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Abstract: Face image analysis is one among several important cues in computer
vision. Over the last five decades, methods for face analysis have received
immense attention due to large scale applications in various face analysis tasks.
Face parsing strongly benefits various human face image analysis tasks inducing
face pose estimation. In this paper we propose a 3D head pose estimation frame-
work developed through a prior end to end deep face parsing model. We have
developed an end to end face parts segmentation framework through deep convo-
lutional neural networks (DCNNs). For training a deep face parts parsing model,
we label face images for seven different classes, including eyes, brows, nose, hair,
mouth, skin, and back. We extract features from gray scale images by using
DCNNs. We train a classifier using the extracted features. We use the probabilistic
classification method to produce gray scale images in the form of probability
maps for each dense semantic class. We use a next stage of DCNNs and extract
features from grayscale images created as probability maps during the segmenta-
tion phase. We assess the performance of our newly proposed model on four stan-
dard head pose datasets, including Pointing’04, Annotated Facial Landmarks in
the Wild (AFLW), Boston University (BU), and ICT-3DHP, obtaining superior
results as compared to previous results.
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1 Introduction

Face pose estimation, also known as head pose estimation is a challenging task in the field of computer
vision. Head pose estimation plays an important role in many real-world applications, including gaze
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estimation [1], human computer interaction [2], and augmented reality [3]. However, face pose estimation is
still a difficult task for various reasons such as variations in facial appearance, complex and unconstrained
background, and different facial expressions. Head pose estimation is particularly confronted with
problems in the uncontrolled and wild conditions. Some of the applications that rely heavily on an
accurate head pose estimation system are human behavior analysis, safety during driving, surveillance
applications, and targeted advertisements.

Head pose estimation is linked with gaze estimation; it is confirmed by the research conducted in the
19th century [4]. The relationship between head pose estimation and gaze prediction is also confirmed by
later stage in research [5]. The research conducted in Langton et al. [5] suggests that gaze estimation
comes from both eyes and head pose direction. Apart from eyes, this mutual relationship between various
face parts and head pose is also confirmed by Huang et al. [6]. The work proposed by Huang et al. [6]
suggests that relationship between face parts can be exploited for several mid-level vision tasks along
with head pose estimation. Our work is also impressed by this idea of mutual relationship.

The face parsing method proposed in Khan et al. [7], segments a face image into face classes including,
mouth, nose, hair, skin, back, and eyes. We also use face parts information by first developing a face
segmentation framework. As can be seen these days, a shift in state-of-the-art methods from traditional
machine learning algorithms towards recently introduced deep learning methods is prevalent. We also
develop a DCCNs based face parsing method for seven different classes.

Our work is inspired from Huang et al.’s [6] idea. We argue that all face analysis tasks are related and can
assist each other in specific applications. The performance of the face pose prediction can be improved if a
prior efficiently parsed image having information about various face features is provided as input. The same
fact is also confirmed by psychology literature, for example, [8,9]. In a nutshell, the performance of the face
pose estimation can be improved if the information from various face features is extracted from a segmented
image and given as input to the face pose estimation framework.

Face pose estimation is already being predicted through various face parts information in literature
[10,11]. These methods involve landmarks localization before face pose estimation. However, the
performance of the system in such cases depends on this method [12,13], which is itself another
challenge. The landmarks localization algorithms are greatly affected in certain cases such as complicated
facial expressions, changes in face rotation and lighting conditions, occlusions, and far field imagery
conditions. All these factors make this method a rather challenging task, which ultimately drops the
performance of the face pose estimation system; if it depends on it. Unlike the landmarks localization
method, we introduce a face pose estimation method which does not need landmarks information but
rather depends on various face parts information.

We propose a face segmentation method based on deep learning that segments a face image into seven
different classes. For building a face parsing framework, we labeled 200 face images from each database
through image editing software. The deep learning-based model extracts features through Convolutional
Neural Networks (CNNs) and build a Soft-Max classifier. When a testing image is provided as input to
the face parsing framework, it is segmented into seven face classes. We use a probabilistic classification
method and create probability maps (PMAPS) along with segmentation results. We use five different face
features and extract information through CNNs to build another Soft-Max classifier. To summarize,
contributions of this paper are:

� We propose a face parsing method that segments a face image into seven different classes. The face
parsing method is based on DCNNs.

