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Abstract: Diabetic retinopathy (DR) is a disease with an increasing prevalence
and the major reason for blindness among working-age population. The possibi-
lity of severe vision loss can be extensively reduced by timely diagnosis and treat-
ment. An automated screening for DR has been identified as an effective method
for early DR detection, which can decrease the workload associated to manual
grading as well as save diagnosis costs and time. Several studies have been carried
out to develop automated detection and classification models for DR. This paper
presents a new IoT and cloud-based deep learning for healthcare diagnosis of Dia-
betic Retinopathy (DR). The proposed model incorporates different processes
namely data collection, preprocessing, segmentation, feature extraction and clas-
sification. At first, the IoT-based data collection process takes place where the
patient wears a head mounted camera to capture the retinal fundus image and send
to cloud server. Then, the contrast level of the input DR image gets increased in
the preprocessing stage using Contrast Limited Adaptive Histogram Equalization
(CLAHE) model. Next, the preprocessed image is segmented using Adaptive Spa-
tial Kernel distance measure-based Fuzzy C-Means clustering (ASKFCM) model.
Afterwards, deep Convolution Neural Network (CNN) based Inception v4 model
is applied as a feature extractor and the resulting feature vectors undergo classi-
fication in line with the Gaussian Naive Bayes (GNB) model. The proposed mod-
el was tested using a benchmark DR MESSIDOR image dataset and the obtained
results showcased superior performance of the proposed model over other such
models compared in the study.

Keywords: Deep learning; classification; GaussianNaive Bayes; feature extraction;
diabetic retinopathy

1 Introduction

Internet of Things (IoT) refers to the practice of designing and molding Internet-connected Things
through computer networks. The term ‘IoT’ signifies that instead of using smaller effective gadgets like
laptop, tablet as well as smart phone, it is better to use a number of minimum efficient devices namely,
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wrist band, AC, umbrella, fridge and so forth. In this scenario, ‘Ubiquitous computing’ differs from IoT
including a factor that IoT is established over a wider application of online connections. Further, the word
‘Thing’ refers to objects that exist in real-time applications and receive inputs from humans. It then
converts the obtained data to Internet in order to perform data collection as well as computing tasks [1].
Here, IoT as well as Cloud Computing (CC) are given equal weightage while combining the above
methodologies. The surveillance system has been designed by combining these two methods so as to
monitor patients’ details in an effective manner even from remote site which remains helpful for doctors.

IoT model often supports CC to improve the function with respect to higher resource application,
memory, power as well as computational ability. Furthermore, CC gains benefit from IoT by increasing
its scope to manage real-world applications and to offer multiple services in the form of dynamic as well
as distributed manner. The IoT-based CC would be expanded for developing new facilities and
applications in a modern platform.

Here, Diabetic Retinopathy (DR) is considered as the major reason for blindness even for people under
the age group of 18–25 years [2]. DR is one of the fatal complications that affect diabetic patients. Being a
complicated disease, DR cannot be recovered at the initial stages whereas diagnosis at the primary stage is a
mandatory one. But, it brings a notable complexity to the entire health care department in the form of less
availability of expert physicians while it affects a lot of patients. Another crucial factor associated in the
prediction of DR is Optic Disc (OD) that undergoes characterization under the application of increased
contrast among circular-shaped areas [3]. Here, OD is employed as a benchmark as well as a frame that
is used to diagnose critical eye diseases like glaucoma, and to verify the emergence of neovascularization
at OD. In addition, it has been applied to highlight the alternate structures like fovea. In normal retina,
the edge of the OD is clear and well-defined. Thus, it tends to develop automatic diagnostic system that
helps in the primary detection of DR.

Multiple techniques and hand-engineered features have been proposed to overcome the challenges
involved in efficient analysis of DR area in retinal fundus images. The hand-engineered features are often
applied along with conventional Machine Learning (ML) models and it remains helpful in the diagnosis
of DR functions. Various surveys have resulted in the application of classical techniques [4–7]. In the
recent times, the presence of massive datasets as well as enormous computation are provided by the
deployment of Graphics Processing Units (GPUs) which motivate on modeling the Deep Learning (DL)
models. It displays a remarkable process in different computer vision operations as well as it also earned
the desired success when compared with conventional hand-engineered-relied frameworks. Several DL-
based techniques are designed to examine the retinal fundus images and to develop automated Computer-
Aided Diagnosis (CAD) models for DR [8–22].

