
Improving the Detection Rate of Rarely Appearing Intrusions in Network-Based
Intrusion Detection Systems

Eunmok Yang1, Gyanendra Prasad Joshi2 and Changho Seo3,*

1Department of Financial Information Security, Kookmin University, Seoul, 02707, Korea
2Department of Computer Science and Engineering, Sejong University, Seoul, 05006, Korea
3Department of Convergence Science, Kongju National University, Gongju, 32588, Korea

�Corresponding Author: Changho Seo. Email: chseo@kongju.ac.kr
Received: 29 July 2020; Accepted: 11 September 2020

Abstract: In network-based intrusion detection practices, there are more regular
instances than intrusion instances. Because there is always a statistical imbalance
in the instances, it is difficult to train the intrusion detection system effectively. In
this work, we compare intrusion detection performance by increasing the rarely
appearing instances rather than by eliminating the frequently appearing duplicate
instances. Our technique mitigates the statistical imbalance in these instances. We
also carried out an experiment on the training model by increasing the instances,
thereby increasing the attack instances step by step up to 13 levels. The experi-
ments included not only known attacks, but also unknown new intrusions. The
results are compared with the existing studies from the literature, and show an
improvement in accuracy, sensitivity, and specificity over previous studies. The
detection rates for the remote-to-user (R2L) and user-to-root (U2L) categories
are improved significantly by adding fewer instances. The detection of many
intrusions is increased from a very low to a very high detection rate. The detection
of newer attacks that had not been used in training improved from 9% to 12%.
This study has practical applications in network administration to protect from
known and unknown attacks. If network administrators are running out of
instances for some attacks, they can increase the number of instances with rarely
appearing instances, thereby improving the detection of both known and unknown
new attacks.

Keywords: Intrusion detection; statistical imbalance; SMO; machine learning;
network security

1 Introduction

Network security is becoming a matter of global interest and importance, as evidenced by the fact that
network intruders are now regularly making the headlines. As more and more different devices are connected
to the network, the network administrator needs a way to determine that the data passing through the network
is not an intrusion. Intrusion detection systems (IDSs) can be classified into host-based and network-based
detection systems. A host-based IDS basically monitors and analyzes intrusions within a machine. A

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computers, Materials & Continua
DOI:10.32604/cmc.2020.013210

Article

echT PressScience

mailto:chseo@kongju.ac.kr
http://dx.doi.org/10.32604/cmc.2020.013210
http://dx.doi.org/10.32604/cmc.2020.013210


network-based intrusion detection system (NBID) monitors and analyzes network traffic to protect a system
from network-based threats. It reads all inbound packets and looks for suspicious patterns. Although NBIDs
can detect known intrusions, detecting unknown new intrusions (UNI) is also very important. If the intrusion
instance is known, the network administrator can easily protect network resources with an IDS. However, as
the number and types of devices connected to the network increase, UNI may also increase. Detecting new
intrusions (NIs) is a challenge.

IDSs have been studied extensively based on the KDDCup’99 and the NSL-KDD datasets, which are
datasets collected from network traffic. Some researchers have pointed out the class imbalance issue in
the KDDCup’99 dataset [1]. NSL-KDD resolves the statistical imbalance by removing the duplicate
instances of the dataset [2]. There are several types of attacks: Denial of service (DoS), user to root
(U2R), probe, and remote to user (R2L). In a DoS attack, the attacker makes the system too busy to
handle legitimate requests. In a U2R attack, the attacker gains root access to the system with a normal
user account. In the R2L attack, the attacker consistently sends packets/requests to a machine set up
locally in order to acquire access as a local user. Finally, in a probe attack, the attacker tries to
compromise the service either through probing or through discovering the network configuration.

There is always an imbalance between intrusion and normal instances in organizations that manage
network traffic and detect intrusions. In the real world, most instances are normal. Furthermore, instances
of intrusion methods that are technically simple and have been known for a long time are more frequent
than instances of complex and unfamiliar NIs.

A machine learning model trained with a disproportionate ratio of data can have a negative effect on
classification performance. This kind of issue is called a class imbalance issue [3]. There are several
methods to deal with this issue. One way to solve the class imbalance issue is to give more weight to the
data with a smaller number of observations. Another way is to adjust the training data to create the
model, using methods such as upsampling, downsampling, or synthetic minority over-sampling
Technique (SMOTE). However, these techniques cannot solve the class imbalance issue completely.
Upsampling extracts more samples from a small amount of data, which may cause overfitting problems.
Downsampling extracts a large amount of data, which may cause information loss. SMOTE oversamples
the minority class by taking each minority class sample and introducing synthetic examples along the line
segments joining the k minority class’s nearest neighbors. The k nearest neighbors are randomly chosen
based on the required oversampling. SMOTE can increase the overlapping class and can introduce
additional noise [4].

Generally, UNI are a variant of known intrusions; this means that IDSs have to have a good detection
capacity against known intrusions and should actively cope with new intrusion [5–8]. In the real world,
network administrators do not use a statistical algorithm to solve the class imbalance issue. In this work,
we proposed a method by which the network administrator can increase intrusion detection by increasing
the number of instances increasing the number of instances of very infrequent attack types without using
statistical techniques.

In this work, to resolve class imbalance in the KDDCup’99 dataset without removing duplicate data,
very small intrusion instances are increased by certain factors, but large intrusions such as normal,
neptune, smurf, ipsweep, and portsweep are unchanged. Increasing various steps from by a factor of 5 to
10 leads to improvement in the detection rate of infrequent intrusions.