� We develop a new face pose estimation algorithm. The proposed face pose estimation method is based
on a prior face parsing method.

� We conduct experiments on state-of-the-art (SOA) datasets for face pose estimation and obtained
much better results compared to previous results.
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The structure of the paper is as follows: Section 2 presents related work for head pose estimation. Several
datasets are reported by previous literature for head pose estimation. The datasets used in this paper are
presented in Section 3. The face segmentation part is presented in Section 4, whereas the proposed head
pose estimation algorithm is discussed in Section 5. The obtained results are discussed and then a
comparison with SOA is shown in Section 6. We summarize the article with future directions in Section 7.

2 Related Work

2.1 Genetic Algorithm (GA)

Face parsing algorithms can be categorized into local and global based parsing methods. These methods
are described in the following paragraphs.

Local methods: Local methods adopt a specific strategy of coarse-to-fine. Local based methods
consider both local precision and global consistency. In local-based algorithms, separate models are
trained for various face components, e.g., mouth, nose, eyes, etc. A method proposed by Luo et al. [14]
trains a model that segments each face part individually. Zhou et al. [15] propose an interlinked CNNs
based model after localizing face parts. The interlinked based method passes information bidirectionally,
i.e., coarse and fine levels. The computational cost and memory consumption of the proposed method is
large due to the bidirectional level information exchange. Another approach [16] combines the CNNs
with Recurrent Neural Networks (RNNs) in two successive stages achieving SOA results on challenging.

Global methods: Global based methods treat different face parts information globally. Accuracy of
these algorithms is less, as single face parts are not targeted. These methods estimate a label for each
pixel over the entire face image. Some earlier works represent the spatial relationship between face parts
through different models, for example, [17] and exemplar-based model [18]. The CNNs structure and loss
function were processed by Liu et al. [16], which encodes the underlying layouts of the face image. This
method integrates conditional random fields with CNNs, which the authors named Multi-Objective
learning method. Jackson et al. [19] integrated CNNs with boundary cue to confine face regions. This
method utilizes facial landmarks in the first step. Super-pixel information, Conditional Random Fields
(CRFs), and CNNs are combined by Zhou et al. [20]. The method proposed in Zhou et al. [20] employs
fully convolutional networks, therein obtaining better performance compared to SOA. The method
proposed by Wei et al. [21] regulates receptive fields in a face parsing network. To achieve good
performance on real time scenario, Saito et al. [22] propose another algorithm. The computational cost of
this method is much lower than other methods.

2.2 Face Pose Estimation

Before describing the proposed face pose estimation model, we review related work on face pose
estimation algorithms in this Section of the paper. A rich literature already exists for head pose
estimation; however, in this Section of the article, we will try to provide maximum information about the
recently introduced algorithms for face pose estimation.

Face pose can be classified into three categories, including yaw, roll, and pitch. The horizontal
orientation is represented with yaw, vertical orientation with pitch, and the image plane by roll angle. We
evaluate our proposed face pose estimation method with four large scale datasets, including
Pointing’04 [23], AFLW [24], ICT-3DHPE [25], and Boston University (BU) [26] datasets. We classify
the face pose estimation methods into three categories, including holistic approaches, geometric, and deep
learning-based methods. These methods are described below.

2.2.1 Holistic Methods
In holistic approaches, the face image is considered as one-dimension vector, and certain features are

extracted. Holistic methods assume a certain relationship between 2D face image properties and their
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3D pose. A large number of face images are used for training purposes, and various statistical learning methods
are exploited with different classification tools. The trained model then differentiates between various face poses.
Some methods which used holistic approaches to address head pose estimation can be explored in [27–30].