A novel technology was designed in the literature [8] to determine the disease intensity under cloud and
IoT applications. This technique was applied to predict the seriousness of the illness. The above technology
was deployed to take unique care of student’s and children’s health. In this study, a programmatic health
information, termed as student data, was created with the help of reputed UCI Repository as well as
sensors employed in medical domain. This was deployed also to forecast diverse ailments which have
been influenced by student with severity. Followed by, several other classification models were applied to
predict different types of diseases. The major application of this algorithm is the determination of
prediction accuracy using few attributes like F-measure, specificity as well as sensitivity. Consequently, it
is evident that the presented technique outperformed with respect to prediction accuracy when compared
with previous methodologies.

A review on CC and IoT methods was performed in the literature [9] along with a focus on security
problems. Furthermore, a list was also developed for the involvement of cloud with IoT. At last, it
inferred that the involvement of CC in processing IoT improvises the functions. A new multi-layer cloud
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method was modelled in the study [10] to enable efficient and logical communications across the identical
services offered by several vendors in modern home. As an inclusion, ontology was employed to solve the
heterogeneity problem that is projected in a layered cloud environment. Further, it is also helpful in
addressing the data representation, knowledge as well as heterogeneity, and labelled security model used
in ontology to support security as well as privacy conservation while processing the interoperation.

A scalable and novel three tier structure was proposed in the study [11] to record more amount of sensor
information. Initially, Tier-1 takes care of the data collection while the Tier-2 focuses on storing the collected
sensor data in CC. Finally, a new predictive method was deployed to detect the heart diseases. An effective
intelligence method in car camera surveillance was presented in Chen et al. [12] which leveraged mobile CC
technique. It is able to predict the things present in videos at the time of driving and decides the selective
portion of videos which has to be saved in cloud to record the local storage space of a system. This
method consists of data gathering, recognition and training stages. Consequently, the above model
achieved the best prediction performance.

A novel cloud-dependent parallel ML technique was proposed by the researchers [13] for the purpose of
machinery prognostics. Random Forest (RF) classifier method was used that is generally preferred in dry
milling processes. Furthermore, a similar RF technique was deployed by applying MapReduce and was
employed on Amazon Cloud. From the study results, it can be inferred that the RF classification model is
capable of providing accurate predictive results. Ghulam Muhammad et al. [14] conducted a study to
observe the voice pathology of human beings under cloud and IoT applications. This paper revealed the
possibility of presented voice pathology. Furthermore, a novel local binary pattern relied detection system
was projected to forecast the voice pathology inside the observing technique. Hence, the predicting
system attained the best classification accuracy when compared with previous alternate methods.

An internet-based observation method named ‘Healthcare Industrial IoT’ was proposed in the
study [15], which is mainly applied to monitor the health. The proposed method had the potential of
examining the patients’ health details to avoid fatal incidents. Therefore, it gathered the essential details
of the patients using sensors as well as medical facilities. But, the proposed method was integrated to
eliminate clinical errors whereas different similarities were found by applying security rules like
watermarking as well as signal improvements. A smart and collaborative security technique was proposed
in Islam et al. [16] to reduce the risk factors present in IoT-based healthcare platform. Additionally, the
proposed technique was defined with advanced techniques in IoT healthcare. A specific investigation was
conducted to provide an overview of state-of-the-art network environment, applications as well as
commercial increments in IoT-relied healthcare solutions.

