
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.012466

Article

Recognition and Classification of Pomegranate Leaves Diseases
by Image Processing and Machine Learning Techniques

Mangena Venu Madhavan1, Dang Ngoc Hoang Thanh2, Aditya Khamparia1,*, Sagar Pande1,
Rahul Malik1 and Deepak Gupta3

1School of Computer Science Engineering, Lovely Professional University, Punjab, 144411, India
2University of Economics Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam

3Maharaja Agrasen Institute of Technology, 110086, India
*Corresponding Author: Aditya Khamparia. Email: aditya.khamparia88@gmail.com

Received: 01 July 2020; Accepted: 07 August 2020

Abstract:Disease recognition in plants is one of the essential problems in agri-
cultural image processing. This article focuses on designing a framework that
can recognize and classify diseases on pomegranate plants exactly. The frame-
work utilizes image processing techniques such as image acquisition, image
resizing, image enhancement, image segmentation, ROI extraction (region of
interest), and feature extraction. An image dataset related to pomegranate
leaf disease is utilized to implement the framework, divided into a training
set and a test set. In the implementation process, techniques such as image
enhancement and image segmentation are primarily used for identifying ROI
and features. An image classification will then be implemented by combining
a supervised learning model with a support vector machine. The proposed
framework is developed based on MATLAB with a graphical user interface.
According to the experimental results, the proposed framework can achieve
98.39% accuracy for classifying diseased and healthy leaves. Moreover, the
framework can achieve an accuracy of 98.07% for classifying diseases on
pomegranate leaves.

Keywords: Image enhancement; image segmentation; image processing for
agriculture; K-means; multi-class support vector machine

1 Introduction

In agricultural production, cultivation plays an essential role in ensuring food security for
each country. Most of the people involved in crop activities of the rural areas usually have
limited knowledge of plant diseases, which is a major cause of crop failure. The plant disease
becomes visible to farmers at a very late stage. Therefore, farmers with limited knowledge of
plant diseases usually choose chemical pesticides and fertilizers, which affect the soil’s minerals
and cause pollution.

The identification of disease in plants plays a significant role in the field of agriculture. Auto-
matic plant disease identification is useful to classify plant diseases and define a kind of disease.
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Many plant diseases were discovered. They are very dangerous for plants and can kill them in a
short time. For example, a disease on leaves of pine trees was founded in the U.S. The disease
affects plants by inhibiting their growth and causing them to die within six years. It became
prevalent in the southern regions of the United States, especially in the state of Alabama. Early
diagnosis may have been beneficial in the scenario. Using experts to identify plant diseases is
a popular method. However, the method is expensive. Moreover, many countries lack expert
teams, either the farmers lacking in scientific knowledge are very hard to absorb suggestions
from the experts. Even when farmers receive expert advice, they worry about costs and time, and
above all, it requires a long time to monitor the plants. Therefore, we proposed a framework to
solve these drawbacks. The framework focuses on monitoring a large area of crop automatically.
Automatic disease detection will provide a more straightforward and cheaper solution than using
many experts. It also can monitor, store, and analyze the data automatically [1–4]. Plant illness
recognition by naked eyes is not simple. Also, the accuracy of the method depends much on the
knowledge of experts.

There are several common plant diseases such as brown or yellow spots, fungal, viral, and
bacterial diseases at an early and late stage. Experts will identify a plant illness by looking at
the infected regions, the change of leaf color, or other parts of the plants such as trunk trees
and branches of trees. To develop an automation method for detecting plant diseases, we use
the same way: Assess important features of leaves of plants by using image processing and
analysis techniques [5].

For the preprocessing step, we use image enhancement to improve color contrast. Another
image processing used in this work is image segmentation. Image segmentation plays a crucial
role in distinguishing regions affected by a disease and other healthy parts of the leaf. There are
many image segmentation methods that we can use here, such as thresholding methods, level-
set method methods, watershed methods, and cluster-based methods [6]. After implementing the
segmentation task, a specific portion of the image will be extracted for identifying a plant disease.
Based on segmented regions, one can extract essential features such as color detail and boundaries
for diagnosing diseases [7,8].

