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Abstract: Glycation is a non-enzymatic post-translational modification which
assigns sugar molecule and residues to a peptide. It is a clinically important attri-
bute to numerous age-related, metabolic, and chronic diseases such as diabetes,
Alzheimer’s, renal failure, etc. Identification of a non-enzymatic reaction are quite
challenging in research. Manual identification in labs is a very costly and time-
consuming process. In this research, we developed an accurate, valid, and a robust
model named as Gly-LysPred to differentiate the glycated sites from non-glycated
sites. Comprehensive techniques using position relative features are used for fea-
ture extraction. An algorithm named as a random forest with some preprocessing
techniques and feature engineering techniques was developed to train a computa-
tional model. Various types of testing techniques such as self-consistency testing,
jackknife testing, and cross-validation testing are used to evaluate the model. The
overall model’s accuracy was accomplished through self-consistency, jackknife,
and cross-validation testing 100%, 99.92%, and 99.88% with MCC 1.00, 0.99,
and 0.997 respectively. In this regard, a user-friendly webserver is also urbanized
to accumulate the whole procedure. These features vectorization methods suggest
that they can play a critical role in other web servers which are developed to clas-
sify lysine glycation.

Keywords: Gly-LysPred; PseAAC; post-translational modification; lysine
glycation; Chou’s 5 step rule; position relative features

1 Introduction

These Proteins are the organic polymeric nitrogenous compounds. Proteins are the major structural and
functional components of every organism in the form of enzymes, antibodies, hemoglobin, etc. Proteins
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provide energy to our body but not the main source of energy. The athletic population requires a very high
consumption of proteins. Every protein is made up of amino acids. There are only 20 amino acids which are
constituents of all types of proteins. From these 20, 12 amino acids (11 in children’s) are synthesized by our
body which named as nonessential. Remaining amino acids are described as essential means are not
synthesized by our body and we have to consume these amino acids in our diets. Lack of any essential
amino acids results in affecting the growing ability of tissues [1]. That’s why the proper intake of protein
is also needed for aged people. It is observed that as age increases 40, muscle strength decreases due to
loss in muscle mass [2,3]. The loss in muscle mass creates health-related issues such as sarcopenia and
osteoporosis. For the recovery of these issues a person should take proper protein in their aged years [4].
Post-translational modification PTM’s are the enzymatic or non-enzymatic reactions of amino acid chains.
PTM’s affect both protein's physiological functions and the structure of the protein.

Determination of PTMs is essential in exposition to elaborate on the processes that grove cellular level,
as like cell divide, development, or diversity. PTMs term indicates changing happen in the polypeptide
sequence as a result of either the accumulation or exclusion of separate chemical meridian to amino acid
residues [5]. These accumulations or exclusions divided the PTM’s into two broad types such as covalent
post-translational modification and covalent cleavage peptide backbones in protein [6]. The chemical
PTMs have been studied for a variety of biochemical changes in many types of proteins that occur in
many combinations or signal-dependent method and also define their tertiary or quaternary structures and
control their events and purpose. All evidence will support to realize biological occurrences and disorder
stage involving these proteins [7].

Yonder alternative splicing of messenger RNA (mRNA) which is used to as a source of protein diversity,
post-translation modification (PTMs) of proteins further modulate and extends the range of possible proteins
functions by covalently attaching small chemical moieties to selected amino acid residues. Over 200 many
types of PTMs have been recognized that outcome many phases of molecular level and metabolic, signal
transduction, or protein immovability [8].

Several studies on PTMs have concentrated on precise forms and they are related to proteins task with
phosphorylation on behalf of the most dynamically investigates PTM-type [9,10]. PTMs adversely impact
biological cellular functions such as metabolism, signal transduction, and protein stability. These chemical
modifications include phosphorylation, glycosylation, methylation, acetylation, ubiquitination. That’s why the
understanding of PTMs is important in the study of cellular biology for disease treatment and prevention [11].