A modern clinical analysis system known to be neuro-fuzzy temporal data presentation method
was presented in the previous study [17] to detect and diagnose diverse types of deadly diseases. Kakria
et al. [18] employed a novel online health care observation technology to monitor the remote heart
patients often using mobile phones and wearable sensors. Subsequently, Kim et al. [19] established a
technique to monitor the emergency scenario under the application of content of motion tracking disease
patients. Some other models are also found in Jebaseeli et al. [20]. Roychowdhury et al. [21] developed a
new DREAM: Diabetic Retinopathy Analysis Using Machine Learning model which investigates the
fundus images with varying illumination and fields of view. The severity level of DR can be generated by
the use of ML models such as Gaussian Mixture model (GMM), k-nearest neighbor (kNN), support
vector machine (SVM), and AdaBoost. Among the classifiers, GMM and kNN are found to be effective
while classifying bright and red lesions respectively. Adal et al. [22] has developed a robust and flexible
method to automatically detect the longitudinal retinal modifications because of small red lesions through
the utilization of the normalized fundus images. It reduces the illumination differences and enhances the
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contrast level of small retinal features. DR related variations are then detected depending upon the diverse
intensity and shape features using SVM model.

Though several works have been carried out to diagnose the disease remotely using IoT and cloud
platform, there is still a need to develop effective models to diagnose DR. The contribution of the study
is given here. This study introduces a new IoT and cloud-based DL model for healthcare diagnosis of
DR. The proposed model incorporates different processes namely data collection, preprocessing,
segmentation, feature extraction and classification. First, an IoT-based data collection process where an
IoT head mounted camera (IoT headset) is used to capture the fundus image. In the preprocessing stage,
the contrast level gets improved using the Contrast Limited Adaptive Histogram Equalization (CLAHE)
model. Next, the preprocessed image is segmented using Adaptive Spatial Kernel distance measure based
Fuzzy c-means clustering (ASKFCM) model. Afterwards, the deep Convolution Neural Network (CNN)
based Inception v4 model is applied as a feature extractor and the resultant feature vectors undergo
classification in line with the Gaussian Naïve Bayes (GNB) model. The proposed model was tested using
a benchmark DR image dataset and the obtained results showcased the superior performance of the
proposed model over other compared methods.

The rest of the sections are arranged as follows. Section 2 details the proposed model in a clear way.
Section 3 deals with the simulation analysis while the Section 4 draws the conclusion.

2 The Proposed Model

The overall process of the proposed work is shown in the Fig. 1. The proposed work operates on mainly
three layers such as data link, transport and application layer. The data collection process takes place at the
transport layer.

At first, the patient utilizes the blood glucose sensor to measure the glucose level present in the blood. It
is connected to a smart phone which easily classifies whether the patient suffers from Type I diabetes or Type
II diabetes. When the patient has been diagnosed with Type I diabetes, the patient is then recommended to
consult a doctor and undergo treatment. In other case, i.e., if the patient suffers from Type II diabetes, the
diagnosis for DR is done. In the diagnosis process, the fundus image is captured using IoT enabled head
mounted camera. It provides easier and fast access to DR remote screening and decrease the drawbacks
of classical eye examination. At the same time, the proposed disease diagnosis model also gets executed
in the cloud and the corresponding outcome, i.e., whether the patient suffers from DR or not, is provided
to the user as output.

2.1 IoT Architecture

The external as well as working processes of effective IoT network have three layers such as data link
layer, network layer and application layer.

1) Data link layer

Initially, the data link layer is composed of fundus images dataset, which are derived from patient details. It
is mainly used for analysis with the help of transport layer. In order to test this methodology, MESSIDOR DR
Dataset is applied. It includes a set of approximately 1,200 color fundus images with annotations in Excel file.

2) Network/Transport/Communication layer

Here, a cloud Server network is presented to host the applications. This layer can be used to transmit the
data among the tools as well as to reduce the delay time. Further, it also allows the user to monitor the
patient’s details which are recorded in databases.
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3) Application layer

This layer comprises a Graphical User Interface (GUI) including DR application that has been combined
with Python Programming in order to determine the fundus images. The application layer enables the patients
to upload fundus images for analysis [20]. Hence, the GUI application consists of the actual disease diagnosis
model which is explained in the following subsections.