In the designed framework, we used a K-Means algorithm for color image segmentation. After
completing the image segmentation task, image classification is applied. Support Vector Machine
(SVM) can be used for image classification, but it is only efficient for the problem dealing with a
binary decision, i.e., data can be divided into two independent classes. However, the data dealing
with this problem relates to five categories, so the image classification method must be done with
multiple classes. Hence, the solution to this problem needs to be a multi-class SVM.

The study focuses on a specific fruit tree instead of working on many kinds of plants to
identify plant diseases more accurately. Because various diseases can affect many plants, the study
can be extended to apply for other kinds of trees easily. Maintaining accuracy for a specific
crop will bring more significant benefits to the farmers. In this article, we motivate study on
pomegranate because it is one of the most popular fruit trees in India, and its output is about
740 billion tons per year.

2 An Overview of Plant Diseases Identification

Sladojevic et al. [9] recognized the plant diseases and classifying them using convolutional
neural networks (CNN). The study’s precision is between 91 percent and 98 percent for a specific
disease, and the average precision was 96.3 percent. Singh et al. [10] proposed another method for
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plant disease identification using leaf images of plants by using a genetic algorithm. The method
utilized some image processing techniques such as image acquisition, image segmentation, and
feature extraction. Some other approaches were used for this problem, such as artificial neural
networks (ANN), Bayes Classifier, Fuzzy Logic, and some hybrid algorithms. Khirade et al. [11]
proposed a method for the recognition of plant illness using ANN. Kirani et al. [12] developed
another method to recognize infectious plants based on fuzzy logic. Fuzzy logic is used for
classifying and optimizing the model. This method is well-known as an application for botany.
The accuracy of the method is around 93 to 96 percent. Singh et al. [13] combined a genetic
algorithm with K-Means clustering and SVM to propose a method for detecting and classifying
plant diseases. The purpose of the genetic algorithm is to optimize the fuzzy parameters of the
model. Accuracy the method with Minimum Distance Criterion is about 93.6 percent, and SVM
is about 95.7 percent. Golhani et al. [14] used various types of neural networks to recognize
plant disease using hyperspectral data. The neural network techniques are essential to process
thermographic data. There are various types of single-layer neural networks, multi-layer neural
networks, radial basis function, Kohonen’s self-organizing map (SOM), probabilistic neural net-
work (PNN), and convolutional neural networks (CNN), and feed-forward and back-propagation
neural networks. Mattihalli et al. [15] proposed a framework in terms of IoT (Internet of Things)
to recognize plant diseases and integrated with many other functions that allow the system can
spread drugs to treat the diseases automatically if the plant is in the primary stage of infection.
The information can be monitored through GSM (Global System for Mobile Communications).
Pantazi et al. [16] proposed an automated method of recognizing plant illness using Local Binary
Patterns (LBPs) for feature extraction and One-Class Classification and then classified the plant
diseases including black rot, downy or powdery mildew and healthy. The accuracy achieved about
95 percent, with a total sample of 46. Some advanced techniques for recognizing plant diseases
are molecular techniques, spectroscopic imaging techniques, and profiling of plant volatile organic
compounds [17]. Molecular techniques include PCR, ELISA, and Hybridization [18]. Spectro-
scopic imaging techniques include Fluorescence spectroscopy, Visible and Infrared spectroscopy,
Fluorescence imaging, hyperspectral imaging. The systems that deal with profiling of plant VOC
are electronic nose systems and GC-MS.

The significant research gap found in the above works is to generalize all crops as a single
scenario in which the diseases might affect plants with various levels. So, in this scenario, the
efficiency of defining disease is more important. Using machine learning techniques, we can only
achieve an accuracy of 95.7% in a general case, but we can achieve better accuracy for a specific
plant. The reasons, as mentioned earlier, are the main philosophy considered behind all the work.