Lysine is a type of essential amino acid that means they are not produced in the human body and if any
deficiency occurs in our body we take it from outside and complete our body functions. They are present in
lot amounts these are poultry, meats, or milk [12]. Lysine is very important as many biological functions
requiring some notable applications include the production of connective tissues such as bone, skin,
collagen, or elastin, and the making of carnation in the result of fatty acid converts in energy to healthy
growth and development in offspring. And also manage our valuable immune function, mostly with
observe antiviral activity [13]. In hyperglycemic conditions produced in our body that reactions are
starting non-enzymatic glycosylation and very vital mechanisms are modifying proteins, leading to
conformational changes and malfunction of proteins [14]. Schiff base and Amador product and produced
when a free amino acid group with the carbonyl group of reduced sugar in the result of proteins
bilocation occur. When those proteins are manufactured by this procedure are converted in varied
compounded that called Advanced glycation end-products (AGEs) [15].

This complete process is depicted in Fig. 1. Advanced glycation that end product of when amino acid
takes place the glycation in feverish collagens and also deposit at the time of glycation. We can check through
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mass spectrometry and recognized fractional fructose-hydroxy-lysine glycations at each of the helical area
cross-linking sites of type I collagen that is elevated in tissue from a diabetic mouse model [16]. That study
also provisions to a proposed connotation between glycation and collagen thickening. Perceived reduction in
collagen extractability from diabetic goes on to introduce intermolecular AGEs cross-links. A very little
consequence on collagen solubility upon pepsin digestion compared with acid abstraction supports the
addition of inter-triple-helical cross-links in diabetic mouse tendon. Amassed AGEs yields have been
associated with both improved and also declined [17]. Post- translation modification of proteins with reducing
sugars and α-carbonyl products of their degradation in the result of glycation [18]. Amadori products can also
undergo degradation to form carbonyl compounds, such as methylglyoxal or then undergo extra corrupting,
oxidation, reduction, and condensation reaction, leading to an irretrievable AGE establishment [19]. Diabetes
or nephropathy diabetic or other diseases are happened by the addition of glycation products [20].

Non-fluorescent proteins crosslinks methylglyoxal-lysine or glyoxalin-lysine these are dimer forms of
protein and also change the structure and efficient properties which affects harmfully cellular uptake.
AGEs arise below regular physiological state but is boost up in when calcium level in the high state [21].
Reactive oxygen species (ROS) has increased glycation of the enzyme of the structural components of
the connective tissue matrix and basement member component [22].

Post translation modification identification in proteins is a very critical issue from 19’s to till date.
Currently, the focus change from the data science technique to the mixture of machine learning
techniques with feature processing and deep learning techniques e.g. GANNphos and DeepPhos are two
predictors used to predict the phosphorylation. GANNphos [23]. In the machine learning era, in 2006, the
initial predictor was GlyNN which was developed by using the ANN technique by using a dataset of 126
non-glycated (negatives) and 89 glycated (positives) lysine sites from 20 proteins [24]. In 2015 another
computational tool named PreGly based on a feature extraction technique composition of k-spaced amino
acid pairs (CKASSP) used to predict Lysine glycation with a similar data set to GlyNN [25]. In 2016,
focus tend to different feature extraction techniques with the machine learning model. A new predictor
Glee-PseAAc was developed by combining the Support Vector Machine (SVM) algorithm and the
position-specific amino acid-base features with the use of a rationalized dataset consisting 446 non-
glycated and 223 glycated sites from CPLM databank [26]. Initially, experienced data scientists were not
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Figure 1: Chemical process of lysine glycation
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going to trust computational methods due to the ill-famed local minima problem [27,28]. Gradually the
situation changed and different sequential and structural bioinformatics detection tools development get
started such as X-ray crystallography, NMR tool, etc. [28–34]. Mass spectrometry, radioactive labeling,
matrix statistics, vector projection, and several affinity-based methods were used to predict distinct PTM’s
sites e.g., ubiquitination, phosphorylation, glycosylation, etc. These methods were costly, laborious, and
time-consuming [35–43]. After these all techniques, trend changes towards data science techniques to
make predictions. Various techniques of data sciences used to develop prediction servers including the
following but not limited to: Artificial Neural networks [44–48], backpropagated Neural networks
[47,48], Support vector machines [49–54], Hidden Markov model [55,56], logistic regression [57],
Bayesian theory [58], consensus sequences [59], backpropagated Neural networks [47,48], nearest
neighbor [60], random forest [61]. DeepPhos [62], pDeep2 [63], DeepUbi [64], and many others [65]
which are based on different Deep learning techniques to make predictions. Currently, the focus change
from the data science technique to the mixture of machine learning techniques with feature processing
and deep learning techniques, e.g., GANNphos and DeepPhos are two predictors used to predict the
phosphorylation. GANNphos [23], DeepPhos [62], pDeep2 [63], DeepUbi [64], and many others [65]
which are based on different Deep learning techniques to make predictions. The same tendencies
occurred with the prediction of lysine glycation. Initially, Lysine glycation is also predicted by some
costly and time-consuming methods such as mass spectrometry [40], matrix statistics [41], vector
projection [42,43], etc. In the machine learning era, in 2006, the initial predictor was GlyNN which was
developed by using the ANN technique by using a dataset of 126 non-glycated (negatives) and
89 glycated (positives) lysine sites from 20 proteins [24]. In 2015 another computational tool named
PreGly based on a feature extraction technique composition of k-spaced amino acid pairs (CKASSP) used
to predict Lysine glycation with a similar data set to GlyNN [25]. In 2016, focus tend to different feature
extraction techniques with the machine learning model. A new predictor Glee-PseAAc was developed by
combining the Support Vector Machine (SVM) algorithm and the position-specific amino acid-base
features with the use of a rationalized dataset consisting 446 non-glycated and 223 glycated sites from
CPLM databank [26]. In 2017 to 2018, with some advancement there are some recent predictors has been
developed with the combination of machine learning approach and some feature extraction techniques to
improve the previous predictor’s performance such as BPB_GlySite (Combination of SVM algorithm and
Bi-Profile Bayes (BPB) based feature extraction technique) [66], Glypre (by combining the SVM and
multiple features like an index, position amino acid CKSAAP, conservation) [67], iProtGly-SS (by using
structure-based sequence-based features) [68], GlyStruct (a combination of structural properties of amino
acid residues and support vector) [69], MDS_GlySitePred (with the combination of SVM and
multidimensional scaling feature extraction techniques) [70]. Although Lysine glycation is a complex and
multistep process, Identifications of lysine in labs is a time-consuming, operator dependent, and labor-
intensive task. To overcome these issues, a computational model is developed for lysine glycation
predictions with increased accuracy and efficiency. This computational model follows the Chou’s 5-step
rule [71–72] which are depicted in the Fig. 2.