Holistic methods show some advantages over its competitive methods. These approaches are
comparatively simple and easy to implement. These methods are fit both for high- and low-resolution
images. Moreover, no negative training data is needed in the training stage. Extension of the template
models is also easy and can be extended any time without doing sufficient changes in the architecture.

Holistic methods also face some serious weaknesses. Like other methods, these algorithms also suffer
from the limitation that the system must detect the face part. The system accuracy also degrades drastically
with localization errors. Holistic methods become unreliable with variations in face appearance, changing in
lighting conditions, and occlusions. A significant problem faced by these methods is pair wise similarity,
which is the faulty assumption of the images of the same candidate in two different positions.

2.2.2 Geometric Methods
Geometric methods are also known as model-based methods. These methods require the localization of

certain facial key points such as eyebrow, eyes, nose, the tip of the nose, lips, etc. A single feature vector is
extracted from the located facial key points, and then the desired pose is predicted based on the relative
position of the extracted key points. These methods are almost similar to how the human brain estimates
the head pose of a face image.

The literature reports different face features in different combinations for head pose estimation. The
intraocular distance and eyes are commonly used for head pose discrimination due to their easy detection
[31]. In some cases, the mouth is also used, but mouth detection is comparatively difficult if the facial
expressions are complicated. The tip of the nose and hair is another discriminative cue which is used for
modeling of an efficient head pose estimation system.

Geometric methods are very fast, as very few features are needed for modeling. However, if the number
of features is increased, the computational cost also raises; for example, Cootes et al. [32] uses a combination
of fifteen different feature points around the mouth, eyes, and nose regions. Another main advantage noted
for these methods is; the extracted points are robust to rotation and translation changes.

For different key points localization Active Shape Modeling (ASM) [33] is frequently used. However,
ASM fails drastically in some critical conditions, for example, changing in lighting conditions, complicated
facial expressions, and occlusions. If ASM does not perform well, the performance of the head pose
estimation drops significantly. Some methods which use geometric based methods can be explored in
references [34–36].

2.2.3 Deep Learning Methods
The performance of various visual recognition tasks has been greatly improved with deep learning

architecture. Some very complex scenarios of computer vision tasks are improved with these deep
learning methods. Major weaknesses of the conventional machine learning techniques are mitigated with
this transition of deep learning architecture. The same is the case with face pose estimation.

Ruiz et al. [37] propose a deep learning-based method that does not depend on prior landmarks
estimation. Some hybrid models are proposed in [38–40], which address head pose estimation along with
other face image analysis tasks such as gender and race classification, face recognition, and detection, etc.
Similarly, Hsu et al. [41] propose a method that combines regression-based function with deep learning
modules. The lastly proposed method is named QuatNet (Quaternions) by the authors. A new deep
learning-based method is proposed by Lee et al. [42], which is evaluated with Pointing’04. The method
proposed in Lee et al. [42] is fast and comparatively robust to certain environmental factors; therefore,
presents a better choice for the datasets collected in the wild conditions.
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The performance of conventional machine learning methods is satisfactory on the datasets collected in
constrained conditions. However, when these traditional machine learning methods are exposed to such
unconstrained datasets, performance drops drastically. Unlike conventional machine learning methods,
deep learning methods show much improvement with the challenging database. In a nutshell, some
research work on face pose estimation already exists, but still, face pose estimation is an open challenge
for researchers.

3 Databases

We evaluate our face pose estimation framework with five datasets, including Pointing’04, BU, AFLW,
and ICT-3DHPE. This Section presents details about the databases used in our proposed work.

� Pointing’04: Images in the Pointing’04 are manually annotated. Although it is an old dataset, it is still
used by researchers [43–45] due to the diversity in the images and its challenging nature. The database
consists of fifteen sets of low-resolution images. Each individual set has a further two subsets having
93 face images for every subject in different orientations. The age of all participants in the dataset is
between 20–40 years. Some participants in the datasets also include facial hair and some wearing
glasses. The head pose of a subject is determined with the pan and tilt angle. Each participant is
asked to look into 93 different markers marked on a wall in a measurement room. Each point
represents a specific head pose. Due to manual labeling, the given face localization may not be
accurate in some cases. The head orientation varies between �90o to þ90o for yaw pose. The step
size between two consecutive poses is 15. Similarly, for pitch, the top poses are represented with
positive values and bottom poses with negative values. The difference between the two poses for
pitch is 30o.

