91E-03 0.3750

5 Sigmoid-ACO 2.50E-01 2.56E-03 0.2500

6 ReLU-PSO 2.51E-01 1.26E-03 0.6250

7 ReLU-Cuckoo 2.50E-01 2.91E-03 0.5000

8 ReLU-Firefly 2.50E-01 1.95E-03 0.5000

9 ReLU-ACO 2.50E-01 9.59E-09 0.6250

10 tanh-PSO 2.51E-01 2.79E-03 0.5000

11 tanh-Cuckoo 2.50E-01 –8.82E-04 0.6250

12 tanh-Firefly 2.50E-01 1.73E-04 0.7500

13 tanh-ACO 2.50E-01 –9.11E-04 0.5000

1 ReLU 80 2.51E-01 1.27E-03 0.3750

2 Sigmoid-PSO 2.51E-01 8.56E-04 0.5000

3 Sigmoid-Cuckoo 2.50E-01 –4.33E-03 0.7500

4 Sigmoid-Firefly 2.50E-01 2.47E-04 0.5000

5 Sigmoid-ACO 2.50E-01 3.64E-04 0.1250

6 ReLU-PSO 2.50E-01 5.32E-03 0.5000

7 ReLU-Cuckoo 2.50E-01 4.40E-04 0.5000

8 ReLU-Firefly 2.50E-01 1.95E-03 0.5000

9 ReLU-ACO 2.50E-01 –1.59E-03 0.3750

10 tanh-PSO 2.50E-01 1.99E-03 0.5000

11 tanh-Cuckoo 2.50E-01 1.12E-03 0.5000

12 tanh-Firefly 2.50E-01 –2.38E+00 0.7500

13 tanh-ACO 2.251E-01 5.57E-04 0.5000
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Further, the performance of the gearbox classification is examined by using various performance
parameters that presents the predicted and expected/actual classifications. The result of classifying is
predicted into two categories such as healthy and broken tooth conditions.

Few of the performance parameters considered here like Accuracy, true positive rate (Sensitivity), false
positive rate (Specificity), Precision, and F-Score. A higher value of ‘True Positive’ detection is enviable for

Table 1 (continued).

S. No. Activation Function Load Bias Weight Accuracy

1 ReLU 90 2.50E-01 –2.47E-03 0.6250

2 Sigmoid-PSO 2.50E-01 1.36E-03 0.5000

3 Sigmoid-Cuckoo 2.50E-01 1.14E-03 0.3750

4 Sigmoid-Firefly 2.50E-01 –2.81E-03 0.5000

5 Sigmoid-ACO 2.51E-01 1.06E-03 0.2500

6 ReLU-PSO 2.50E-01 5.32E-03 0.5000

7 ReLU-Cuckoo 2.50E-01 –1.63E-03 0.3750

8 ReLU-Firefly 2.50E-01 –1.58E-03 0.6250

9 ReLU-ACO 2.50E-01 –1.42E-03 0.5000

10 tanh-PSO 2.50E-01 6.20E-04 0.5000

11 tanh-Cuckoo 2.50E-01 8.72E-04 0.5000

12 tanh-Firefly 2.50E-01 –1.70E-03 0.6250

13 tanh-ACO 2.50E-01 8.56E-04 0.2500

Figure 3: Performance of the proposed Hybrid LSTM Network Model
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vigorous gearbox classification. Accuracy is formulated as the percentage of the number of faults classified
correctly versus total faults as in Eq. (17). TPR or sensitivity is defined as the ratio of correctly predicted
faults to the size of the actual faults and is formulated in Eq. (18). Precision is defined as the ratio of
correctly predicted faults to the predicted size of the faults and is formulated as in Eq. (20).
Consequently, the classification accuracy is estimated using the following formulae:

Accuracy ¼ TP þ TNð Þ
TP þ FP þ FN þ TNð Þ (17)

Sensitivity ¼ TP

TP þ FNð Þ (18)

Specificity ¼ TN

FP þ TNð Þ (19)

Precision ¼ TP

TP þ FPð Þ (20)

F1Score ¼ 2 � Precision � Recallð Þ
Precisionþ Recallð Þ

� �
(21)

where True Positives (TP) is the number of faults classified as faults, True Negatives (TN) is the number of
normal classified as normal, False Positives (FP) is the number of normal classified as faults and False
Negatives (FN) is the number of faults classified as normal. Tab. 2 describes the values for various
performance metrics such as the sensitivity, specificity, precision, recall, F-score including the execution
time for all customized activation functions.

