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Abstract: One of the most complex tasks for computer-aided diagnosis (Intel-
ligent decision support system) is the segmentation of lesions. Thus, this study
proposes a new fully automated method for the segmentation of ovarian and
breast ultrasound images. The main contributions of this research is the devel-
opment of a novel Viola-James model capable of segmenting the ultrasound
images of breast and ovarian cancer cases. In addition, proposed an approach
that can efficiently generate region-of-interest (ROI) and new features that can
be used in characterizing lesion boundaries. This study uses two databases in
training and testing the proposed segmentation approach. The breast cancer
database contains 250 images, while that of the ovarian tumor has 100 images
obtained from several hospitals in Iraq. Results of the experiments showed
that the proposed approach demonstrates better performance compared with
those of other segmentation methods used for segmenting breast and ovarian
ultrasound images. The segmentation result of the proposed system compared
with the other existing techniques in the breast cancer data set was 78.8%. By
contrast, the segmentation result of the proposed system in the ovarian tumor
data set was 79.2%. In the classification results, we achieved 95.43% accuracy,
92.20% sensitivity, and 97.5% specificity when we used the breast cancer data
set. For the ovarian tumor data set, we achieved 94.84% accuracy, 96.96%
sensitivity, and 90.32% specificity.
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1 Introduction

The analysis of images involves the extraction of their relevant details. Machines are typically
used in this extraction process, with minimal human effort required [I-3]. The role of medical
imaging systems in image processing cannot be underestimated because it involves the use of
semi- and completely automatic algorithms for the high-speed and accurate analysis of images [4].
A wide range of imagery modalities can be used for the diagnosis of human diseases and ailments,
such as detection of tumors. These devices are designed to capture the images of internal organs
of humans in a non-invasive manner. One such device used for this purpose is the ultrasound
scan, which is referred to as a sonogram. This device works by sending high-frequency sound
waves over the tissues of a given body part. Moreover, this device has transducers that enable
it to receive sound waves that are eventually converted to electric impulses. Thereafter, internal
structure images are produced on the computer screen via electric pulses [5,6].

To date, an ultrasound machine has been used in identifying the risks of numerous tumors.
This study uses such a machine to detect gynaecological abnormalities, particularly, ovarian tumor
and breast cancer. The current research selects these two cases because they share similar problems
and may have similar shapes. Accordingly, this study investigates the two cases to determine an
effective solution. The hope is that this solution will assist experts in their diagnoses. To avoid
human errors in the quantification and diagnosis stages, computer-based image processing and
analysis tools should be developed to help minimize the rates of false positives and false negatives.
Apart from the development of such tools, they should also be tested and combined into the med-
ical identification. Many studies investigation and improvement of multidisciplinary technology
must be pursued to address the challenges associated with detecting and classifying gynaecological
abnormalities. Such a multidisciplinary technology must be a combination of machine learning,
medical image classification methods, and pattern identification methods developed through the
collaboration of domain experts. Note that human expertise cannot be replaced by computer-
based tools because specialists have a wealth of knowledge obtained through life-long training.
The most reliable method through which high accuracy can be achieved in terms of abnormality
detection is the hybrid approach, which is also capable of improving patient care and manage-
ment [7-9]. With such technologies, specific tools can be produced to assist in the training of
radiology students in medical schools and other hospital personnel. In general, when a computer-
based tool is being designed, an important aspect is to remember the purpose for which it is being
designed. This tool must either be designed in a manner that it is equipped with features that
facilitate decision-making, or as a conventional software that supports the automated extraction
of parameters/features required by domain experts [10,11].

Computer-based tools equipped with decision-making capabilities, such that they are more
sophisticated than conventional expert systems, should also be developed. In addition, machine
learning techniques must be integrated into computer-based tools to enable the extraction of
features that are seldom used by experts. Despite the need to develop sophisticated computerized
tools, many challenges are associated with the design of these tools. However, they can be
successfully designed through the selection of the most appropriate representation of data and
methods of data analysis. The current study focuses on developing computerized tools that possess
the characteristics of the second type of computerized tools. Given that domain knowledge of
experts continues to increase and evolve, such tools will continue to be improved and designed rely
on the facts and needs of felid specialists [12,13]. In the last decade, the domain of ultrasound
medical image analysis has witnessed an increase in publications. However, only a few studies
have been observed to focus on the area of fully automated gynaecological segmentation [14—16].
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The next section presents an overview of the extant automated methods of the region-of-interest
(ROI) segmentation and reviews the related studies. In particular, the focus of the current study is
on the analysis of ultrasound images, and the images analysed in this research are those generated
from gynaecological investigations and those collected for the purpose of ovarian tumor or breast
cancer diagnosis. The aim is to develop and evaluate the efficiency of a new automated and
computerized approach that is capable of analyzing gynaecological US for the detecting and clas-
sifying of abnormal cases or objects that have an impact on women’s health. The computational
examinations conducted in this study are motivated by advancements in imaging technologies,
advent of state-of-the-art models of data mining and machine learning, and image processing and
analysis theories.