� AFLW: These images are collected in the unconstrained condition with large variations in lighting
conditions, facial expression, appearance, and some environmental factors. All images in AFLW
are collected from the Internet. These images are collected in 9 different lighting conditions. The
total number of face images is 13,000, whereas the number of participants is 5,749. The head pose
is manually annotated in AFLW, where the yaw angle varies between �120o and pitch and roll in
the range �90o.

� BU Data-set: This dataset has two sequences; images exposed to changing lighting conditions and
those collected in controlled and uniform lighting conditions. The database consists of both RGB
and depth images. We use only RGB images in our experiments. We consider all three rotation
angles, i.e., pitch, yaw, and roll. The number of participants in the database is only five. To collect
ground truth data, magnetic trackers are attached to every subject’s head.

� ICT-3DHPE: These images are collected through Kinect sensor. Both RGB and depth images are
included; however, we use only RGB for our experiments. The total number of participants in the
dataset is ten, with six male and four females. The ground truth data, in this case, is also accurate
as again magnetic tracker is attached to each subject’s head.

4 Proposed Face Parsing Framework

The face parsing module of the proposed framework is presented in this Section of the paper. We make
this face parsing model for each dataset separately. Some of the datasets do not provide cropped face images;
we apply a face detection method in the initial phase. As face detection is a mature research area, we use a
face detection algorithm already proposed in Wei et al. [46] to each image. We re-scaled each face image to a
fixed size of 227 × 227 after face detection. The proposed DCNNs based face segmentation model and its
architecture is presented in Tab. 1. The Fig. 1 shows the proposed face parsing module.
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Architecture: There are some parameters that greatly affect the performance of the DCNNs based
model. For example, the size of the kernel used for CNNs and the pooling layer, the number of layers
used for convolution, and the number of filters in every layer. In our face parsing module, we use four
sets of convolutional layers (C1–C4), followed by maximum pooling layers (P1–P4) and, at the end, two
fully connected layers. We fix the size of the kernel in convolutional as 5 × 5. We also fix the down
sampling stride, as can be seen in Tab. 1. Details about the convolutional layer, feature map, and kernel
size are shown in Tab. 1. Some other parameters of the proposed DCNNs are presented in Tab. 2.

We use a rectified linear unit for activation function. We embed the maximum pooling layer after each
convolutional layer. Our proposed DCNNs face parsing model has main three parts, i.e., convolutional
layers, maximum pooling layers, and two fully connected layers. We represent the convolutional layer
kernel by N �M � C. Where height and width of the kernel is represented by N and M and the channel
by C. The maximum pooling layer kernel is represented by P � Q, where P are representing height and

Table 1: Information about each CNNs layer

Layer Kernel Size Stride Feature Maps Output Size

Input image – – – 250 × 250

C-1 5 × 5 2 96 124 × 124

P-1 3 × 3 2 96 62 × 62

C-2 5 × 5 2 256 30 × 30

P-2 3 × 3 2 256 15 × 15

C-3 5 × 5 1 316 12 × 12

P-3 3 × 3 2 316 6 × 6

C-4 5 × 5 1 512 4 × 4

P-4 3 × 3 2 512 2 × 2

Figure 1: Proposed deep CNNs face parsing framework

Table 2: CNNs Parameters setting for training

CNNs parameters Values

Epochs 40

Base learning rate 10−4

Momentum 0.9

Batch size 150
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Q width of the kernel. The fully connected layer performs the task of classification. For optimization of the deep
learning architecture and more details, Goodfellow et al. [47] can be explored further. The overview of the face
parsing module is summarized in Tab. 1. We train a face parsing module for each database individually.