Table 2: Performance parameters of Hybrid LSTM model

Load Customized Activation Execution time Specificity Sensitivity Precision Recall F-score

0 ReLU 3 m 19 s 0.2500 1 0.5714 1 0.7273

Sigmoid-PSO 3 m 18 s 0.2500 1 0.5714 1 0.7273

Sigmoid-Cuckoo 3 m 19 s 0.5000 1 0.6667 1 0.8000

Sigmoid-Firefly 3 m 22 s 0.2500 1 0.5714 1 0.7273

Sigmoid-ACO 3 m 18 s 0 1 0.5000 1 0.6667

ReLU-PSO 3 m 20 s 0.2500 1 0.5714 1 0.7273

ReLU-Cuckoo 3 m 20 s 0.2500 1 0.5714 1 0.7273

ReLU-Firefly 3 m 21 s 0.5000 0.7500 0.6000 0.7500 0.6661

ReLU-ACO 3 m 31 s 0.2500 0 0 0 0

tanh-PSO 3 m 14 s 0.2500 1 0.5714 1 0.7273

tanh-Cuckoo 3 m 21 s 0 1 0.5000 1 0.6667

tanh-Firefly 3 m 17 s 0.2500 1 0.5714 1 0.7273

tanh-ACO 3 m 17 s 0.5000 1 0.6667 1 0.8000

10 ReLU 3 m 23 s 0.7500 0.5000 0.6667 0.5000 0.5714

Sigmoid-PSO 3 m 10 s 0.7500 1 0.8000 1 0.8889

Sigmoid-Cuckoo 3 m 6 s 0.2500 0.7500 0.5000 0.7500 0.6000
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Table 2 (continued).

Load Customized Activation Execution time Specificity Sensitivity Precision Recall F-score