Chou’s first step rule data collection; a stringent and reliable dataset is developed for model’s training
and testing purposes. In the second step, features are extracted by dataset sequences after some
preprocessing and then conversion of these sequences into vectors by using position relative incidence
and statistical moments. In Chou’s third step learning model; machine learning models would be used to
train the network e.g., random forest. The most robust and solid model would choose to make
predictions. The fourth step is related to the evaluation and validation of the model by using different
evaluation measures such as measuring the accuracy, specificity, and sensitivity. In the last step of this
model a web server is developed and accessible publically to end-users.
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2 Materials and Methods

This section describes overall techniques for the predictor. This contains the dataset collection data
processing and learning model. In the data of the first phase set is collected from an online well-known
publically available database named uniprot. In the second phase feature vectors are generated by using
some statistical methods. For leaning model 2–3 model would be trained and the best model with high
accuracy would be chosen.

2.1 Benchmark Dataset

The astringent and reliable dataset is a base for a computationally accurate and statistically robust
predictor. The noisy dataset will alter the classifier’s robustness and the predicted accurateness may be
disbelieved [73]. An accurate dataset is curated from UniProt: https://www.uniprot.org/ which is consists
of 1287 positive sites and 1300 negative sites are obtained. CD-Hit is used to remove the >= 60%
redundant data from the given dataset.

3 Feature Extraction

The formulation of biological sequences into a vector or a discrete model is the most critical problem in
computational biology. Different techniques used in past to do this job such as Composition of k-spaced
amino acid pairs (CKASSP) [68], position-specific amino acid-base feature extraction [69], Bi-Profile
Bayes (BPB) based feature extraction technique [70], multiple features like an index, position amino acid
CKSAAP, conservation [71], structure-based sequence features) [72], structural properties of amino acid
residues [73] and multidimensional scaling feature extraction technique [74].

The focus on feature extraction is due to the nature of the machine learning model as they cannot handle
the sequence samples. The required dataset should be in vector form [74]. To resolve the issue PseAAc [75] is

Figure 2: Computational model of lysine glycation sites
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used as it converts a protein sequence into discrete vectors without losing sequence order info [76]. PseAAc
equation is given follows:

P ¼ P1; P2; . . . ; p20 ; p20þ1; . . . p20þi

� �

Sequence statistical moment approach is used to define the dimensions and components of PseAAc
equation which are comprised of: 1-Statistical Moments Calculation 2-Determination of Position Relative
Incidence Matrix (PRIM) 3-Determination of Reverse Position Relative Incidence Matrix (RPRIM) 4-
Frequency Matrix Determination 5-Accumulative Absolute Position Incidence Vector (AAPIV)
Generation 6-Reverse Accumulative Absolute Position Incidence Vector (RAAPIV) Generation.