Figure 1: The overall process of the proposed model
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2.2 CLAHE-Based Pre-Processing

CLAHE model is highly efficient in biomedical image analysis and is primarily used to improve the
contrast level of the image. This technique requires a set of two input variables namely, dimension of a
sub window and clip limit. In this process, the CLAHE model identifies the grid size of a window and
the grid values are also found from an uppermost left corner area of the image where the computation
begins from initial index of a window. Then, the size of the region w2 and clip limitsare calculated from
a generalized value of the image. For all grid points, the histogram of region H I½ �around the images is
determined. Later, the histogram which is present beyond the level of evaluated clip limits is clipped and
the Cumulative Distributive Function (CDF) is estimated. The CDF is estimated for pixel along with the
values derived from 0 to 255. Later, for every pixel, the four nearest neighboring grid points have to be
found. By applying the intensity rate, i.e., the pixel index as well as the mapping functions of the four
grid points, CDF measures are measured. Subsequently, the contextual pixel N and the newly created
pixel are interpolated. The same process is followed by transmitting the window to image. Though the
process is terminated, it still attains the final index of a window. CLAHE technique cannot save the
histogram that outstrips the clip limit; however, it can reorganize in an equal manner for all the histogram
bins. Therefore, the projected CLAHE model improves the segmentation outcome of the fundus image.

2.3 ASKFCM-Based Segmentation

The developed ASKFCM framework employs kernel technology to manipulate a spatial neighborhood
data. It constructs the patterns of feature space for a simple clustering as it amplifies the conversion of
patterns to feature space. Thus, ‘n’ data point of an input image, including D dimension, is denoted in
terms of pz¼ p1;::; pnf g; z ¼ 1; . . . n; pz � RD. Moreover, the first batch of the cluster centres are
presented with respect to wz0¼ w1;::; wnf g; z0 ¼ 1; . . . ; r; wz0 � RD:m is assumed to be the degree of
fuzzy membership function of pz, d manages the size of clustering fuzziness as well as it weighs the
exponential factor of fuzzy membership function, � is considered to be a neighbourhood pixel data and �pz
implies the adjacent pixel mean which is derived from pz. It can be defined by

�pz¼
Xn

z¼1
pz (1)

The objective function of a Gaussian FCM (GFCM) can be represented as

FGFCM¼
Xn

z¼1

Xr

z0¼1
md
zz0 pz�qz0k k2þ�

Xn

z¼1

Xr

z0¼1
md
zz0 �pz�wz0k k2 (2)

wz0¼
Pr

z0¼1 m
d
zz0 pz���pzk k2

1þ �ð ÞPr
z0¼1 m

d
zz0

(3)

uzz0¼
Pn

z¼1

Pr
z0¼1 m

d
zz0 pz�wz0k k2þ� �pz�wz0k k2

� � �1
d�1

Pr
l¼1 pz�wlk k2þ� �pz�wlk k2

� � �1
d�1

(4)

The Gaussian kernel distance can be elucidated by,

1� k pz; wzð Þ¼ 1� exp
� Pz�wz0k k

s2

� �
(5)
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s refers to the SD of the dispersing attribute.

s2¼ pz��pzk k2 (6)

Substituting the Euclidean distance pz�wz0 in Eq. (2) with the application of Gaussian kernel distance in
Eq. (5), it can be presented as

pz�wz0¼ 1� k pz;wz0ð Þ¼ 1� exp
� pz�wz0k k

s2

� �
(7)

The objective function of Gaussian Kernel distance value based FCM (GKFCM) is,

FGKFCM¼
Xn

z¼1

Xr

z0¼1
md
zz0 1� k pz;wz0ð Þð Þþ�

Xn

z¼1

Xr

z0¼1
md
zz0 1� k �pz;wz0ð Þð Þ (8)

Wz0¼
Pr

z0¼1 m
d
zz0 k pz;wz0ð Þpzþ�k �pz;wz0ð Þ�pzð ÞPr

z0¼1 m
d
zz0 k pz;wz0ð Þpzþ�k �pz;wz0ð Þð Þ (9)

uzz0¼ 1� k pz;wz0ð Þð Þþ� 1� k �pz;wz0ð Þð Þð Þ �1
d�1

Pr
d�1 1� k pz;wlð Þð Þþ� 1� k �pz;wlð Þð Þð Þ �1

d�1

(10)