Sigmoid-Firefly 2 m 53 s 1 0 – 0 0

Sigmoid-ACO 3 m 13 s 0.2500 0.7500 0.5000 0.7500 0.6000

ReLU-PSO 2 m 58 s 0 1 0.5000 1 0.6667

ReLU-Cuckoo 3 m 8 s 0.2500 0.2500 0.2500 0.2500 0.2500

ReLU-Firefly 3 m 9 s 1 0 – 0 0

ReLU-ACO 3 m 1 s 0.7500 0.7500 0.7500 0.7500 0.7500

tanh-PSO 2 m 48 s 0.2500 0.7500 0.5000 0.7500 0.6000

tanh-Cuckoo 3 m 1 s 0.7500 0 0 0 0

tanh-Firefly 2 m 55 s 1 0 – 0 0

tanh-ACO 3 m 36 s 0 1 0.5000 1 0.6667

20 ReLU 3 m 34 s 1 0.2500 1 0.2500 0.4000

Sigmoid-PSO 2 m 45 s 1 0.2500 1 0.2500 0.4000

Sigmoid-Cuckoo 3 m 5 s 0.5000 0.7500 0.6000 0.7500 0.6667

Sigmoid-Firefly 3 m 2 s 1 0.5000 1 0.5000 0.6667

Sigmoid-ACO 3 m 4 s 0.2500 1 0.5714 1 0.7273

ReLU-PSO 3 m 3 s 0.7500 0.2500 0.5000 0.2500 0.3333

ReLU-Cuckoo 3 m 3 s 0.5000 0.2500 0.3333 0.2500 0.2857

ReLU-Firefly 2 m 55 s 0 1 0.5000 0.6667

ReLU-ACO 3 m 0 s 0.7500 0.7500 0.7500 0.7500 0.7500

tanh-PSO 2 m 47 s 1 0.5000 1 0.5000 0.6667

tanh-Cuckoo 3 m 10 s 0.7500 0.5000 0.6667 0.5000 0.5714

tanh-Firefly 3 m 16 s 1 0 1 0 0.6667

tanh-ACO 3 m 18 s 0 1 0.5000 1 0.6667

30 ReLU 3 m 24 s 1 0 – 0 0

Sigmoid-PSO 3 m 1 s 0 1 0 1 0.6667

Sigmoid-Cuckoo 3 m 2 s 0.2500 0 0 0 0

Sigmoid-Firefly 2 m 48 s 0 1 0.5000 1 0.6667

Sigmoid-ACO 2 m 55 s 0.5000 0.7500 0.6000 0.7500 0.6667

ReLU-PSO 3 m 1 s 0.7500 0.2500 0.5000 0.2500 0.3333

ReLU-Cuckoo 3 m 12 s 0.7500 0.2500 0.5000 0.2500 0.3333

ReLU-Firefly 2 m 55 s 1 0.2500 1 0.2500 0.4000

ReLU-ACO 3 m 5 s 0.7500 0.7500 0.7500 0.7500 0.7500

tanh-PSO 2 m 57 s 0 1 0.5000 1 0.6667

tanh-Cuckoo 3 m 3 s 0.7500 0 0 0 0

tanh-Firefly 2 m 54 s 0 1 0.5000 1 0.6667

tanh-ACO 2 m 56 s 1 0.2500 1 0.2500 0.4000
(Continued)
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Table 2 (continued).

Load Customized Activation Execution time Specificity Sensitivity Precision Recall F-score

40 ReLU 3 m 21 s 0 1 0.5000 1 0.6667

Sigmoid-PSO 3 m 18 s 1 0 – 0 0

Sigmoid-Cuckoo 3 m 6 s 0.2500 0.7500 0.5000 0.7500 0.6000

Sigmoid-Firefly 2 m 50 s 1 0.5000 1 0.5000 0.6667

Sigmoid-ACO 3 m 6 s 0.5000 0.7500 0.6000 0.7500 0.6667

ReLU-PSO 3 m 1 s 0.7500 0.2500 0.5000 0.2500 0.3333

ReLU-Cuckoo 3 m 4 s 1 0.7500 1 0.7500 0.8751

ReLU-Firefly 2 m 49 s 1 0.5000 1 0.5000 0.6667

ReLU-ACO 3 m 8 s 0.7500 0.7500 0.7500 0.7500 0.7500

tanh-PSO 3 m 1 s 1 0 – 0 0

tanh-Cuckoo 2 m 53 s 0.7500 0.7500 0.7500 0.7500 0.7500

tanh-Firefly 3 m 1 s 1 0 1 0.2500 0.4000

tanh-ACO 2 m 56 s 1 0.5000 1 0.5000 0.6667

50 ReLU 3 m 22 s 0.2500 0.5000 0.4000 0.5000 0.4444

Sigmoid-PSO 3 m 12 s 0 1 0.5000 1 0.6667

Sigmoid-Cuckoo 3 m 3 s 0.2500 1 0.5714 1 0.7273

Sigmoid-Firefly 2 m 49 s 0.2500 0.5000 0.4000 0.5000 0.4444

Sigmoid-ACO 2 m 55 s 0.2500 0.2500 0.2500 0.2500 0.2500

ReLU-PSO 3 m 6 s 0.5000 0 0 0 0

ReLU-Cuckoo 3 m 15 s 1 0.2500 1 0.2500 0.4000

ReLU-Firefly 2 m 57 s 1 0 – 0 0

ReLU-ACO 3 m 2 s 0.5000 0.2500 0.3333 0.2500 0.2857

tanh-PSO 2 m 39 s 0 1 0.5000 1 0.6667

tanh-Cuckoo 3 m 1 s 0 0.7500 0.4286 0.7500 0.5455

tanh-Firefly 2 m 58 s 0.2500 1 0.5714 1 0.7273

tanh-ACO 3 m 1 s 0.5000 0 0 0 0

60 ReLU 3 m 14 s 0.2500 1 0.5714 1 0.7273

Sigmoid-PSO 3 m 8 s 0.7500 0.5000 0.6667 0.5000 0.5714

Sigmoid-Cuckoo 3 m 4 s 0.5000 0.7500 0.6000 0.7500 0.6667

Sigmoid-Firefly 3 m 2 s 0.5000 0.2500 0.3333 0.2500 0.2857

Sigmoid-ACO 3 m 4 s 0.2500 0 0 0 0

ReLU-PSO 3 m 1 s 1 0 – 0 0

ReLU-Cuckoo 3 m 4 s 0.7500 0.7500 0.7500 0.7500 0.7500

ReLU-Firefly 2 m 55 s 0.5000 1 0.6667 1 0.8000

ReLU-ACO 2 m 55 s 0.5000 0.2500 0.3333 0.2500 0.2857
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Table 2 (continued).