3.1 Statistical Moments Calculation

This approach is used to quantitatively describe the whole dataset. Different data properties are
represented with different orders of moments that are used to evaluate the data size and to indicate the
eccentricity and orientation of data. Some well-known moments described by statisticians and
mathematicians which are based on distribution functions and polynomials [77,78]. In this study Hahn,
central and raw moments are considered.

In Hahn moments, Hahn polynomials are used [79] and location and scale variants are calculated. In
central moments, location invariant asymmetry, mean and variance are calculated w.r.t centroid [80,81]
and for probability distribution in the dataset in raw moment’s location variant asymmetry, mean and
variance are calculated.

These specific statistical moments provide sensitive information about the sequence order while the
scale-invariant moments are not much appropriate. Data is represented by quantified values [82].

3.2 Determination of Position Relative Incidence Matrix (PRIM)

To predict protein behavior, protein sequence order information is used as the basis for any mathematical
model. Amino acid’s relative positions are the essential segment of the protein’s physical attributes. It is
furthermore vital to quantize the amino acid’s relative positions in the polypeptide chain. PRIM extracts
this information and form a 20 × 20 matrix which is shown below:

SPRIM ¼

X1!1 X1!2 � � � X1!k . . . X1!20

X2!1 X2!2 � � � X2!k . . . X2!20

..

. ..
. ..

. ..
.

Xi!1 Xi!2 � � � Xi!k . . . Xi!20

..

. ..
. ..

. ..
.

XN!1 XN!2 � � � XN!K . . . XN!20

2
66666664

3
77777775

Xi!k Contains the sum of kth residue’s relative position w.r.t 1st occurrence of ith residue. PRIM yields a
total of 400 coefficients and to reducing these large number of coefficients, statistical movements using
PRIM are computed which generate other elements set of 24 cardinalities [83].

3.3 Determination of Reverse Position Relative Incidence Matrix (RPRIM)

Effectiveness and accuracy of machine learning algorithms mainly depend on exactness and
thoroughness by which the related features of data can be extracted. Machine learning algorithms are
capable to uncover and understand the blur, obscure and hidden features from Data. Within a polypeptide
chain, the PRIM matrix extracts information related to the relative positioning of amino acids. This
Matrix works similarly to PRIM but in a reverse way. RPRIM helps to discover the more obscure
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patterns within the polypeptide chains. RPRIM is also a 20 × 20 matrix with 400 coefficients which is shown
below:

SRPRIM ¼

Y1!1 Y1!2 � � � Y1!k . . . Y1!20

Y2!1 Y2!2 � � � Y2!k . . . Y2!20

..

. ..
. ..

. ..
.

Yi!1 Yi!2 � � � Yi!k . . . Yi!20

..

. ..
. ..

. ..
.

YN!1 YN!2 � � � YN!K . . . YN!20

2
66666664

3
77777775

Dimensionality reduction with RPRIM is done by using statistical movements (central, raw, and Hahn
moments) calculation which converts 400 coefficients to 24 coefficients.

3.4 Frequency Matrix Determination

Frequency represents the distribution of amino acid residues in the sequence inside the primary
structure. To measure these frequencies, a frequency matrix is used. The frequency matrix is:

Fmatrix¼ s1;s2;.........::s20f g
si denotes the frequency of ith amino acid occurrences. This matrix reveals information about the protein
sequence composition. Sequence information is extracted in PRIM.

3.5 Accumulative Absolute Position Incidence Vector (AAPIV) Generation

In the frequency matrix, accumulation frequency or compositional information of amino acid residues
occurrences in the polypeptide chain was computed. Information related to the relative positions of amino
acid residues was not considered.