The divided retinal blood vessel image is presented in feature space. FCM helps to arrange and combine
the relevant data points as clusters, which results in gradual minimization of cost function since it is based on
the pixels’ distance of cluster centres in feature space. In case of a non-linear map,f : p ! f pð Þ 2 f signifies
that the data points pointed in a feature dimension space are converted to greater dimensional feature space. A
spatial function joins the spatial membership functions of an adjacent pixel. Therefore, it replaces the kernels
of membership function presented in the Eqs. (11) and (8).

f pzð Þ�f wz0ð Þ2�� ��¼ k pz;pzð Þþk wz0 ;wj0
� �� 2k pz;wz0ð Þ (11)

In the Eq. (11), f represents the non-linear type of mapping data to feature space that exist in kernel k,
where k p; pð Þ¼ 1: Then, the objective function of the reduced SGKFCM can be defined by

FSGKFCM¼ 2
Xn

z¼1

Xr

z0¼1
md
zz0 1� k pz;wz0ð Þð Þ (12)

wz0 ¼
Pr

z0¼1 m
d
zz0k pz;wz0ð ÞpzPr

z0¼1 m
d
zz0k pz;wz0ð Þ (13)

uzz0¼ 1� k pz;wz0ð Þð Þ �1
d�1Pr

l¼1 1� k pz;wz0ð Þð Þ �1
d�1

(14)

Any pixel present in the nearby image consists of same feature data that has been connected
with maximum possibility. Thus, the spatial correlation of nearby pixel is an imperative feature of
dense application at the time of segmenting images. Also, the variable � influences the clustering
outcome. An alternate parameter b manages the adjacent pixels cluster as well as it eliminates the
dissimilar effect when the segmentation is being carried out. When the dataset of a cluster is high, then
the b value would be maximum. The robustness of cluster centre could be computed using
min 1� k wz0 ;wz0ð Þð Þ and max 1� k wl;�pð Þð Þ notations. Therefore, the objective function of bias has
been modelled and reduced under the application of ASKFCM. Hence, the objective function can be
expressed as,
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FASKFCM¼
Xn

z¼1

Xr

z0¼1
md
zz0 1� k pz;wz0ð Þð Þþ�

Xn

z¼1

Xr

z0¼1
bz0m

d
zz0 1� k �pz;wz0ð Þð Þ (15)

bz0z¼
min
z0 6¼z

1� k wz0 ;wz0ð Þð Þ
min
l

1� k wl; �pð Þð Þ (16)

wz0¼
Pr

z0¼1 m
d
zz0 k pz;wz0ð Þwz0þbzz0k �pz;wz0ð Þ�pz0
� �

Pr
z0¼1 m

d
zz0k pz;wz0ð Þþbz0k �pz;wz0ð Þ (17)

uzz0¼ 1� k pz;wz0ð Þð Þþbz0 1� k �pz;wz0ð Þð Þð Þ �1
d�1

Pr
l¼1 ð 1� k pz;wz0ð Þð Þþbz0 1� k �pz;wz0ð Þð ÞÞ �1

d�1

(18)

The objective function given in the Eq. (15) can be deployed to evaluate the quality of segmenting
dataset keen of clusters. The processing of the proposed clustering technique generates an optimal portion
with respect to reduction of weights present inside the cluster. Next to this, the spatial features improve
the possibility of adjacent pixel along with relevant features at the time of clustering process. Hence, the
experimented outcomes denote that a set of two parameters α and β are the most significant portions of
clustering simulation outcome. Based on the practical results, it is evident that the newly projected
ASKFCM along with spatial kernel data tend to enhance the computation when compared with alternate
traditional FCM models in the absence of spatial data.

2.4 CNN-Based Feature Extraction

CNN differs right starting from convolutional process to the analysis of max pooling layers and the way
of nets getting training. As shown in the Fig. 2, the network is composed with five layers of weights such as
input layer, conv layer C1, max pooling layer M2, full connection layer F3, as well as the output layer. Here,
u denotes every trainable attribute (weight measures), u ¼ ulf g and l ¼ 1; 2; 3; 4; where ul implies the
parameter set between I� 1ð Þth as well as lth layer.