5 Proposed Features Based Face Pose Estimation Algorithm

Our proposed face pose estimation model is summarized in Algorithm 1. Initially, we develop a face
segmentation model through DCNNs. The face parsing model outputs the most likely class for each pixel
in a face image. We created PMAPS during the segmentation phase, which we further use for face pose
estimation. We investigate different combinations of these PMAPS to know which face parts help face
pose differentiation. We represent these PMAPS as: PMAPSnose, PMAPSback, PMAPSeyes,
PMAPSeyebrows, PMAPSskin , PMAPSmouth, and PMAPShair. Fig. 1 shows some face images from
Pointing’04 along with PMAPS for all five face classes, which we use in our face pose prediction model.
PMAPS are grey scale images where higher intensity shows more probability of estimation for a face
class and vice versa.

For head pose estimation, we used extracted features from PMAPS images through CNNs. After
extracting the features, we train another Soft-Max classifier for each dataset.

We manually labeled 200 face images from each dataset for seven face classes. The manually labeled
images are used to build a face parsing model. For all images of every dataset, the PMAPS are generated.
When a testing image is provided as input, the face parsing model creates the PMAPS for seven face
classes. We conduct detailed experiments to investigate which face features can help face pose estimation.

After detailed analyses, we decided to use PMAPS for five classes, including the eyes, nose, mouth,
eyebrow, and hair. After extracting features through CNNs we concatenate five feature vectors with each
other to build a single unique feature vector. We trained another Soft-Max classifier using the feature
vector. To validate our model more precisely, we use ten-fold cross-validation experiments. However, we
exclude those 200 images which we previously used to build our classifier. The PMAPS of a subject
from Pointing’04 can be seen in Fig. 2. From Fig. 2, it can be noticed that changes in PMAPS are
occurring as we move from one pose to another.

Algorithm 1: Proposed face pose estimation algorithm

Input: Gtraining ¼ Mn; Tnð Þf gmn¼1 ; Gtesting

Where Gtraining is the training data for DCNNs model, Gtesting is the testing data, M is the training image
and T i; jð Þ 2 0; 1; 2; 3; 4; 5; 6f g is the data used as ground truth.

a. Face parsing part:

Step a.1: Training a face parsing DCNNs model through training data.
Step a.2: Producing face parts segmentation and probability maps for each dense semantic class
Step a.3: Using the DCNNs model to create PMAPS for the seven classes listed as;
PMAPSnose, PMAPSback, PMAPSeyes, PMAPSeyebrows, PMAPSskin , PMAPSmouth, and PMAPShair

b. Face parsing part:

Step b.1: Extracting information from the PMAPS through DCNNs from five semantic classes including
nose, hair, mouth, eyes, and eyebrows.
Step b.2: Training a Soft-Max classifier A by creating feature vector such that;
f = PMAPSeyes + PMAPSmouth + PMAPSeyebrow + PMAPSnose
Output: estimated face pose.
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We investigate some interesting points during our experiments. We came to know that minor classes
have more contribution towards face pose estimation system as compared to major classes (except hair).
Hence, we use PMAPS of the four small classes (nose, eyes, brow, and mouth) and one major class hair.
We ignore two major classes, skin and back. It can be seen from Fig. 2, that PMAPS for minor classes
highly differs from one pose to another. For example, considering the fifth row (i.e., PMAPS for the
nose), in frontal face images, the nose is more exposed to the camera, and as a result, the nose is almost
in the middle of the face image. As pose of the image changes from the center to left (0o to �90o) and
right profile (0o to þ90o), the PMAPS of the nose also moves accordingly. We use this information as a
feature and encode it in a unique feature vector.

The same difference can be noticed from Fig. 2 for four other PMAPS, including eyes, mouth, eyebrows,
and hair. In extreme left and right profile images in some cases, the class information is entirely missing.
This also clearly shows that our feature-based face pose estimation method highly depends on accurate
face parts segmentation.