We compare the intrusion detection rate of known intrusions with UNI at each step. To the best of our
knowledge, there exists no statistical analysis that addresses the class imbalance issue by increasing the
number of very small instances without removing duplicate data from the dataset. There has also never
been an attempt to detect UNI. Most studies in the literature have used the KDDCup’99 10% or corrected
dataset for training, and also a mixed (10% and corrected) dataset [5,9–13]. However, to represent

1648 CMC, 2021, vol.66, no.2



intrusion instances accurately, we have used the full data for the training, and corrected data that includes
unknown intrusions for testing. These unknown intrusions in the test dataset are not included in the
training. Although the proposed method is time-consuming and requires computational resources, it is
valuable because in real life it is very important to detect rare small instances.

If intrusions are detected by category, the most frequent instances will have a significant impact on the
detection rate because of class imbalance. There is a significant advantage to doing intrusion detection by its
type. This approach can provide a specific detection rate even if the proportion of instances is small. Most of
the studies that use KDDCup’99 datasets for intrusion detection detect attacks by category. In contrast, our
proposed method detects these by intrusion type.

We propose a method that does not require complex knowledge of attacks, so that network
administrators can easily implement it in their system. This method mitigates imbalance issue without
removing duplicate data. It can be used efficiently in a NBID. Network administrators can easily
implement the proposed method in firewall hardware for rare known attacks, and also for UNI. The
proposed method detects intrusions by intrusion type.

The rest of the paper is organized as follows. Section 2 describes related literature. Section 3 explains the
composition of the experimental dataset. The experimental method is described in Section 4. Section
5 discusses the experimental results, and finally, Section 6 concludes the paper.

2 Related Work

IDSs are increasingly becoming essential with the massive growth of computer network usage and the
huge increase in the number of applications running on these networks. Many studies on NBIDs have been
done, both in academia and in industries, to mitigate the problem of intruders. Some of these efforts, reported
in the literature, are summarized as follows.

Nadiammai et al. [14] did an experiment using 10-fold cross-validation. They selected 7,500 instances
out of 311,029 corrected datasets (corrected.gz). The performance of the algorithm was measured using
D-TNE, OneR, JRIP, Part, Ridor, ZeroR, Conjunctive Rule, Decision Table, NNge, MLP, SMO, and
REFNW. The mean absolute error (MAE), root mean square error (RMSE), accuracy, sensitivity, and
specificity were used for comparison to assess the detection performance. Singh and Bansal [9] published
an article comparing the detection performance for each category of attack using RBF Network, Voted
Perceptron, Logistic, and Multilayer Perceptron algorithms. They evaluated and compared accuracy,
kappa statistic, mean absolute error, root mean squared error, relative absolute error, root relative squared
error, and time taken. Their experiment was based on the Weka artificial neural network and used a set of
NSL-KDD data. Garg et al. [10] evaluated the performance of each category of attack using randomly
selected instances from the NSL-KDD dataset with 45 algorithms provided by Weka. The performance
was evaluated according to accuracy, receiver operating characteristics (ROC) value, kappa, training time,
mean absolute error, false-positive rate (FPR), and recall value.

Ramakrishnan et al. [11] used corrected.gz as the training data and KDDCup.data 10 percent.gz as the
test data. They used the fuzzy algorithm and jFuzzyLogic. This work is based on differentiation on labels
rather than categories. Venkata Lakshmi et al. [12] used 10 classification algorithms, including SMO of
Weka, on the KDDTrain 20% dataset. Their comparison indexes were percent correct, F-measure, irrecall,
irprecision, and area under ROC (AUC) for each category of attacks. Hassan et al. [15] used intrusion
detection for each category of the KDDCup’99 dataset. The algorithm compares the correct classification
using SMO, J48, random tree, rep tree, random forest, simple chart, J48 graft, naive Bayes, and RBF
network. Ertam et al. [16] used 10% of the data from the KDDCup’99 dataset while using Weka. They
compared the results by category of intrusions using naive Bayes (NB), Bayes NET (bN), random forest

CMC, 2021, vol.66, no.2 1649



(RF), multilayer perception (MLP), and sequential minimal optimization (SMO). Performance comparison
indexes are false rate, precision, recall, F-measure metrics, and accuracy. Seo [17] used TensorFlow’s
MLP and RNN for intrusion detection. The training used kddcup.data.gz from the KDDCup’99 dataset,
and the test detected 23 attacks from corrected.gz. The detection results were compared with the previous
studies in terms of precision, recall, and F1-score. In addition, the SMOTE algorithm [18–20] was used
to solve the data imbalance problem.

Tab. 1 compares various related works reported in the literature. In Tab. 1, training datasets and test
datasets are used in various ways. Many researchers used 10% or 20% of the corrected datasets. These
training and test datasets are arbitrarily extracted and used. Nevertheless, there have also been studies that
used attack labels for detection. Most of the papers have used its category to detect intrusions. The
machine learning algorithms used for intrusion detection were also diverse. The program tools can be
categorized into customized tools, TensorFlow-based tools, and Weka-based tools [15,21]. However, there
is little research on the detection rate of NIs after training with known attacks [22].

Because of the class imbalance in the KDDCup’99 dataset, most of the existing machine-learning-based
intrusion detection research reports in the literature use various methods to create sub-datasets, and then train
for intrusion detection. To the best of our knowledge, there are not many studies on the detection of rare
UNIs. In addition, there are few studies on detecting intrusions that had not been used for training.