AAPIV provides information related to the amino acid residues position within the polypeptide chain. A
vector with the cardinality of 20 elements, while each element comprises of all ordinal values containing the
corresponding residue location within the primary structure. AAPIV vector is:

KAAPIV¼ l1;l2;.........::l20f g
The ith element of APPIV

li¼
Pn

j¼1
pk

3.6 Reverse Accumulative Absolute Position Incidence Vector (RAAPIV)

RPRIM, RAAPIV is also used to uncover the hidden and obscure features from data. RAAPIV revers the
primary structure string and then extract AAPIV features.

RAAPIV is the reverse of AAPIV vector with the same cardinality. RAAPIV vector is:

KRAAPIV¼ l1;l2;.........::l20f g

4 Operating Algorithm

Random forest algorithm is used to predict the lysine glycation sequences which were developed by Leo
Bremen [84]. This algorithm is used for classification by using the concept of ensemble decision/

CMC, 2021, vol.66, no.2 2171



classification trees and has been employed in many biological problems. Ensemble learnings of Decision
trees allow the algorithm to learn and predict simple and complex classifications accurately. According to
the inventors random forest does not require plentiful fine-tuning of parameters and provide excellent
performance with default parameters [61,85–87]. Decision trees in random forest classification are the
foundation of the algorithm and these trees improve accuracy at the time of merging because each tree
has a random subset of the feature vectors [88–91]. Feature vectors of proteins (which contain Statistical
Moments Calculation, PRIM, RPRIM, Frequency Matrix Determination, AAPIV, RAAPIV vectors) are
propagated down the trees to train the model and to calculate an output matrix is formed in a supervised
manner which conformed to two classes (positive or negative) by analyzing the leaf occupancy as shown
in Fig. 3. Accuracy is calculated with the prediction of random forest.

Figure 3: An operating algorithm of random forest
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5 Results and Discussion

5.1 Accuracy Measures

Evaluation is an important procedure to develop a solution to any problem. This is used to evaluate the
anticipated accuracy of any new model, some testing techniques are used [92]. Following are the Obtained
results from this experiment in this section.

5.2 Metrics Formulation

Several comparison metrics exist to compare multiple supervised algorithms performance [93,26].
Among all, the most important and common measures are Accuracy(ACC) to measure the overall
accuracy, sensitivity (Sn) to measure the sensitivity, specificity (Sp) to measure specificity, Mathew
Correlation Coefficient (MCC) to measure stability using true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) values [94]. These measures are defined as:

Acc ¼ TP þ TN

TP þ TN þ FP þ FN

This metric is used to define the ratio of correct predictions to the total instances. This metrics range is
from 0 to 1. Higher Acc value represents higher performance.

Sn =
TP

TP þ FN

This metric is used to define the true positive rate of a classifier and tells about the performance of the
classifier in a way to calculate correctly predict lysine glycation. These metrics are also ranges from 0 to 1. A
higher sensitivity value represents higher performance.

Sp ¼ TN

TN þ FP

This metric is used to define the false positive rate of a classifier and tells about the performance of the
classifier in a way to calculate correctly predict non-glycated peptides. These metrics also range from 0 to 1.

MCC ¼ TP � TNð Þ � FP � FNð Þp
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ

MCC has a range from −1 to +1 which represents the negative correlation and positive correlation. TP is
the count of true positives glycated peptides or positive glycated peptides which are correctly predicted by
the classifier, TN is the count of true negative glycated peptides or non-glycated peptides which are correctly
classified by the classifier, FP is the count of false positives which means the count of incorrectly non-
glycated peptides are predicted as positive glycated peptides, FN is the count of false negatives which
means the count of incorrectly glycated peptides predicted as non-glycated peptides.

5.3 Test Methods

After getting the appropriate metrics to evaluate the classifier, some test methods to score these metrics
are also needed. Three methods are most commonly used in statistics to evaluate the predictor which are;
Self-consistency, K-fold cross or subsampling validation, and Jackknife testing [95]. In self-consistency
same dataset is used to train and test the model. Self-consistency testing has an Accuracy, Sensitivity,
Specificity, and MCC of 100%, 100%, 100%, and 1.0 respectively. Receiver Operating Characteristics
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(ROC) and Area under the Curve (AUC) are also used to evaluate the model’s performance. ROC plots the
sensitivity or true positive rate as a function of specificity or false positive rate for all possible folds. AUC
value shows the performance of the predictor. Closer value to 1 depicts the better performance of the model
[26,54]. ROC of the self-consistency testing is given in Fig. 4.