3 Dataset Description

The dataset utilized for the experimentation is of hybridized data collected from various
sources. The dataset used consists of pomegranate leaves’ images. This dataset contains the
following types of images:

1. Healthy leaves: These leaves do not have any infection and are green in color.
2. Alternaria Alternata infected leaves images: These are a fungus that causes dark spots on

plant parts and rots them.
3. Anthracnose: For this disease, dark and sunken type lesion is visible on leaves. It is an

infection caused by fungus.
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4. Bacterial Blight: It is a bacteria-infected disease in which pale green spots appear on leaves
and in later stage leaf appear water-soaked.

5. Cercospora Leaf Spot: Black dots and grayish tanned lesions appear on the leaf.

4 Methodology

The methods are used in the implementation of leaf disease detection for pomegranate using
leaf images are K-Means algorithm and multi-class SVM, and image processing techniques like
image enhancement and segmentation. The plant disease detection process is implemented in two
phases, as follows:

Disease detection: This phase of the process implemented by using image processing tech-
niques. In this phase, the K-Means algorithm utilized for clustering the infected regions on the
plant leaves images, as shown in Fig. 1. In the disease detection phase, the two significant steps:
image enhancement and image segmentation, were implemented. Image enhancement: Enhancing
an image is very important to make the features properly visible and identifiable. For a color
image, it has been done by using several methods such as image resizing, enhancing colors of
the images, and converting the plant leaf image in RGB color space into the Luminosity, as in
Fig. 2. For black and white images, this task can do by using histogram equalization. Image
segmentation: It refers to a process of deriving useful features from the image. The mentioned
step is the essential step for identifying the infected surface from the plant leaf. This task can
solve by using the K-Means algorithm, as shown in Fig. 3.

Figure 1: Input image of infected leaf

Disease classification: This phase of the process deals with classifying the detected disease.
It means that we must define which class based on the labels belongs to the plant disease—The
mentioned task is implemented using a multi-class SVM algorithm.
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Figure 2: Enhanced image of the leaf to better identify the infected parts

Figure 3: Segmented image showing the infected parts

4.1 Algorithm Based on K-means Clustering for Disease Recognition
The need to use the K-Means clustering in this implementation is to identify clusters of

diseased spots on the leaf and further. There was not any prior knowledge about those clusters
or patterns. Therefore, we choose the K-Means algorithm. The following steps are:

Step-1: The number of clusters (K) to be determined (depending on the necessity, we can
vary K value and repeat the whole process).

Step-2: The number of centroid values to initiated randomly, representing each centroid value
for each cluster. The number of values considered depends on the determined K.

Step-3: The Euclidean distance between different points and centroids of each cluster
will evaluate.
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Step-4: Depending on the distance, reform the clusters and calculate the new centroid for
each cluster.

Step-5: Repeat Steps 3 and 4 until there is not much change in the centroids and return
those centroids.

4.2 Mathematical Support of K-means Algorithm
K-Means algorithm used for the clustering of the points depending on the similarity and dis-

similarity. Proximity measures measure similarity and dissimilarity. In this scenario, the proximity
measure considered to be distance. The popular distances used in machine learning are:

1. Minkowski Distance can be calculated as in Eq. (1):

D (X ,Y )=
(∑

|xi− yi|p
) 1
p

(1)

where X = (x1,x2, . . . ,xn), Y = (y1,y2, . . . ,yn) and D (X ,Y ) represents the Minkowski
distance between X and Y .

2. Manhattan Distance can be calculated as in Eq. (2):

D (X ,Y )= (|xi− yi|) (2)

where X = (x1,x2, . . . ,xn), Y = (y1,y2, . . . ,yn), and D (X ,Y ) represents Manhattan distance
between X and Y .