3 Description of the Dataset

The KDDCup’99 dataset is the most widely used dataset for the evaluation of anomaly detection [15].
This dataset has been developed based on the DARPA 98 dataset at the MIT Lincoln Laboratory [1],
produced by the DARPA (1998) Intrusion Detection Evaluation Program. It included nine weeks of raw
TCP dump data for a local area network (LAN) simulating a typical US Air Force LAN. The LAN was

Table 1: Comparison of related work

Authors Year Algorithms Detection
Classification

Dataset Tool & Train
Data

Test Data Measure
performance

Nadiammai, G.
V. & Hemalatha,
M.

2012 MLP, SMO, ZeroR,
etc.

All instance KDDCup’99 corrected.gz
(Random
(7,500 instance))

10-fold cross
validation

Accuracy, Sensitivity,
Specificity, etc.

Singh, S. &
Bansal, M

2013 MPNN, RBFNN,
Logistic, Voted
Perception, etc.

All instance NSL-KDD Weka,
KDDTrain +
_20Percent

41 attributes in this
dataset, out of which
12 attributes

Accuracy, Kappa
Statistic, Mean
Absolute Error, etc.

Garg, T. &
Khurana, S. S.

2014 45 algorithms
provided by Weka

All instance NSL-KDD Weka,
KDDTrain

Accuracy, Recall,
Precision, Training
Time, etc.

Venkata
Lakshmi, S. &
Edwin
Prabakaran

2015 Random Forest,
J48, Simple Cart,
etc.

Category NSL-KDD-
KDDTrain +
_20Percent

Weka,
25192 instances

10-fold cross
validation

Percent correct, F-
Measure, Irprecision,
Irrecall AUC

Hassan, A. A.
Sheta, A. F. &
Wahbi, T. M.

2017 J48 graft, Random
forest, SMO,
Random tree

All instance,
Category

KDDCup’99 Weka,
KDDCup’99

10-fold cross-
validation

Accuracy

Ertam, F. &
Yaman, O.

2017 MLP. SMO, RF,
bN, NB

Category KDDCup’99 Weka, kddcup.
data_10_percent.
gz

5-fold cross
validation

Precision, FPR, Recall,
F-measure

J. H. Seo. 2018 MLP, RNN Category KDDCup’99 TensorFlow,
kddcup.data.gz

corrected.gz
(23 attacks)

Precision, Recall, F1-
score

1650 CMC, 2021, vol.66, no.2



operated as if it were a true Air Force environment, but peppered with multiple attacks. Protocols such as
TCP, UDP, and ICMP had been used on this dataset to evaluate the intrusion detection methods. The full
KDDCup’99 dataset (uncompressed file kddcup.data.gz) has 4,898,431 records, and each record contains
41 features. Since the KDDCup’99 dataset contains so much data, many authors used a reduced version
of the KDDCup’99 dataset (uncompressed file kddcup.data 10 percent.gz) to reduce the computation
time. The kddcup.data 10 percent.gz is about 10% of the KDDCup’99 dataset, and contains
494,021 records, of which 97,278 are normal (19.6%) and 396,743 are intrusions (80.4%). In the reduced
version, the normal, neptune, smurf, ipsweep, nmap, portsweep, and satan instances are reduced.
However, because even rare intrusion instances may severely compromise security, we used the full
dataset for our experiments.

Instead of ignoring small number of instances, we increased their numbers to decrease the class
imbalance. The details of kddcup.data.gz and kddcup.data 10 percent.gz are compared in Tab. 2.

Table 2: kddcup.data.gz vs. kddcup.data 10 percent.gz of the record count

Category Label kddcup.data.gz kddcup.data_10_percent.gz

Count Rate Count Rate

NOR normal. 972,781 19.8590 97,278 19.6911

DoS

back. 2,203 0.0450 2,203 0.4459

land. 21 0.0004 21 0.0043

neptune. 1,072,017 21.8849 107,201 21.6997

pod. 264 0.0054 264 0.0534

smurf. 2,807,886 57.3222 280,790 56.8377

teardrop. 979 0.0200 979 0.1982

subtotal 3,883,370 79.2778 391,458 79.2391

Probe

ipsweep. 12,481 0.2548 1,247 0.2524

nmap. 2,316 0.0473 231 0.0468

portsweep. 10,413 0.2126 1,040 0.2105

satan. 15,892 0.3244 1,589 0.3216

subtotal 41,102 0.8391 4,107 0.8313

R2L

ftp_write. 8 0.0002 8 0.0016

guess_passwd. 53 0.0011 53 0.0107

imap. 12 0.0002 12 0.0024

multihop. 7 0.0001 7 0.0014

phf. 4 0.0001 4 0.0008

spy. 2 0.0000 2 0.0004

warezclient. 1,020 0.0208 1,020 0.2065

warezmaster. 20 0.0004 20 0.0040

subtotal 1126 0.0230 1,126 0.2279
(Continued)

CMC, 2021, vol.66, no.2 1651



Tab. 3 shows the known intrusions and UNI in the corrected version of the KDDCup’99 dataset
(corrected.gz). We used the corrected.gz dataset for testing. There were 292,300 known intrusions and
18,729 unknown intrusions used for testing.

Table 2 (continued).