The current research aims to build an intelligent decision support system model that can
segment and identify the risks of malignant breast cancer and ovarian tumor in the early stage. To
achieve this objective, we should first identify the limitation of the existing methods and attempt
to reduce the effects of the limitations. The limitations of ultrasound images can be classified
into three parts. First, speckle noise is one of the major limitations that can affect segmentation
and feature extraction. Speckle noise will reduce segmentation accuracy by increasing false cases
and reducing the clarity of the ROI edge. For texture, speckle noise has resulted in an unclear
ROI texture information, which cannot be used to identify malignant risks. Thereafter, building or
using a good filter can facilitate the reduction of speckle noise, thereby making the segmentation
and feature extraction task considerably easy. Second, the artifact produced from the machine
can make the segmentation a difficult task. Lastly, powerful features may be difficult to find in
identifying the risk of the malignant. Therefore, we proposed a model that can:

e Enhance images, thereby making it suitable for segmentation and enhancing the texture fea-
tures for the diagnosis stage. Thereafter, we proposed a new cascade model to segment and
extract ROI from ultrasound images. In the filtering stage, the proposed model combines
the Wiener filter with wavelet filter to highlight ROI from the rest of the images and make
the ROI edge clear for the segmentation task. In addition, the Wiener filter used alone will
enhance the texture for the classification stage.

e For the segmentation stage, we modified the Viola—Jones model and made it suitable for
the segmentation instead of using it for object detection. In the traditional method, the
Viola—Jones model is used for object detection by scanning images with different window
sizes. By using this method, we determined problems related to the false positive cases
generated by the Viola-Jones model, although we cannot obtain the entire ROI from the
images. Therefore, we end up with under- and over-segmentation problems. Our proposed
model modified the Viola—Jones model and made it suitable for the segmentation task by
scanning images pixel by pixel utilizing the local details of pixels.

The remainder of this paper is organized as follows. Section 2 presents the existing studies
on the segmentation approach of automated ultrasound images. Section 3 explains the proposed
Viola—Jones model to segment ultrasound images of ovarian and breast cancer cases. Section 4
presents the experiment results in terms of the segmentation and classification results. Lastly,
Section 5 details the conclusion of our study.

2 Existing Studies on Automated US Segmentation

One of the main challenges associated with the detection of abnormalities in human organs
is the extraction of relevant information from ultrasound images, and the possibility of human
error in terms of inaccuracies in manual methods is high. The implication of such inaccuracies
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could be differences in intra- and inter-observer. Moreover, high-level experiences and expertise are
required to interpret such an information. Thus, automatic methods of processing and analyzing
images automatically should be developed. These automatic methods will enable gynaecologists
and sonographers to accurately diagnose diseases [4,8]. Fig. 1 shows an illustration of the main
components of the underpinning task of the automatic analysis of ultrasound cases.

Ultrasound image

,, T

Speckle noise —»| Segmentation T Feature extraction [—| Classification
reduction

Figure 1: US analysis and understand

A common challenge in the area of image processing is segmentation (e.g., image analysis,
recognition of pattern, and scene analysis) [4,17]. The segmentation process involves partitioning
images into numerous groups of pixels, in which the grouping is done according to pixels that
are similar in terms of certain criteria. One of the major principles of segmentation is that there
must be no intersection of objects that vary, and neighboring objects should remain heteroge-
neous. Substances obtained from the process of segmentation are referred to as image segments.
Segmentation is likewise a clustering-based task, which is utilized in image processing to divide
digital images into different segmentation to enable the easy conduct of additional investigations.
Segmentation is a crucial step in image analysis and the first step performed to differentiate
the varying objects present in pictures. Accordingly, objects of interest are separated from the
remaining objects. In this process, pixels with common visual characteristics, such as motion, color,
depth, texture, intensity, and gray level, are categorized into salient image regions. ROI is extracted
and represented from images using segmentation techniques [18].

At present, a variety of image segmentation applications enable the compression of images,
retrieval of contents, editing of images, and machine vision (e.g., a method of arranging versatile
robots). Other applications include computer-aided fingerprint recognition and facial identification,
satellite imaging usages, and remote sensing applications. However, four main categories of image
processing techniques are often used, and they are described as follows [19].

(1) Edge-based methods. These methods are among the main essential approaches of medical
image handling used in computer vision, the main aim of which is detection contours,
which are representative of the boundaries of image objects. Such algorithms are advanta-
geous because they offer low-cost computation. However, major challenges are associated
with the edge grouping process, and some of them include setting the right thresholds
and the production of connected, one-pixel-wide contours. The task of edge detecting
often involves three steps. In the first step, noise is reduced through the use of smoothing
techniques. The second step involves the application of local operators to detect edge
points. In the last step, spurious pixels are eliminated from the edges [20].