3. Euclidean Distance can be calculated as in Eq. (3):

D (X ,Y )=
(∑

|xi− yi|2
) 1

2
(3)

where X = (x1,x2, . . . ,xn), Y = (y1,y2, . . . ,yn), and D (X ,Y ) represents the Euclidean
distance between X and Y .

One can understand that the Minkowski distance is more generalized, while the other dis-
tances can be easily derivable from Minkowski distance. Besides identifying the proximity measure,
there was a need to identify the optimized values for K, representing the number of clusters in
which whole data points can divide. There are two methods, such as the Elbow method and the
Silhouette Method, to identify the optimized K value. Elbow method purely based on the graph-
ical scenario in which made to draw a graph between the number of clusters and sum of squares
within the cluster, from an absolute value of K, the variation will be less such K values considered
as an optimized value for K. Silhouette method, again purely based on analytical support. In this
method, the Silhouette coefficient will calculate for different K values. For each K value, the
average Silhouette coefficient and K value will select for which the maximum Silhouette coefficient
occurs, that K value is considered optimal. Mathematical formulae can provide as in Eqs. (4)–(6):

ai = 1
Ci− 1

∑
Ci,i �=j

d (i, j) (4)
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bi =min
i �=j

⎛
⎝ 1∣∣Cj∣∣

∑
j∈Cj

d (i, j)

⎞
⎠ (5)

Si = bi− ai
max (ai,bi)

(6)

where Ci is the ith data point assigned cluster, |Ci| is the number of data points assigned to
cluster i, ai is the measure of similarity in which ith data point assigned, bi is the average
measure of dissimilarity with the closest cluster to which the point is not assigned, and Si is the
Silhouette coefficient. Other feature statistics are also used in this implementation, such as mean,
standard deviation, entropy, root mean square, variance, skewness, kurtosis, contrast, correlation,
and energy for identifying variations in the images.

4.3 The Algorithm Used for Disease Classification: Multi-Class SVM
According to the framework, the clustering of the points made by utilizing the K-Means

algorithm. The classification of plant diseases depends on the patterns that are available on
the leaf images. Supervision is needed for such classification to let the machine can understand
the pattern and classifying them. There are many algorithms for the classification of supervised
learning purposes, but we choose SVM because it can capture complex relations among the
datapoints very easily without intensive computations and a more extended period of training.
Now, an issue with the SVM is that it only can classify the data into two classifiers inherently,
but we need to classify data into more than two categories. So, the plan shifted from SVM
to multi-class SVM. SVM can utilize for both linear classification and non-linear classification.
The significant advantage of this method is using kernel functions as decision functions. The
different kernel functions are available such as linear, polynomial, gamma, sigmoid functions, and
customized kernel functions. In the implementation, the linear kernel function used.

4.3.1 Mathematical Support of Multi-Class SVM
SVM is a supervised learning technique. Initially, it was a technique used for the classification

of binary-class data. As time is turning around, the technology was improved to make SVM work
on multi-class data.

If data is of two categories and graphically or algebraically a line or plane can separate the
data into two categories, then such data is known as linear separable. A line or plane which
divides the data into two categories is known as a hyperplane. If the data is of one dimensional,
then the hyperplane will be a point. If the data is two-dimensional, then the hyperplane will be
a line if the data is n-dimensional, where n ≥ 3, then the hyperplane will be a plane. Then, the
mathematical representation of SVM for binary categorical data considered. There are two parts
in SVM to get the hyperplane, which can divide the data more optimally. They are:

1. Finding all possible set of hyperplanes.
2. Find out the optimal hyperplane of all the hyperplanes.
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These two steps included in the mathematical representation. For better understanding, the
two-dimensional data space considered so that one can understand that the hyperplane will be a
line. A line mathematically can be represented as in the Eq. (7):

WTX +B= 0 (7)

where W =
(
a
−1

)
and X =

(
x
y

)
.