Category Label kddcup.data.gz kddcup.data_10_percent.gz

Count Rate Count Rate

U2L

buffer_overflow. 30 0.0006 30 0.0061

loadmodule. 9 0.0002 9 0.0018

perl. 3 0.0001 3 0.0006

rootkit. 10 0.0002 10 0.0020

subtotal 52 0.0011 52 0.0105

Total 4,898,431 100.0000 494,021 100.0000

Table 3: Known intrusion and new intrusion of test data set (corrected.gz)

Known Intrusion New Intrusion

Category Label Count Rate Category label Count Rate

DoS back. 1,098 0.376 DoS apache2. 794 4.239

land. 9 0.003 mailbomb. 5,000 26.697

neptune. 58,001 19.843 processtable. 759 4.053

pod. 87 0.030 udpstorm. 2 0.011

smurf. 164,091 56.138 worm. 2 0.011

teardrop. 12 0.004

Subtotal 223,298 76.393

NOR normal. 60,593 20.730 NOR

Probe ipsweep. 306 0.105 Probe mscan. 1,053 5.622

nmap. 84 0.029 saint. 736 3.930

portsweep. 354 0.121

satan. 1,633 0.559

Subtotal 2,377 0.813

R2L ftp_write. 3 0.001 R2L httptunnel. 158 0.844

guess_passwd. 4,367 1.494 named. 17 0.091

imap. 1 0.000 sendmail. 17 0.091

multihop. 18 0.006 snmpgetattack 7,741 41.332

phf. 2 0.001 snmpguess. 2,406 12.846

warezmaster. 1,602 0.548 xlock. 9 0.048

Subtotal 5,993 2.050 xsnoop. 4 0.021

1652 CMC, 2021, vol.66, no.2



4 Experimental Method

In a typical IDS environment, a lot of duplicated traffic may occur. Therefore, we trained using the full data,
kddcup.data.gz, which contains many duplicate instances, as shown in Tab. 2. Most of the dataset (99.8579%)
consists of attacks (79.9999%: Neptune, smurf, ipsweep, portsweep, satan) and normal records (19.850%).

It is difficult to mitigate class imbalance during normal training, because land, ftp write, guess passwd,
imap, multihop, phf, spy, warezmaster, buffer overflow, loadmodule, perl, and rootkit attacks are very small
(less than 10,000 instances). For example, the number of instances of spy is 1,403,943 times smaller than
smurf, and 536,008 times smaller than neptune. The threshold value of 10,000 instances is a design
parameter for the intrusion detection experiments. In general, the problem of class imbalance in machine
learning is that the cost of predicting a smaller class is higher than the cost of predicting a larger class.
Therefore, the very small number of such instances in training may lead to non-training issues [17].

The experiment was carried out in four steps. In the first step, while making a training dataset, the attack
instances smaller than 10,000 were increased by five (i.e., α = 5) six times, i.e., until “+30 times” in Tab. 4, and
by 10 (i.e., α = 10) seven times, i.e., until “+100 times”. The multiplied values were added to the source values.
As shown in Tab. 4, each step was increased by α times the previous number, as in Eq. (1). The coefficient α is
the design parameter. We observed the intrusion detection rate by increasing the coefficient value by a unit of
five for the first six steps, and then by a unit of 10 for the other seven steps. Because there were minor changes
in detection rates when the coefficient value reached 30, the value of α was increased to 10 for the last seven
steps. There were almost no changes in the detection rate after the coefficient value becomes 100.

þa times ¼ sourceþ ða times�sourceÞ (1)

where α = 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100. Fig. 1 shows the block diagram of the data pre-
processing, and the classification model of the proposed IDS.

In the second step, the modified dataset was trained by the SMO algorithm of the Waikato Environment
for Knowledge Analysis (Weka) to generate the model. SMO is one of the most popular optimization
algorithms for solving the support-vector machine (SVM) quadratic programming (QP) problem. Training
an SVM requires the solution of a very large QP optimization problem. SMO breaks this huge QP
problem into a series of the smallest conceivable QP problems. To avoid complex numerical QP
optimizations, these small QP problems are solved analytically. Compared to other similar optimization
algorithms, SMO can handle very large training sets with the same amount of memory. Weka includes
many algorithms, and SMO is one of them. The training and testing data were evaluated using the SMO
classifier in Weka API.

Table 3 (continued).

Known Intrusion New Intrusion

Category Label Count Rate Category label Count Rate

U2R buffer_overflow. 22 0.008 U2R ps. 16 0.085

loadmodule. 2 0.001 sqlattack. 2 0.011

perl. 2 0.001 xterm. 13 0.069

rootkit. 13 0.004

Subtotal 39 0.013

Total 292,300 100.0 Total 18,729 100.0

CMC, 2021, vol.66, no.2 1653



T
ab

le
4:

S
te
ps

of
tr
ai
ni
ng

da
ta

st
at
is
tic
s
us
ed

to
ge
ne
ra
te

th
e
m
od
el

S
te
ps

A
tta
ck

ty
pe

↓

α
=
5

α
=
10

S
ou
rc
e

+
5

tim
es

+
10

tim
es

+
15

tim
es

+
20

tim
es

+
25

tim
es

+
30

tim
es

+
40

tim
es

+
50

tim
es

+
60

tim
es

+
70

tim
es

+
80

tim
es

+
90

tim
es

+
10
0

tim
es

N
ot
e

no
rm

al
.

97
2,
78
1

←
←

←
←

←
←

←
←

←
←

←
←

←
N
O
R

ba
ck
.

2,
20
3

13
,2
18

24
,2
33

35
,2
48

46
,2
63

57
,2
78

68
,2
93

90
,3
23

11
2,
35
3

13
4,
38
3

15
6,
41
3

17
8,
44
3

20
0,
47
3

22
2,
50
3

D
oS

la
nd
.