Figure 2: Segmentation results and probability maps from images of Pointing’04 dataset, where pose varies
from −90° to +90° with 15° difference between two adjacent poses. The images are in the order where: row 1:
original testing images, row 2: segmentation results with proposed face parsing module, row 3: probability
maps for hair, row 4: probability maps for mouth, row 5: probability maps for nose, row 6: probability maps
for eyes, and row 7: probability maps for eye brows
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Hair class has a very complex geometry that varies from person to person. Our proposed face parsing
part reports excellent labeling accuracy for hair. From the segmentation results in Fig. 2, it can be
observed how efficiently our face parsing module segments a hair class. The borderline for hair is
detected by our face segmentation part in a much better way.

For face pose estimation, we label 200 images from each dataset. We build a face parsing model for each
database using 200 manually labeled images. We train a Soft-Max classifier for face parsing. When a test face
image is given to the face parsing module, segmentation results are produced, as some of these are shown in
Fig. 2. We use the probabilistic classification strategy and created PMAPS for each face class. We
concatenate the five face classes’ information by first extracting information through CNNs and create a
unique feature vector, with which we again train a Soft-Max classifier. In experiments, we adapt 10-fold
cross-validation experiments and report average results in the paper.

6 Results and Discussion

6.1 Experimental Setup

We use the Intel i7 CPU for our experiments. We use 16G RAM with NVIDIA 840 M graphical
processing unit. We use Tensor flow and Keras as experimental tools. We train our model for 40 Epochs
and batch size 150. We keep this setting for all face parsing models developed for all four datasets.

6.2 Face Segmentation Results

Some remarks for face parsing results are summarized in the following paragraphs:

Some qualitative results are shown in Fig. 2. The results show that face segmentation is better for the
frontal poses as compared to profile. In contrast, labeling accuracy drops as the pose moves to right or
left profile, which was expected as well, as minimal information are provided for training in case of
extreme profile face images.

We also observe that as the pose moves to the right or left, labeling accuracy drops particularly for minor
classes (nose, brow, eyes, and mouth). For extreme right or left profile face images, in some cases, the minor
classes in some cases are completely missing. This can be seen from the images in Fig. 2. In such cases, the
PMAPS produced are also unclear and the segmentation part provides minimal information.

The performance of the face parsing part also highly depends on image quality. For example, for low
quality images (AFLW), comparatively poor results are reported by our proposed method. While for
images from high quality datasets, such as Pointing’04 we obtained better results and also surpassed
previously reported results.

We labeled all face images through image editing software. We used the manually labeled images to
build a face parsing model. We used no automatic segmentation tool in all this process. This kind of
labeling strictly depends on the subjective perception of a single human involved in manual labeling. To
provide accurate face labels to face images with such type of labeling is very difficult. Differentiating
boundary regions of face parts in such cases is very difficult; for example, explicitly drawing a boundary
region between skin and nose is not accurate. And lastly, this labeling method is very tedious and time-
consuming task. To label large number of images, sufficient time is needed.

6.3 Face Pose Estimation

To investigate which face features contribute significantly towards face pose estimation, we exploit the
feature importance measure as reported in Pedregosa et al. [48]. It is a Random Forest implementation that
calculates how certain features contribute to a specific task. Fig. 3 shows the importance of each face feature
in face pose estimation. From Fig. 3, it can be seen that the maximum contribution to face pose estimation is
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provided by five classes, including eyes, hair, nose, mouth, and brows. Therefore, we use PMAPS of only
five features as feature descriptors and discarded the remaining two classes.

We evaluate our propose face pose estimation framework with two metrics, mean absolute error (MAE)
and pose estimation accuracy (PEA). The MAE is a regression and PEA classification measures. MAE
calculates the error between the estimated and actual pose, whereas PEA estimates how accurately a
trained model estimates a pose.