In DR, every DR pixel sample can be considered as a 2 - dimensional image which has an equal height of
1, since 1D audio inputs are applied in audio analysis. Hence, the size of an input layer for ðn1; 1Þ, and nl
signify the band count. The initial hidden conv layer C1 extracts n1 � 1 input data including 20 kernels of
size k1 � 1. Followed by this, is the layer C1 which has 20 � n2 � 1 nodes, while n2 ¼ n1 � k1 þ 1. It
is comprised of 20 � k1 þ 1ð Þ training parameters between the layer C1 and input layer. The max pooling
layer M2 is assumed to be a second hidden layer, and the kernel size is k2; 1ð Þ. The layer M2 consists of

Figure 2: The architecture of CNN based feature extraction model
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20 � n3 � 1 nodes, and n3 ¼ n2
k2

: The fully connected layer F3 contains a set of n4 nodes whereas

20 � n3 þ 1ð Þ � n4 shows the readable parameters from current layer to layer M2. Subsequently, the
output layer is comprised of n5 nodes, and n4 þ 1ð Þ � n5 trainable parameters from present layer
and layer F3. Thus, the structure of the projected CNN classification contains a set
of 20 � k1 þ 1ð Þþð20 � n3 þ 1Þ � n4 þ n4 þ 1ð Þ � n5 trained parameters.

The classification of a particular DR pixel needs a relevant CNN including an aforementioned parameter,
where nl and n5 denote a spectral channel size as well as the count of external classes of a dataset,
correspondingly. Practically, k1 might be ½n1=9�, whereas n2 ¼ n1 � k1 þ 1: In this; n3 could be the
values among 30 and 40 as well as k2 ¼ ½n2=n3�:n4 remains fixed to 100. Hence, the options could be
optimal and efficient for a common HIS information. From this structure, it is clearly pointed that the
layers C1 and M2 can be observed as trainable feature extractors for input DR data, while layer F3 can
be assumed as a trainable classification for feature extractor. In this work, the CNN based Inception
v4 model is applied as the feature extractor [23]. The final outcome of sub sampling is an original feature
of actual information.

2.5 GNB Based Classification

Typically, it can be handled with frequent parameters from Naive Bayes (NB) classifier which tends to
apply Gaussian distributions to present the likelihoods of features constrained on the classes. Therefore,
every parameter is described using Gaussian PDF by,

Xl � N m; s2
� �

(19)

The Gaussian PDF consists of a shape of every bell that can be expressed below.

N m; s2
� �

xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e�
x�mð Þ2
2s2 (20)

where m represents mean and s2 implies variance. In NB, the required parameter should be in the order of n
(k), where n denotes the attribute count whereas k implies a number of classes. Particularly, a normal
distribution P XijCð Þ � N m; s2ð Þ for all continuous attributes must be defined. Hence, the variables
associated with these normal distributions could be derived using,

mXljC¼c¼
1

Nc

XNc

l¼1
xl (21)

s2
XljC¼c¼

1

Nc

XNc

l¼1
xl2�m2 (22)

where Nc denotes the count of instance where C ¼ c whereas N represents the number of overall examples
applied in training. By estimating P C ¼ cð Þ for every class, it becomes simple by applying relevant
frequencies in the form of,

P C ¼ cð Þ ¼ Nc

N
(23)

Finally, the classifier outcome by the proposed model is notified to the user using the cloud database
server and smart phones.
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3 Performance Validation

3.1 Dataset Description

For experimentation purposes, a benchmark MESSIDOR DR Dataset was used which had a total of
1,200 color fundus images with annotations in Excel file [24]. The details related to the dataset is shown
in the Tab. 1 and the images can be graded into different levels namely level 1, level 2 and level 3. Fig. 3
shows some of the sample test DR images. The parameters involved in the simulation process are
learning rate: 0.0001, momentum: 0.9, batch size: 128 and epoch count: 140.

3.2 Results Analysis

Fig. 4 shows the sample visualization results of the DR images attained under segmentation and
classification processes [25]. As shown in the table, it can be inferred that the input image shown in
Fig. 4a got properly segmented and classified into DR_Level 3 as depicted in the Figs. 4b and 4c respectively.