(2) Clustering-based methods: For this method, sorting or image pixels is performed in an
aggregate order as a histogram based on intensity ratios. Examples of this approach include
K-means and fuzzy-c-means (FCM) methods. This approach is advantageous because
it allows the use of iterative processes on problems associated with threshold setting.
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Moreover, contours that are segmented are consistently continuous. However, the occur-
rence of over-segmentation will be recorded in an event that pixels belonging to the same
cluster are not adjacent [21,22].

(3) Region-based approaches: These approaches aim to detect regions in accordance with a
certain predefined homogeneity threshold. This approach is widely available because seg-
mentation contour is often uninterrupted and one-pixel-wide in this method. In addition,
this approach offers shorter computational time. Nevertheless, variation may occur in the
results of segmentation owing to the variation in similarity threshold settings, thereby
possibly resulting in over-segmentation [12,14].

(4) Split-merge methods: These approaches on response case can be partitioned into homo-
geneous original areas through the use of FCM or K-means as a split step. Thereafter,
neighbouring objects that are similar to one another are combined into a specific decision
rule as a merging step [5,10].

One of the most critical steps in the processing and analysis of images is the segmentation
of US cases, which is also a difficult task aimed at dividing images into meaningful parts. This
process is used in distinguishing objects of interest from the background. Numerous conven-
tional techniques and approaches have been used in ultrasound image segmentation. However,
binary segmentation is the easiest method that can be implemented easily and is accompanied by
rapid operation procedures. In this section, the studies reviewed have been subjected to thorough
clinical validation.

A novel automatic method of follicle segmentation was proposed. In the current research, the
images of human ovaries were smoothened through the use of an adaptive neighbourhood median
filter, whereas the geometric active contour methods are utilized for the initial segmentation of
the dark regions. The process involve as it were portion of these dark segmenting areas is a true,
curiously objects. A SVM classifier was used to determine whether every dark area is completely
carpel or not [22]. In the study conducted by [23], a semi-automated segmentation approach was
introduced to segment the left ventricle in the US imaging of the heart. Segmentation was carried
out through the use of the snake method, which is particularly tailored to address the issues
associated with the processing of ultrasound images. The snake technique uses two anchor points
and builds a tracking approach alongside a prior model for the frame-to-frame movement. By
means of the proposed method, segmentation is carried over the entire cardiac cycle with as it
were an initialization within the to begin with outline.

An active contour approach was proposed by [24], which uses a genetic algorithm to achieve
optimization. The first image in this approach is subjected to the process of low pass filtering,
and the initial estimate contour was defined by means of morphological operations. Moreover, a
nonlinear mapping of the intensity gradients is utilized for minimized energy function. Contour
finding was initialized in the subsequent frame through the use of the final contour. The method’s
convergence was equated with understanding active contour via implications of the customary
compelled quasi-Newton strategy. Delineations are physically done on 20 outlines via two special-
ists. Physical delineations are done on 20 frames by 2 specialists, and a comparison was made
between the average and automated algorithms. The aim was to show that the intervariability
among specialists was comparable to the distinction between the automated and manual strategies.
Accordingly, the area correlation was determined to be 0.92. However, conclusions cannot be
made based on this result because this outcome is from a preliminary assessment.
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In [25] prescribed a method that is completely automated for the segmentation of breast
ultrasound images to classify them using support vector machine (SVM) and discriminant anal-
yses. In the current study, the pixels of the ultrasound breast images obtained from a set of
multi-resolution image processing method are classified using five types of features, namely, higher
band-pass filtering, non-linear diffusion, lower band-pass filtering, and two types of mean cur-
vature from Gaussian filtering for different values that can be detected between t = 200 and
t =300. Subsequent to this classification process, the edge of the object is enhanced through the
implementation of a filling operation. A semi-automatic segmentation method was proposed to
address the limitation that accompanies the automatic segmentation of images [26]. In their work,
the ultrasound image was represented using the patch-based continuous graph cut method. At
the initial stage, a seed point, which is also known as a marker, is provided by the user outside
or inside the object of interest. Thus, the objects will be represented by the variation in points.
Their proposed framework was deployed on a wide range of problems associated with ultrasound,
including fetus, liver, eye, and prostate. The proposed method achieved an accuracy of 94% in
terms of segmentation for all the data sets used in the study [26]. Some studies [27,28] have
proposed a novel method capable of automatically identifying miscarriage cases. The segmentation
part of their method involves the use of Otsu as a threshold method. First, the object of interest
is separated starting with the background, and the boundary of the object is smoothened and the
small holes are filled thereafter through the application of median filter, which is characterized
by a window size of 15 x 15. Lastly, a small object or any other object that is attached to the
boundary is eliminated through the use of the area feature. In addition, an automatic method
was proposed by [29] to enable the segmentation of 2D foot ultrasound image. Their study
comprises three phases. The first phase involved the use of anisotropic diffusion filter, after which
the contrast was enhanced through morphological process to improve the US case as a pre-
processing operation. In the second stage, segmentation is performed using the active contour
method, although the output comes in the form of a binary image. Lastly, the border was
eliminated using post-segmentation methods, which were also used in eliminating irrelevant objects.
A scheme was proposed by [30] for the segmentation of ultrasound images. This segmentation was
performed using watershed transform, which is a widely used and accepted tool used in image
segmentation. In the watershed transform method, gradient images extracted from the original US
cases are used, rather than using the image directly, in solving several problems. Nevertheless, the
watershed method of segmentation used for the image texture is ineffective, particularly if images
are characterized regions with constant homogeneity. The proposed method is characterized by
three main stages. The first stage involves segmentation using watershed to divide images into
different regions. In the second stage, the similarity between regions that are close to one another
is checked using the similar region merging strategy. In the third and last stage, the edges of the
objects are enhanced through the application of boundary extraction.