21
12
6

23
1

33
6

44
1

54
6

65
1

86
1

1,
07
1

1,
28
1

1,
49
1

1,
70
1

1,
91
1

2,
12
1

ne
pt
un
e.

1,
07
2,
01
7

←
←

←
←

←
←

←
←

←
←

←
←

←

po
d.

26
4

1,
58
4

2,
90
4

4,
22
4

5,
54
4

6,
86
4

8,
18
4

10
,8
24

13
,4
64

16
,1
04

18
,7
44

21
,3
84

24
,0
24

26
,6
64

sm
ur
f.

2,
80
7,
88
6

←
←

←
←

←
←

←
←

←
←

←
←

←

te
ar
dr
op
.

97
9

5,
87
4

10
,7
69

15
,6
64

20
,5
59

25
,4
54

30
,3
49

40
,1
39

49
,9
29

59
,7
19

69
,5
09

79
,2
99

89
,0
89

98
,8
79

ip
sw

ee
p.

12
,4
81

←
←

←
←

←
←

←
←

←
←

←
←

←
P
ro
be

nm
ap
.

2,
31
6

13
,8
96

25
,4
76

37
,0
56

48
,6
36

60
,2
16

71
,7
96

94
,9
56

11
8,
11
6

14
1,
27
6

16
4,
43
6

18
7,
59
6

21
0,
75
6

23
3,
91
6

po
rt
sw

ee
p.

10
,4
13

←
←

←
←

←
←

←
←

←
←

←
←

←

sa
ta
n.

15
,8
92

←
←

←
←

←
←

←
←

←
←

←
←

←

ft
p_
w
ri
te
.

8
48

88
12
8

16
8

20
8

24
8

32
8

40
8

48
8

56
8

64
8

72
8

80
8

R
2L

gu
es
s_
pa
ss
w
d.

53
31
8

58
3

84
8

1,
11
3

1,
37
8

1,
64
3

2,
17
3

2,
70
3

3,
23
3

3,
76
3

4,
29
3

4,
82
3

5,
35
3

im
ap
.

12
72

13
2

19
2

25
2

31
2

37
2

49
2

61
2

73
2

85
2

97
2

1,
09
2

1,
21
2

m
ul
tih

op
.

7
42

77
11
2

14
7

18
2

21
7

28
7

35
7

42
7

49
7

56
7

63
7

70
7

ph
f.

4
24

44
64

84
10
4

12
4

16
4

20
4

24
4

28
4

32
4

36
4

40
4

sp
y.

2
12

22
32

42
52

62
82

10
2

12
2

14
2

16
2

18
2

20
2

w
ar
ez
cl
ie
nt
.

1,
02
0

6,
12
0

11
,2
20

16
,3
20

21
,4
20

26
,5
20

31
,6
20

41
,8
20

52
,0
20

62
,2
20

72
,4
20

82
,6
20

92
,8
20

10
3,
02
0

w
ar
ez
m
as
te
r.

20
12
0

22
0

32
0

42
0

52
0

62
0

82
0

1,
02
0

1,
22
0

1,
42
0

1,
62
0

1,
82
0

2,
02
0

bu
ff
er
_o
ve
rfl
ow

.
30

18
0

33
0

48
0

63
0

78
0

93
0

1,
23
0

1,
53
0

1,
83
0

2,
13
0

2,
43
0

2,
73
0

3,
03
0

U
2L

lo
ad
m
od
ul
e.

9
54

99
14
4

18
9

23
4

27
9

36
9

45
9

54
9

63
9

72
9

81
9

90
9

pe
rl
.

3
18

33
48

63
78

93
12
3

15
3

18
3

21
3

24
3

27
3

30
3

ro
ot
ki
t.

10
60

11
0

16
0

21
0

26
0

31
0

41
0

51
0

61
0

71
0

81
0

91
0

1,
01
0

To
ta
l

4,
89
8,
43
1

4,
93
3,
23
6

4,
96
8,
04
1

5,
00
2,
84
6

5,
03
7,
65
1

5,
07
2,
45
6

5,
10
7,
26
1

5,
17
6,
87
1

5,
24
6,
48
1

5,
31
6,
09
1

5,
38
5,
70
1

5,
45
5,
31
1

5,
52
4,
92
1

5,
59
4,
53
1

1654 CMC, 2021, vol.66, no.2



In the third step, a test was performed using the test dataset with corrected labels (corrected.gz dataset).
In the fourth and final step, the unknown new attack types were changed to normal instances to detect unused
attack types. After being changed to normal instances, the NIs that had not been used for training were
detected. Tab. 4 shows the 13 levels of training data statistics used to generate the model.

Fig. 2 shows the ratio of the number of instances used in the experiment by eliminating the class
imbalance of the training data. The left side of the figure shows the total percentage of instances with
more than 10,000 instances, i.e., normal, neptune, smurf, ipsweep, portsweep, and satan. The right side of
the figure shows the percentage of the total small instances. The numbers on the right side of the figure
are total attacks.

The experiments are conducted on Weka 3.8 SMO, Windows 10 Enterprise edition, Intel i9-7940K
3.10 GHz, and 64 GB RAM.

5 Experimental Results

Tab. 5 shows the indicators for measuring the performance of the model. True positive (TP) represents
the condition when an instance is an intrusion and is classified as an intrusion. False negative (FN) is the
condition when the instance is an intrusion but is classified as normal. False positive (FP) is when the
instance is normal but classified as an intrusion. True negative (TN) is when the instance is normal and is
classified as normal. Tab. 5 shows the indicators for measuring the performance of the model.