Table 1: Dataset description

Levels of DR Description Corresponding labels

Normal No abnormality Healthy retina

Mild NPDR Micro aneurysms exist DR Level 1

Moderate NPDR Few Micro aneurysms DR Level 2

Severe NPDR Venous Beading and intra retinal
Microvascular abnormality (IRMA)

PDR Vitreous/Pre-retinal Hemorrhage DR Level 3

Figure 3: The sample images of DR a) normal b) mild c) moderate d) severe d) proliferative

Figure 4: a) Original image b) segmented image c) classified image
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The results achieved by the projected model in classifying the DR images are listed in Tab. 2. The first
column in the table denotes the DR level types namely, normal, level 1, level 2 and level 3. The second
column shows the original image whereas the third and fourth columns represent the corresponding
segmented and classified images. By looking into the table, it can be inferred that the normal input image
present in the second row of the table is correctly classified as Normal. Similarly, the level 1 input
image present in the third row of the table is correctly classified as level 1. Likewise, the level 2 input
image present in the fourth row of the table is accurately classified as level 2. In the same way, the level
3 input image present in the fifth row of the table is perfectly classified as level 3.

Tab. 3 provides the confusion matrix generated by the proposed model on the applied DR images. The
table values highlighted that the proposed model clearly classifies a set of 542 images as Normal, 149 images
as Level 1, 245 images as Level 2, and 249 images as Level 3 respectively. Afterwards, the generated
confusion matrix was manipulated and the values were examined interms of True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN) as shown in the Tab. 4. These values are
applied to determine the classification performance.

Tab. 5 and Fig. 5 provides a detailed performance of the proposed model on the applied dataset. The
proposed model properly classifies the input DR images into Normal class with the maximum accuracy
of 99.50%, sensitivity of 99.27% and specificity of 99.69%. At the same time, the input images are
classified into level 1 images with the maximum accuracy of 99.16%, sensitivity of 97.38% and
specificity of 99.42%. In the same way, the input images are classified into level 2 images with the
maximum accuracy of 99.41%, sensitivity of 99.19% and specificity of 99.47%. Simultaneously, the
input images are classified into level 3 images with the maximum accuracy of 99.41%, sensitivity of
98.03% and specificity of 99.78% respectively. These higher values indicated that the proposed model
has effectively classified the applied DR images.

Levels of DR Original Image Segmented Image Classified Image

Normal 

Level 1 

Level 2 

Level 3 

Table 2: Sample visualization results
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Table 3: Confusion matrix

Input Label Different levels of DR Total No. of Images

Normal Level 1 Level 2 Level 3

Normal 542 2 2 0 546

Level 1 2 149 0 2 153

Level 2 0 2 245 0 247

Level 3 0 2 3 249 254

Total No. of Images 543 157 247 253 1200

Table 4: Manipulations from confusion matrix

DR Level Normal Level 1 Level 2 Level 3

TP 542 149 245 249

TN 643 1036 943 936

FP 2 6 5 2

FN 4 4 2 5

Table 5: Performance measures of test images with different DR levels

Input Grades Accuracy Sensitivity Specificity

Normal 99.50 99.27 99.69

Level 1 99.16 97.38 99.42

Level 2 99.41 99.19 99.47

Level 3 99.41 98.03 99.78

Figure 5: Classifier results offered by proposed model on DR images
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A detailed comparison of the results achieved by distinct DR classification models [26–27] conducted
and shown in Tab. 6. Fig. 6 shows the accuracy analysis for the proposed and existing models on the applied
DR images. From the results, it can be inferred that the AlexNet is the ineffective classifier model with the
least accuracy value of 89.75%. Following this, the ResNet model also exhibited poor classifier outcome with
a minimum accuracy of 90.4%. At the same time, the VggNet-16, VggNet-19 and GoogleNet models
achieved moderate classifier outcome and closer accuracy values of 93.17%, 93.73% and 93.36%
respectively. In line with this, the VggNet-s model tried to achieve manageable results and ended up with
a moderate accuracy of 95.68%. Besides, the M-AlexNet model offered a near optimal classifier outcome
with the accuracy value of 96%. At the same time, the synergic deep learning (SDL) and deep neural
network with moth search optimization (DNN-MSO) algorithms have reached to a competitive near
accuracy values of 99.28% and 99.12% respectively. However, the proposed model showed significantly
better classification results over the compared methods by achieving a maximum accuracy of 99.37%.