Similarly, a hyperplane can be represented in n-dimensional data space where W will be a
column matrix of n×1, and X will also be a column matrix of size n×1 and will be represented
in the form as WTX +B= 0. For classifiers, the hypothesis will be defined in that the hyperplane
will divide the data space into two parts in two-dimensional space. The hypothesis H (xi) will be
defined as in Eq. (8):

H (xi)=
{+1, if wxi+ b≥ 0

−1, if wxi+ b≤ 0
(8)

In this instance, one can observe that there will be a more significant number of hyperplanes
that exist without restrictions, it is necessary to identify the optimal hyperplane of all the hyper-
planes. The above mentioned two parts of the hypothesis can combine into a single expression as
in Eq. (9):

yi (wxi+ b)− 1≥ 0 for yi =+1, −1 (9)

Let us suppose yi =+1 represents a hyperplane in the above equation and denote it by H1
and yi =−1 represents another hyperplane in the above equation and denote it by H2. Now, the
distance between H1 and the origin will be ((1−b))/|W| and distance between H2 and the origin
is ((−1−b))/|W|. So, the margin can be identified. For optimal hyperplane, the distance between
margins needs to be maximized and the origin, which means to maximize 2/|W| or minimize |W |
or |W|/2. Therefore, we can achieve the optimal hyperplane.

For multi-class SVM, there are two ways to solve it: construct several binary classifiers and
combine them and consider the complete data and formulate the optimization problem. These
methods are costly for computation due to a large number of variables. For the same reason, there
are three different approaches for solving multi-class SVM as One-versus-All, One-versus-One, and
DAGSVM (Directed Acyclic Graph Support Vector Machine) methods. In the case of the first
method, the model will be constructed such that there will be many SVM models as many as the
number of categories or classes exists in a particular feature of the data. Then, many hypotheses
will be defined as many as the number of classes in a feature. In each case of the hypothesis
will be defined them corresponding to each category or class. If an entity belongs to a class
corresponding to that hypothesis, it will be considered positive, and the remaining is unfavorable,
and this process will be applied to every other hypothesis. Let us suppose there are m classes that
imply the need to consider m SVM models. Consider the kth model for training activity with all
the samples in that class with positive tags and the other with negative tags. Let the training data
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be the size of p (x1, y1), (x2, y2) , . . . ,
(
xp, yp

)
, where xi ∈Rn, i= 1, 2, 3, . . . ,p and yi ∈ {1, 2, . . . ,m}

will be the class of xi, and the kth model can be solved as in Eq. (10):

Min
wk,bk,εk

1
2

(
wk

)T
wk+C

p∑
i=1

εki

(
wk

)T
φ (xi)+ bk ≥ 1− εki , if yi = k, (10)

(
wk

)T
φ (xi)+ bk ≤−1+ εki , if yi �= k,

εki ≥ 0, i= 1, 2, . . . ,p,

where function φ maps, xi, the training data into higher dimensional data space and C is a penalty
parameter. The optimization, as mentioned earlier, the problem is in the higher dimensions of the
simple SVM model due to more categories; otherwise, both are one another the same. By solving
the above equation, m decision functions will attain, and the generalize equation can mention in
the first part as that of Eq. (11), then, argmax will consider overall the m equations obtained as
mentioned in the second part of Eq. (11).(
wk

)T
φ (x)+ bk, k= 1, 2, 3, . . . ,m

class of x≡ argmax
k=1,2,...,m

(
(
wk

)T
φ (x)+ bk) (11)

In the second method, a pair of classes will be considered and try to develop a binary
classification among all the classes. Suppose that there are n classes and every time, a pair of
classes will be considered to create a binary classification, then the number of classifiers will be

C (n, 2) =
(
n

2

)
. Let us suppose that the ith and jth classes for constructing binary classification

problems can be represented in Eq. (12):