Figure 1: An overall model of the proposed intrusion detection system

CMC, 2021, vol.66, no.2 1655



The following evaluation matrices are used to compare the performance of the proposed method with
existing methods. Recall or sensitivity or true positive rate (TPR) is the percentage of the intrusions that
are detected as intrusions. The recall is calculated as follows.

Figure 2: The percentage of the training data structure used in the model generation

Table 5: Confusion matrix

True Condition

Intrusion Normal

Predicted
Condition

Intrusion TP FP

Normal FN TN

1656 CMC, 2021, vol.66, no.2



Recall ¼ TP

TPþ FN
� 100 (2)

Specificity is the percentage of the normal instances that are detected as normal. Specificity is calculated
as follows.

Specificity ¼ TN

TNþ FP
� 100 (3)

Accuracy is the percentage of the intrusions that are detected as normal instances. This is calculated
as follows.

Accuracy ¼ TPþ TN

TPþ FPþ FNþ TN
� 100 (4)

As described in the introduction, most of the studies that have used KDDCup’99 datasets for intrusion
detection detected intrusions by category. However, the method we propose detects intrusions by intrusion
type. There is a significant advantage to intrusion detection by intrusion type. Because of class imbalance, if
intrusions are detected by category, the over-represented instances will have a significant impact on the
detection rate. Detecting intrusions by intrusion type, on the other hand, can provide a specific detection
rate even if the proportion of instances is small.

Our method does not easily lend itself to direct comparison with existing methods. This is because the
training dataset and test datasets are different, as shown in Tab. 1. Thus, existing methods are compared with
a similar training and test dataset and training methods using the 10/5-fold cross-validation method.

Tab. 6 compares the proposed method with previous studies. Among the three methods in the table,
Hassan A. used the KDDCup’99 data; Nadiammai G.V. used 7,500 randomly extracted instances from
the corrected.gz data; and Ertam F. trained using kddcup.data 10 percent.gz. The SMO algorithm using
Weka’s application programming interface (API) was used for the evaluation. The performance matrices’
accuracy, recall, and specificity were evaluated based on the 10/5-fold cross-validation test.

The results consist of 4,898,431 data entries extracted from kddcup.data.gz and analyzed with Weka’s
SMO algorithm for 10-fold cross-validation. Using the full version of KDDCup’99 (kddcup.data.gz)
produces higher accuracy, recall, and specificity.

Tab. 7 shows the model-specific test results. The test dataset is the result of the detection of known
attacks used for training the corrected dataset (corrected.gz).

Figs. 3 to 6 show the test result comparisons of intrusion detection rates in steps S00 to S13. Fig. 3 shows
the detection results for normal instances. The detection rate for source instances that do not increase is
98.44%. From +60 times, i.e., from the 9th level, the rate is 98.38%.

Table 6: Cross-validation comparison between previous research and the proposed method

Abbas Hassan [15] Nadiammai [14] Ertam [16] This paper

Accuracy 91.6114 97.78 99.88 99.9395

Recall 96.83 99.9345

Specificity 97.82 99.9596

Cross-validation
10-fold

Cross validation
10-fold

Cross validation
5-fold

Cross validation
10-fold

CMC, 2021, vol.66, no.2 1657



Fig. 4 shows the detection rate with increasing instances from the DoS category. Smurf (100%) and land
(99.8%) attacks had a high detection rate for source instances. The back attack was improved from 60.56% in
source to 99.54% in +10 times. The detection rate of pod and teardrop instances in +5 times, i.e., the second
level, was 100%.

Fig. 5 shows the probing category detection rates by attack type. Probe attacks had a high detection rate
in the source. We increased the instances of nmap attacks among four probe attack types. However, the result
shows that there was no change in the detection rate of probe attacks with high detection rates.

Fig. 6 shows the detection rates by attack type in the R2L category. The source of the R2L category had a
very low detection rate. The guess_passwd attack was 0% until +5 times (first level). After +50 times (eighth
level), it was about 12.6%.

Table 7: Test results with known intrusions in corrected.gz (292,300 instances)

Steps
Attack type ↓

α = 5 α = 10

Record
count

Source +5
times

+10
times

+15
times

+20
times

+25
times

+30
times

+40
times

+50
times

+60
times

+70
times

+80
times

+90
times

+100
times

Note

normal. 60,593 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 NOR

back. 1,098 0.606 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 DoS

land. 9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

neptune. 58,001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

pod. 87 0.931 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

smurf. 164,091 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

teardrop. 12 0.833 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ipsweep. 306 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 Probe

nmap. 84 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988

portsweep. 354 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994

satan. 1,633 0.940 0.940 0.941 0.940 0.941 0.941 0.940 0.941 0.941 0.941 0.941 0.941 0.940 0.941

ftp_write. 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.333 0.333 0.333 0.333 R2L

guess_passwd. 4,367 0.000 0.000 0.000 0.105 0.114 0.114 0.114 0.115 0.127 0.128 0.127 0.127 0.127 0.127

imap. 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

multihop. 18 0.000 0.167 0.167 0.222 0.222 0.222 0.222 0.222 0.500 0.444 0.389 0.389 0.389 0.389

phf. 2 0.000 0.000 0.000 0.000 0.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

spy.

warezclient.