The results obtained with the proposed face pose estimation framework on Poinitng’04 and its
comparison with previous results are shown in Tab. 3. From Tab. 3, it can be seen that better results are
obtained with the proposed model as compared to previous results. We explore all combinations of facial
features and conclude to use just five classes. We obtain the best results as can be noticed from Tab. 3.
Some of the previous techniques in Tab. 3 may use different validation protocols; for example, some
methods use five-fold cross-validation during their experiments, whereas we perform our experiments
with ten-fold cross-validation, which is more frequently used in the literature.

For AFLW, BU, and ICT-3DHPE results are reported only for MAE values. For a fair and exact
comparison, we also report MAE values only. A complete summary of the results and then comparison
with SOA is shown in Tab. 3. The results reveal that we have better results for two datasets BU and ICT-
3DHPE. AFLW images are collected from the internet with a very complex background. Most of these
images are in wild conditions with poor resolution as well. Our reported results for AFLW are less as
compared to previous results. From the segmentation results, we note that face parsing results of the face
segmentation module are weak for these complex images. One possible reason for poor results for
AFLW, is comparatively poor performance of the face segmentation part.

The other two datasets, BU and ICT-3DHPE are also collected in real-world conditions. However, the
quality of the images is comparatively better, and the background scenario is also not much complex. As a
result, we obtain better results as compared to results reported in the literature.

Figure 3: Feature importance of all the seven face classes including nose, hair, mouth, eyes, eyebrow, skin,
and back mouth, and nose for face pose estimation
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7 Conclusion

In the proposed work we introduced an end to end face parsing algorithm which tries to address a
challenging problem of face pose estimation. We train a face parsing model through DCNNs by
extracting useful information from different face parts. The face parsing model provides a class label for
each pixel in a face image. We use a probabilistic classification technique and create PMAPS in the form
of grey scale images for each face class. We perform a series of experiments to know which face feature
helps in face pose estimation and conclude to use only five classes. We evaluate our proposed face pose
estimation method with four datasets, including Pointing’04, BU, AFLW, and ICT-3DHPE obtaining
better and competitive results.

Optimization of the face parsing part is one scenario to be addressed in the future. An important point to
improve the performance of the face parsing system is by applying carefully well-managed engineering

Table 3: Head pose estimation results with proposed method and its comparison with SOA

Used
database

Method used MAE
for yaw

Accuracy
for yaw

MAE
for pitch

Accuracy
for pitch

Pointing’04 proposed feature-based
method

2.02° 89.2% 1.02° 96.5%

MSF [49] 3.7° 77.4% –

MLD [50] 4.2° 73.3% 6.4° 89.2%

CNNs [51] 5.2° 69.9% 5.4° 89.2%

kCovGa [52] 6.3° – 7.1° –

CovGA [52] 7.3° – 8.7° –

AFLW QuatNet [41] 4.3° 3.9° 2.6° 3.6°

proposed feature-based
method

4.9° 4.2° 3.2° 4.1°

HyperFace [38] 5.3° 6.2° 3.2° 4.9°

Multi-Loss [37] 5.9° 6.2° 3.8° 5.3°

BU proposed feature-based
method

2.4° 2.0° 2.0° 2.1°

OpenFace2.0 [53] 3.2° 2.4° 2.4° 2.6°

OpenFace [54] 3.3° 2.8° 2.3° 2.8°

Chehra [55] 4.6° 3.8° 2.8° 3.8°

FLPD [56] 5.3° 4.9° 3.1° 4.4°

ICT-3DHPE proposed feature-based
method

2.9° 2.2° 2.3° 3.0°

OpenFace2.0 [53] 3.5° 3.1° 3.1° 3.2°

OpenFace [54] 3.6° 3.6° 3.6° 3.6°

CLM [57] 4.2° 4.8° 4.5° 4.5°

Reg. Forest [58] 9.4° 7.2° 7.5° 8.0°

Chehra [55] 14.7° 13.9° 10.3° 13.0°
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methods. For example, data augmentation [2] and foveated architecture [59] are some possible options to be
adapted. Secondly, sufficient information is provided by the face segmentation part to address different visual
recognition problems relating to the face. We provide a simple route towards some other complicated face
analysis tasks, for example, gesture recognition, face beautification, and many more.
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