In the absence of obvious validation set to check the appropriateness of the proposed method, cross-
validation testing is being used. In cross-validation (subsampling) dataset is divided into k distinct folds
and k is always kept constant during the test process. The process is repeated k-times for each fold and
accuracy is calculated intended for each iteration. Finally, average of the all calculated accuracies is used
as a cross-validation result. We performed k-fold cross-validation by using k = 10. An average result of
10-fold cross-validation has an Accuracy, Sensitivity, Specificity, and MCC of 99.88%, 99.84%, 99.74%,
and 0.997 respectively. The results of 10-fold cross-validation are depicted in Fig. 5.

All cross validations 10-fold detailed measures results are also presented in the following Tab. 1.

In jackknife testing, one instance from the dataset was selected for testing, and the lasting all instance
used to train the model. In other words, if you have N size of dataset then N−1 size will be used for training
purposes and remaining 1 will be used for testing on N−1 size trained dataset. In the same way all instances
are tested without keeping them in the training dataset [96]. Jackknife testing has been used widely to
examine the various predictors’ quality by many investigators [97–99]. Jackknife testing has 99.92%
accuracy, 99.8% Specificity, 100% sensitivity, and 0.99 MCC. Detailed Results of Jackknife’s accuracy
are depicted in Fig. 6.

Figure 4: ROC curve of self consistency with AUC = 1
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Figure 5: Accuracy of 10-fold cross validation

2174 CMC, 2021, vol.66, no.2



5.4 Comparison with Existing Methods

The proposed solution is compared with some pre-build classifiers which are GlyNN [24], PreGly [25],
and GlyPseAAc [26] and with iProtGly-SS [68]. Following is the comparison of 10-fold cross-validation
results from all predictors as shown in Tab. 2.

6 Web Server

A user-friendly and easily accessible web server is developed for the end-users initially on local host
where they can input their sequences and check either the sequence belongs to lysine glycation or not.
The interface of the under-construction webserver is displayed in Fig. 7. This presented web server is our
future work and will established with some new concept.

Table 1: Results of 10 fold cross validation

Fold 1 2 3 4 5 6 7 8 9 10

Accuracy 1 1 1 0.996 1 1 1 1 0.996 1

Sensitivity 1 1 1 0.992 1 1 1 1 0.992 1

Specificity 1 1 1 0.992 1 1 0.99 1 0.992 1

PPV 1 1 1 1 1 1 0.99 1 1 1

NPV 1 1 1 0.992 1 1 1 1 0.992 1

MCC 1 1 1 0.99 1 1 0.99 1 0.99 1
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Figure 6: Accuracy of Jackknife testing

Table 2: Comparison of Gly-LysPred results with other models

Sn% Sp% Acc% AUC MCC

Gly-LysPred: 10-Fold Cross Validation 99.84 99.74 99.88 1.00 0.997

Gly-LysPred: Self-Consistency Testing 100 100 100 1.00 1

iProtGly-SS 87.67 69.51% – 0.8774 0.5855

GlyPseAAc 56.06 80.17 68.12 0.7705 0.38

PreGly 71.06 95.85 85.51 – 0.70

GlyNN 78.65 78.65 79.50 0.77 0.58
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7 Conclusion

Glycation is a type of non-enzymatic PTM which assigns sugar molecule and residues to a peptide. It is
more substantial and clinically important attributes to numerous chronic diseases and age-related, metabolic
such as diabetes, Alzheimer’s, renal failure, etc. The bulk of the dataset is first used to train the network. The
method proposes a Position Relative Incidence Matrix, Reverse Position Relative Incidence Matrix,
Frequency Matrix, Accumulative Absolute Position Incidence Vector, and Reverse Accumulative
Absolute Position Incidence Vector for feature extraction. Experiment results also show that the presented
methodology provides high throughput and accuracy than the previous predictors. In this research, using
Chou’s 5 step rule, we developed a model named Gly-LysPred for the identification of lysine glycation
sites from non-lysine glycation sites based on Random Forest (RF) which save a lot of time, money and
also not operator dependent. Different verification and validation testing such as Self Consistency, 10-
Fold Cross-Validation and Jackknife Testing being performed. Overall model’s accuracy was
accomplished through self-consistency, jackknife, and cross-validation testing 100%, 99.92%, and
99.88% with MCC 1.00, 0.99, and 0.997 respectively. This method is ultimately more accurate cost,
absolutely effective, and use high throughput technique for the identification of lysine glycation sites
from existing.
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