warezmaster. 1,602 0.001 0.483 0.476 0.458 0.506 0.494 0.502 0.567 0.579 0.589 0.589 0.589 0.589 0.590 U2L

buffer_overflow. 22 0.000 0.227 0.409 0.409 0.455 0.364 0.318 0.455 0.409 0.409 0.409 0.409 0.409 0.409

loadmodule. 2 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

perl. 2 0.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

rootkit. 13 0.000 0.154 0.154 0.154 0.154 0.308 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462

Figure 3: Test results of normal instance detection rate

1658 CMC, 2021, vol.66, no.2



Figure 5: Detection rate test results of various attack types in the probe category

Figure 4: Detection rate results of various instance types in a DoS attack

Figure 6: Test results of various attack types in R2L

CMC, 2021, vol.66, no.2 1659



In an imap attack, the source and the increased number of instances had the same detection rate, i.e., 0%.
This may be because there was only one test instance, as in Tab. 3. The multihop attack had a detection rate of
0% for source, and a detection rate of 16.67% for +5 times and +10 times. The detection rate after +15 times
to +40 times was 22.22%, and the detection rate for +50 times was 50%. However, the detection rate after
+70 times fell to 38.89%.

In a phf attack, the detection rate was 0% until +20 times, and 50% after +25 times. The source detection
rate of the warezmaster attack was 0%, the detection rate of +5 times was 48.31%, and from +70 times, the
detection rate was 58.93%.

Fig. 7 shows the U2L category detection rate by attack type. The source detection rate of the U2L
category was 0%, and the detection rate remained very low in general, as in the R2L category. The
detection rate of the buffer overflow attack was 22.73% for +5 times, 40.10% for +10 times, 45.45% for
+40 times, and 40.91% after +50 times.

The loadmodule attack had a detection rate of 100% after +5 times. The perl attack had a detection rate
of 50% after +5 times. Finally, the rootkit attack had a detection rate of 15.38% at +5 times and 46.15% at
+30 times.

Tab. 8 shows the number and ratio of instances of detection of UNIs. The new intrusion types (apache2.,
httptunnel., mailbomb., mscan., named., processtable., ps., saint., sendmail., snmpgetattack., snmpguess.,
sqlattack., udpstorm., worm., xlock., xsnoop., xterm.) were changed to normal, and then the system was
tested. The number of instances that were changed to normal was 18,729. In the source, 1,827 of
18,729 instances were detected as NIs, and the detection rate of NIs was 9.755%. The new intrusion
detection rate rose to 9.878% after +5 times. After +15 times, the detection rate rose to 11.453%. After
+20 times, the detection rate was 12.11%. After +50 times, the detection rate was 12.174% (2,272/
18,729), which was the highest rate achieved for NIs. Without the use of special algorithms such as
SMOTE, network administrators can easily add statistically unbalanced data to improve the detection of
unknown intrusions by 2.419%.

Tab. 9 compares 10% of the KDDCup’99 dataset processing using SMOTE, and the full dataset
processing using simple increment-based SMO. The results are compared by attack category in terms of
the RNN, SVM, and SMO algorithms.

Figure 7: Test results of various attack types in U2L

1660 CMC, 2021, vol.66, no.2



6 Conclusions

Intrusion detection research using machine learning extracts arbitrary instances from a dataset or uses
SMOTE algorithms to increase instances to train and test models. In this paper, we proposed and tested a
method by which the network administrator can increase intrusion detection by increasing the number of
instances of very rare attack types without using statistical techniques. We compared the detection rates
by increasing the instances in 13 levels, increased by 5 each time. The results show that this method
increased the system’s ability to detect intrusions. It also increased the detection rate of NIs that had not
been used in training.

Our experiments show that the detection rate of attacks in the DoS category is generally high, while the
back attack has a relatively low detection rate. When the number of back attack instances was increased by
+10 times, the detection rate increased from 60.56% to 99.54%. The detection rate of the teardrop attack was
83.33%, and it rose to 100% with a +5 times increase of instances. In the R2L category, the source detection
rate was almost 0%, but it was greatly improved by increasing the number of instances. In particular, the
multihop attack was improved from 0% to 50% when the instance is increased by +50 times. The
detection rate of the source of the U2L attack category was 0%, but the detection rate of the buffer
overflow attack was improved to 45.45% by increasing the instances. The detection rate of the perl
attack was 50%, and the detection rate of the rootkit attack was 45.15%. Notably, the detection rate of
the loadmodule attack was improved by 100%. The detection rates of R2L and U2L attacks
were significantly improved when the training was performed by increasing the number of instances of
the rare attacks.

In the future, we hope to compare the existing methods with the proposed method in terms of
computation complexity and overheads, so as to identify the potential tradeoffs. We will use the same

Table 8: New intrusion detection

Source +5
times

+10
times

+15
times

+20
times

+25
times

+30
times

+40
times

+50
times

+60
times

+70
times

+80
times

+90
times

+100
times

New intrusion
detection
number of instances

1,827 1,850 1,855 2,145 2,268 2,268 2,271 2,276 2,280 2,277 2,277 2,277 2,276 2,279

Rate of new intrusion
detection

9.755 9.878 9.904 11.453 12.110 12.110 12.126 12.152 12.174 12.158 12.158 12.158 12.152 12.168

Table 9: Comparison of SMOTE with the proposed method

Dataset & Algorithms
Category

KDDCup’99 10% Dataset Processing (SMOTE) Full Dataset Processing
(Simple Increment)

RNN [14] SVM [16] SMO (this paper)
Recall

Normal 0.98 0.99 0.98(0.9843, +05 times)

DoS 1.00 0.87 1.00(0.9989, +05 times)

Porbe 0.99 0.92 0.98(0.9792, +10 times)

R2L 0.22 0.19 0.32(0.3231, +70 times)

U2L 0.72 0.46 0.60(0.6040, +40 times)

CMC, 2021, vol.66, no.2 1661



detection technique on preprocessed datasets to evaluate the performance. We will also use the cross-
validation method to test the classifier and compare our method with other recently proposed approaches.