Min
wk,bk,εk

1
2

(
wk

)T
wk+C

p∑
i=1

εki

(
wij

)T
φ (xt)+ bij ≥ 1− εkt , if yt = i, (12)(

wij
)T

φ (xt)+ bij ≤−1+ εkt , if yt = j, εkt ≥ 0

The voting process will take the data point allocation to a certain class, i.e., if

sign
((
wij

)T
φ (xt)+ bij

)
says that the data point belongs to the ith class, then the number of

votes for the ith class will be incremented by 1 else jth class will be incremented by 1. Finally,
which class got the majority votes to that class, the data point will be moved. If there is any
situation of a tie of votes, the data point will be moved to the class, which has a smaller index.
In the third method, the training phase will be similar to the second method, but it varies in
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the testing phase. In the testing phase, the binary directed graph, which is of acyclic, will be
considered with the number of nodes equal to the number of classifiers, i.e., n(n− 1)/2 and the
number of leaves is equal to the number of classes, i.e., n. Each node in the graph acts as a basic
SVM, i.e., binary classification. At each node, the test sample will be provided and check for the
binary decision function and depending on that, and the testing data point will be placed into the
corresponding class.

4.4 Image Processing
Image acquisition is one of the essential phases of the implementation. Whatever the images

obtained through this phase will serve as input for the implementation part. Through the acquisi-
tion, there are 201 images used for the implementation, in that 126 images, i.e., nearly 63% of the
dataset, are used for the training the model and 75 images, i.e., nearly 37% of the datasets, are
used for the testing of the model. Different techniques are also utilized in image processing as part
of this implementation, such as resizing the image, enhancing color, converting the colored image
into grayscale, image segmentation, and extracting features from the segmented image. Image
segmentation is a crucial aspect of this implementation for the cluster formation and identification
of disease, in that, the path from the root to a leaf gives the information about the classification
of the data point or just a predicted class.

4.5 Algorithm for the Leaf Disease Detection
Steps of the algorithm are presented as follows:

Step-1: Applying image processing techniques on the image dataset.

Step-1.1: Gathering of images required for the implementation (image acquisition).
Step-1.2: Preprocessing the images for further use by resizing, enhancing, and converting
into grayscale.
Step-1.3: Segmenting the images for identifying infected regions on the leaves.
Step-1.4: Extracting features the images by applying the K-means algorithm.
Step-1.5: Evaluate the regions affected by the disease.

Step-2: Load all the training data features.

Step-3: Classify the images into different categories based on the labels defined by using
Multi-Class SVM.

Step-4: Load all the testing data features.

Step-5: Evaluate the accuracy of the model.

4.6 The Flow Chart for the Proposed Methodology
The flowchart of the implementation of the disease’s detection by using pomegranate leaf

images is presented as in Fig. 4.
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Figure 4: Flowchart for the implemented algorithm

5 System Environment and Tool

The system configuration includes Operating System—Windows 10, 64-bit, Processor: Intel®

Core™ i3-8130U CPU@2.20–2.21 GHz, Processor capacity: 8.00 GB. Developed environment:
MATLAB R2016a. We designed a Graphical User Interface (GUI) to automatically detect diseases
using the image of a leaf. The options such as loading image and enhancing the image are the
part of image preprocessing, segmenting image is the part of the identification of infected region,
classification result will classify the disease based on the patterns of the identified infected region
on the leaf image, the tool also calculates the percentage of an area on the leaf infected, the
accuracy of the classification result, and features mentioned in Section 4.1.1. In the case of image
segmentation, the system will generate three different regions for image segmentation to let people
select an appropriate region for identifying the disease, as in Fig. 5.

6 Results

In this section, the results of recognizing the pomegranate plant diseases into five different
categories discussed. They are Alternaria Alternata, Anthracnose, Bacterial Blight, Cercospora
Leaf Spot, and Healthy Leaves.

6.1 Results in Case of Alternaria Alternata
Fig. 6 shows the GUI of the proposed framework for the implemented scenario. In the case

of Alternaria Alternata, the accuracy obtained by the framework of about 98.39%.

6.2 Results in Case of Anthracnose
Fig. 7 shows the GUI of the proposed framework for the implemented scenario. In the case

of Anthracnose, the accuracy obtained by the framework of about 98.39%.