Table 6: Performance measures of test images with various models

Methods Accuracy Sensitivity Specificity

Proposed 99.37 98.47 99.59

SDL 99.28 98.54 99.38

DNN-MSO 99.12 97.91 99.47

M-AlexNet 96.00 92.35 97.45

AlexNet 89.75 81.27 94.07

VggNet-s 95.68 86.47 97.43

VggNet-16 93.17 90.78 94.32

VggNet-19 93.73 89.31 96.49

GoogleNet 93.36 77.66 93.45

ResNet 90.40 88.78 95.56

Figure 6: Accuracy analysis of diverse models on DR images
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Fig. 7 illustrates the sensitivity analysis for the proposed and existing approaches on test DR input
images. It can be inferred that the GoogleNet exhibited the least classification performance with a
minimal sensitivity of 77.66%. The AlexNet model outperformed GoogleNet and offered slightly higher
sensitivity of 81.27%. The ResNet model achieved a slightly higher sensitivity value of 88.78%. In line
with this, both VggNet-19 and VggNet-16 models achieved moderate classifier outcome with closer
sensitivity values of 89.31% and 90.78% respectively. Moreover, the M-AlexNet, SDL and DNN-MSO
models offered a closer classifier outcome with the sensitivity value of 92.35%, 98.54% and 97.91%
respective. The proposed model offered the extraordinary classifier results with a maximum sensitivity
value of 98.47%.

Fig. 8 illustrates the specificity analysis for the proposed and existing approaches on test DR input
images. From the figure, the inference is as follows. GoogleNet exhibited the least classification
performance with 93.45% minimal specificity value whereas the VggNet-16 model outperformed the
GoogleNet by achieving a slightly higher specificity of 94.32%. Compared to the models above, a
slightly higher specificity value of 94.07% was achieved by AlexNet model. In line with this, both
ResNet and VggNet-19 models achieved moderate classifier outcome and closer specificity values of
95.56% and 96.49% respectively. Moreover, both M-AlexNet and VggNet-s models offered a near
optimal classifier outcome with specificity values of 97.45% and 97.43% respectively. Though the SDL
and DNN-MSO models have attained competitive results with the specificity of 99.38% and 99.47%, it
failed to outperform the proposed method. However, the proposed model offered surprising classifier
results with a maximum specificity value of 99.59%.

The above mentioned figures and tables inferred that the proposed model offered effective DR
classification with the maximum sensitivity of 98.47%, specificity of 99.59% and accuracy of 99.37%
respectively. Therefore, the proposed model can be applied in real time diagnosis for the classification of
DR. The usage of CLAHE based preprocessing, ASKFCM based segmentation, CNN based feature
extraction has formed the basis of improved classification results by GNB model.

Figure 7: Sensitivity analysis of diverse models on DR images
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4 Conclusion

In this study, a new IoT and cloud-based DR disease diagnosis and classification model was proposed.
At first, the patient utilizes the blood glucose sensor to measure the glucose level present in the blood. To
conduct diagnosis, the fundus image is captured using an IoT enabled head mounted camera and stored in
the cloud database server. At the same time, the proposed disease diagnosis model also gets executed at
the cloud and the corresponding outcome is provided to the user as output, i.e., whether the patient
suffers from DR or not. The proposed diagnosis model is composed of several processes namely data
collection, preprocessing, segmentation, feature extraction and classification. The proposed model was
tested using a benchmark DR MESSIDOR image dataset. The experimental outcome stated that the
proposed model offered effective DR classification with a maximum sensitivity of 98.47%, specificity of
99.59% and accuracy of 99.37% respectively. In future, the proposed model can be deployed in real time
diagnosis to assist diabetic patients and doctors for effective DR diagnosis.
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