Funding Statement: This work was supported by the Institute for Information and Communications
Technology Planning and Evaluation (IITP) funded by the Korea Government (MSIT) under Grant
20190007960022002 (2020000000110).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] UCI, “KDD Cup 1999 Data,” 1999. [Online]. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[2] Datasets, “NSL-KDD dataset,” 2020. [Online]. Available: https://www.unb.ca/cic/datasets/nsl.html.

[3] Z. Hu, R. Chiong, I. Pranata, Y. Bao and Y. Lin, “Malicious web domain identification using online credibility and
performance data by considering the class imbalance issue,” Industrial Management & Data Systems, vol. 119,
no. 3, pp. 676–696, 2019.

[4] B. S. Raghuwanshi and S. Shukla, “SMOTE based class-specific extreme learning machine for imbalanced
learning,” Knowledge-Based Systems, vol. 187, no. 2020, pp. 1–17, 2020.

[5] M. Ring, S. Wunderlich, D. Scheuring, D. Landes and A. Hotho, “A survey of network-based intrusion detection
data sets,” Computers & Security, vol. 86, no. 2019, pp. 147–167, 2019.

[6] R. Patil, H. Dudeja and C. Modi, “Designing an efficient security framework for detecting intrusions in virtual
network of cloud computing,” Computers & Security, vol. 85, no. 2019, pp. 402–422, 2019.

[7] S. Kim, C. Hwang and T. Lee, “Anomaly based unknown intrusion detection in endpoint environments,”
Electronics, vol. 9, no. 6, pp. 1–19, 2020.

[8] Y. Li, Y. Xu, Z. Liu, H. Hou, Y. Zheng et al., “Robust detection for network intrusion of industrial IoT based on
multi-CNN fusion,” Measurement, vol. 154, no. 2020, pp. 1–10, 2020.

[9] S. Singh and M. Bansal, “Improvement of intrusion detection system in data mining using neural network,”
International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 9, pp.
1124–1130, 2013.

[10] T. Garg and S. S. Khurana, “Comparison of classification techniques for intrusion detection dataset using
WEKA,” in Proc. ICRAIE-2014, Jaipur, India, pp. 1–5, 2014.

[11] S. Ramakrishnan and S. Devaraju, “Attack’s feature selection-based network intrusion detection system using
fuzzy control language,” International Journal of Fuzzy Systems, vol. 19, no. 2, pp. 316–328, 2017.

[12] S. Venkata Lakshmi and T. Prabakaran Edwin, “Performance analysis of multiple classifiers on KDD cup dataset
using WEKA tool,” Indian Journal of Science and Technology, vol. 8, no. 17, pp. 1–10, 2015.

[13] F. Ertam and O. Yaman, “Intrusion detection in computer networks via machine learning algorithms,” in Proc.
IDAP, Malatya, Turkey, pp. 1–4, 2017.

[14] G. V. Nadiammai and M. Hemalatha, “Perspective analysis of machine learning algorithms for detecting network
intrusions,” in Proc. ICCCNT’12, Tamilnadu, India, pp. 1–7, 2012.

[15] A. Abbas Hassan, A. F. Sheta and T. M. Wahbi, “Intrusion detection system using WEKA data mining tool,”
International Journal of Science and Research, vol. 6, no. 2017, pp. 2319–7064, 2017.

[16] F. Ertam and O. Yaman, “Intrusion detection in computer networks via machine learning algorithms,” in Proc.
IDAP, Malatya, Turkey, pp. 1–4, 2017.

[17] J. H. Seo, “A comparative study on the classification of the imbalanced intrusion detection dataset based on deep
learning,” Journal of Korean Institute of Intelligent Systems, vol. 28, no. 2, pp. 152–159, 2018.

[18] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling
technique,” Journal of Artificial Intelligence Research, vol. 16, no. 2002, pp. 321–357, 2020.

1662 CMC, 2021, vol.66, no.2

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html


[19] N. V. Chawla, A. Lazarevic, L. O. Hall and K. W. Bowyer, “SMOTEBoost: Improving prediction of the minority
class in boosting,” in Proc. PKDD 2003, Berlin, Germany, pp. 107–119, 2003.

[20] G. Ditzler and R. Polikar, “Incremental learning of concept drift from streaming imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 10, pp. 2283–2301, 2013.

[21] U. Modi and A. Jain, “A survey of IDS classification using KDD CUP 99 dataset in WEKA,” International
Journal of Scientific & Engineering Research, vol. 6, no. 11, pp. 947–954, 2015.

[22] X. Gan, J. Duanmu, J. Wang andW. Cong, “Anomaly intrusion detection based on PLS feature extraction and core
vector machine,” Knowledge-Based Systems, vol. 40, no. 2013, pp. 1–6, 2013.

CMC, 2021, vol.66, no.2 1663


	Improving the Detection Rate of Rarely Appearing Intrusions in Network-Based Intrusion Detection Systems
	Introduction
	Related Work
	Description of the Dataset
	Experimental Method
	Experimental Results
	Conclusions
	References