6.3 Results in Case of Bacterial Blight
Fig. 8 shows the GUI of the proposed framework for the implemented scenario. In the case

of Anthracnose, the accuracy obtained by the framework of about 98.39%.
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Figure 5: Image segment window with option selecting the infected region

Figure 6: GUI for alternaria alternata
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Figure 7: GUI for anthracnose

Figure 8: GUI for bacterial blight

6.4 Results in Case of Cercospora Leaf Spot
Fig. 9 shows the GUI of the proposed framework for the implemented scenario. In the case

of Anthracnose, the accuracy obtained by the framework of about 96.77%.
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Figure 9: Cercospora leaf spot

6.5 Results in Case of Healthy Leaves
Fig. 10 shows the GUI of the proposed framework for the implemented scenario. In the case

of Anthracnose, the accuracy obtained by the framework of about 98.39%.

Figure 10: GUI for healthy leaf
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6.6 Summary of Results
The summary gives the accuracy of the designed model is about 98.39% in the case of

Alternaria Alternata, Anthracnose, Bacterial Blast, and Healthy leaf. In the case of the Cercospora
Leaf spot, accuracy is about 96.77%. The average accuracy is about 98.07%. A comparison of
accuracy shown in Fig. 11. The accuracy achieved by another work with SVM [13] is 95.71%.
The generated framework can achieve better accuracy of 98.07%. The complete details mentioned
in Tab. 1.

98.39 98.39 98.39

96.77

98.39 98.07

90

92

94

96

98

100

Alternaria
Alternata

Anthracnose Bacterial
Blight

Cercospora
Leaf Spot

Healthy
Leaves

Overall
Accuracy

Figure 11: Comparison of accuracy across the classes and overall accuracy

Besides the accuracy, other metrics such as precision, recall, and F1-score are also considered
here. Accuracy carries misinformation if the data is unbalanced. To suppress that aspect, the
additional metrics utilized to explain reliability. If the Precision and Recall metrics are closer
to 1, i.e., closer to 100%, the corresponding F1-score will also be high, this situation implies
the reliability of the generated classification model. The summary of all metrics presented in
the Tab. 1. The graphical visualization of the evaluation metrics mentioned in Tab. 1 represented
in Fig. 12.

Table 1: Summary of the evaluation metrics of the classification model

Classification class Precision Recall F1-Score Accuracy

Alternaria alternata 95.7 95.5 95.6 98.4
Anthracnose 95.3 95.8 95.5 98.4
Bacterial blight 85.7 86.0 85.9 98.4
Cercospora leaf spot 90.0 81.8 85.7 96.8
Healthy leaf 100.0 88.2 93.7 98.4

After validating the generated classification model with the help of various evaluation metrics
such as accuracy, precision, recall, and F1-score, it is necessary to compare the current work with
already published works for identifying which model can generate a better accuracy. The results
presented in Tab. 2.
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Figure 12: Graphical visualization of evaluation metrics of the model

Table 2: Comparison of current work with published work

Reference Classifier Accuracy (%)

Sladojevic et al. [9] Neural networks 96.3
Singh et al. [13] K-means 93.6
Singh et al. [13] SVM 95.7
Proposed SVM 98.07

7 Conclusion

The article has presented a framework developed for the automatic identification and classifi-
cation of pomegranate plant diseases based on the leaf images. The framework utilized advanced
techniques such as image preprocessing, image segmentation, and image classification. Four kinds
of diseases in pomegranate plants, such as Alternaria Alternata, Anthracnose, Bacterial Blight,
and Cercospora Leaf Spot considered in the article. The designed framework can achieve an
accuracy of about 98.39% across all categories except for Cercospora Leaf Spot. Overall accuracy
across all the categories can achieve about 98.07%.

We have the plan to combine with deep learning to improve the accuracy of the framework
in the future. If the framework can include a sufficient number of layers of CNN, it can get
better accuracy.
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