Load Customized Activation Execution time Specificity Sensitivity Precision Recall F-score

tanh-PSO 3 m 19 s 0.5000 1 0.6667 1 0.8000

tanh-Cuckoo 3 m 3 s 0.7500 0.7500 0.7500 0.7500 0.7500

tanh-Firefly 2 m 56 s 1 0 – 0 0

tanh-ACO 2 m 55 s 0.7500 0.2500 0.5000 0.2500 0.3333

70 ReLU 3 m 22 s 0 1 0.5000 1 0.6667

Sigmoid-PSO 3 m 12 s 0.5000 0.2500 0.3333 0.2500 0.2857

Sigmoid-Cuckoo 2 m 57 s 0.2500 0.7500 0.5000 0.7500 0.6000

Sigmoid-Firefly 3 m 9 s 0.2500 0.5000 0.4000 0.5000 0.4444

Sigmoid-ACO 2 m 57 s 0.2500 0 0 0 0

ReLU-PSO 3 m 6 s 0.2500 1 0.5714 1 0.7273

ReLU-Cuckoo 2 m 53 s 0.5000 0.5000 0.5000 0.5000 0.5000

ReLU-Firefly 2 m 46 s 0.2500 0.7500 0.5000 0.7500 0.6000

ReLU-ACO 3 m 5 s 1 0.2500 1 0.2500 0.4000

tanh-PSO 3 m 4 s 0 1 0.5000 1 0.6667

tanh-Cuckoo 2 m 57 s 0.2500 1 0.5714 1 0.7273

tanh-Firefly 2 m 59 s 0.5000 1 0.6667 1 0.8000

tanh-ACO 3 m 0 s 0.7500 0.2500 0.5000 0.2500 0.3333

80 ReLU 3 m 15 s 0.5000 0.2500 0.3333 0.2500 0.2857

Sigmoid-PSO 3 m 1 s 0 1 0.5000 1 0.6667

Sigmoid-Cuckoo 3 m 4 s 0.5000 1 0.6667 1 0.8000

Sigmoid-Firefly 3 m 3 s 0 1 0.5000 1 0.6667

Sigmoid-ACO 3 m 10 s 0.2500 0 0 0 0

ReLU-PSO 2 m 49 s 0 1 0.5000 1 0.6667

ReLU-Cuckoo 3 m 11 s 0 1 0.5000 1 0.6667

ReLU-Firefly 2 m 51 s 1 0 – 0 0

ReLU-ACO 2 m 50 s 0.7500 0 0 0 0

tanh-PSO 2 m 59 s 0.2500 0.7500 0.5000 0.7500 0.6000

tanh-Cuckoo 3 m 8 s 0.7500 0.2500 0.5000 0.2500 0.3333

tanh-Firefly 3 m 3 s 0.5000 1 0.6667 1 0.8000

tanh-ACO 2 m 59 s 0.7500 0.2500 0.5000 0.2500 0.3333

90 ReLU 3 m 14 s 1 0.2500 1 0.2500 0.4000

Sigmoid-PSO 3 m 4 s 0 1 0.5000 1 0.6667

Sigmoid-Cuckoo 3 m 1 s 0.5000 0.2500 0.3333 0.2500 0.2857

Sigmoid-Firefly 3 m 10 s 0 1 0.5000 1 0.6667

Sigmoid-ACO 3 m 4 s 0.2500 0.2500 0.2500 0.2500 0.2500
(Continued)
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4.3 Comparison Results

The proposed hybrid LSTM network is compared with conventional LSTM network with parameters
such as bias, weight, execution time, accuracy, precision and recall. Tab. 3 describes the values of the
LSTM network model for conventional LSTM parameters such as the sigmoid activation functions, tan-h
activation function without ReLU activation function, weight, bias and accuracy.

Table 2 (continued).

Load Customized Activation Execution time Specificity Sensitivity Precision Recall F-score

ReLU-PSO 3 m 12 s 1 0.2500 1 0.2500 0.4000

ReLU-Cuckoo 3 m 5 s 0.7500 0 0 0 0

ReLU-Firefly 3 m 14 s 1 0.2500 1 0.2500 0.4000

ReLU-ACO 3 m 2 s 0.7500 0.2500 0.3333 0.2500 0.2857

tanh-PSO 3 m 7 s 0 1 0.5000 1 0.6667

tanh-Cuckoo 3 m 4 s 1 0 – 0 0

tanh-Firefly 3 m 0 s 0.2500 1 0 1 0.7273

tanh-ACO 3 m 14 s 0.5000 0 0 0 0

Table 3: Performance parameters of conventional LSTM

Load Activation functions Bias Weight Accuracy Execution time Precision Recall

0 Sigmoid 0.2525 9.3737 0.6250 3m 20sec 0.5714 1

Tan-h 0.25039 −0.00018 0.6250 4m 3s 0.6000 0.7500

10 Sigmoid 0.2503 0.0018 0.5000 3m 25s 0.5000 1

Tan-h 0.2505 −0.0006 0.7750 3m 25s 0.3333 0.2500

20 Sigmoid 0.2508 0.0023 0.2500 3m 19s 0.3333 0.5000

Tan-h 0.2503 −0.0031 0.5000 3m 24s 0.5000 0.5000

30 Sigmoid 0.2508 −0.0023 0.6250 3m 17s 0.6667 0.5000

Tan-h 0.2505 −0.005 0.6250 3m 29s 0.6000 0.7500

40 Sigmoid 2.51E-01 3.12E-04 0.5000 3m 28s – 0

Tan-h 0.2506 −0.0001 0.5000 3m 29s – 0

50 Sigmoid 2.50E-01 3.27E-04 0.5000 3m 21s 0.5000 1

Tan-h 2.51E-01 −1.59E-03 0.5000 3m 39s 0.5000 0.2500

60 Sigmoid 2.51E-01 −2.29E-03 0.6250 3m 23s 0.6667 0.5000

Tan-h 2.51E-01 1.96E-03 0.6250 3m 38s 0.6000 0.7500

70 Sigmoid 2.50E-01 7.78E-04 0.5000 3m 25s 0.5000 0.5000

Tan-h 2.51E-01 1.52E-03 0.5000 3m 32s 0.5000 0.5000

80 Sigmoid 2.50E-01 −7.89E-03 0.6250 3m 21s 1 0.2500

Tan-h 2.50E-01 −3.38E-04 0.2500 3m 32s 0.2500 0.2500

90 Sigmoid 2.51E-01 2.98E-03 0.2500 3m 25s 0.3333 0.5000

Tan-h 2.51E-01 1.34E-03 0.5000 3m 32s 0.5000 0.2500
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The comparison results for accuracy measurement for proposed hybrid network and conventional
network are also illustrated in Fig. 4. From the graph it is evident that the proposed hybrid LSTM
network shows better accuracy values of 87.5% for sigmoid PSO for load 10 and ReLU-Cuckoo for load
40. Consequently, the second highest value of 75% is identified with the customized activation functions
like tanh-Firefly, tanh-Cuckoo, tanh-PSO, and tanh-ACO, Sigmoid-Cuckoo, Sigmoid-ACO, Sigmoid-
Firefly, ReLU-Firefly, ReLU-Cuckoo, ReLU-ACO and ReLU-PSO. Thus, from the graph it is evident that
the recommended hybrid LSTM network model shows better performance results when compared to the
conventional LSTM network.

5 Conclusion

In this study, the proposed hybrid LSTM network model along with different swarm intelligence
algorithms has been evaluated for the fault diagnosis of the gearbox. In order, to address the challenges
of over-fitting and enhancing the performance of conventional LSTM with a tiny training set, swarm
intelligence optimization algorithms such as PSO, Cuckoo, Firefly and ACO along with ReLU activation
function have been considered. From the evaluated results highest accuracy of 87.5% has been achieved
with both Sigmoid-PSO and ReLU-Cuckoo customized activation functions. The results highlight that the
proposed method would achieve higher accuracy in condition monitoring of gears for fault diagnosis.
Comparative studies have also indicated that results of hybridization optimized with swarm intelligence
are superior to the conventional LSTM model.
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