However, the main limitations of US images can be classified into three issues. Firstly, speckle
noise is one of the major limitations that can affect segmentation and feature extraction. Sec-
ondly, the artifact produced from the machine can make the segmentation a difficult task. Lastly,
powerful features may be difficult to find in identifying the risk of the malignant. The proposed
research and model aims to build an intelligent decision support system model that can segment
and identify the risks of malignant breast cancer and ovarian tumor in the early stage.
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3 Proposed Ultrasound Image Segmentation

The result of an ultrasound is reflected through images. The ultrasound could be that of
various types of tissues. Thus, these images are characterized by darkness, low contrast, blurry
RIO edge, and objects with nearly the same characteristics. Moreover, the type of machine used
and its resolution determines the quality of images. Thus, these factors result in the segmentation
process and risk of the malignant becoming complicated. We begin by describing the basic idea
of the proposed method to understand the impact of the different techniques used. Three basic
components possess the framework presented in this study. Fig. 2 presents these components.
These component are pre-processing, segmentation, and features extraction to classify the cases
as benign and malignant. In the enhancement stage, US is taken and subjected to speckle noise
reduction, thereby producing a clear image as the output. Moreover, as highlight the ROI and
make it suitable for the segmentation task. We follow different steps during segmentation. First,
the image is binarized by using the initial segmentation step. Second, unwanted objects are
removed by filtering out non-ROI. For the final step of the segmentation, we will use the active
contour to avoid the under segmentation issue. Lastly, the feature extraction and classification
stages evaluates the efficiency of the proposed segmentation methods.

The proposed system includes the following main steps:

e The pre-processing phase enhances the image, highlights ROI, and makes US image clear
for the segmentation task. In this stage, we used Wiener filter followed by wavelet transform
to highlight the region will be working on it.

e We used Wiener filter only for texture feature enhancement.

e The second stage includes segment and ROI is extracted from the remainder of the US
image. For this stage, we built a powerful trainable cascade model.

e Lastly, to assess the proposed segmentation, we extracted the LBP features from the seg-
mented ROI and fed them to the SVM classifier to identify the risk of the malignant in
early stage.

3.1 Image Enhancement

Degradations in image and signal can occur as a result of the presence of artifacts and noise
in several clinical modalities. The degradation that occurs in image modalities vary based on the
type of modality. Typically, the most common type of degradation associated with radiograph is
low contrast, while speckle noise is often observed in images the formation of which was achieved
using coherent energy, such as ultrasound. The quality of images can be strongly influenced by the
degradation of image, which has an effect on the way the image will be interpreted by humans.
In addition, the accuracy of the system can be influenced by image degradation. The simplicity
and reliability of quantitative measurements is often tampered with by low-quality images. That
is, poor-quality images is makes the quantitative measurements unreliable and complex. Moreover,
poor-quality images affect the reliability of the system in terms of analysis of image, segmentation,
and feature extraction. Accordingly, the images should be despeckled to improve the quality. Given
this situation, numerous studies should be conducted in the area of medical imaging.

Images with noise that should be eliminated must be despeckled. Consequently, the quality
of ultrasound images can be enhanced, while the boundaries of the salient tissues are maintained
in the images. This stage aims to accurately find the boundaries of structures, thereby providing
an improved visual representation of the location of structures and quantifying the morphology.
The majority of previous studies have referred to speckle noise as a key challenge connected
with the analysis and segmentation of US images. These studies have used techniques based on
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pre-processing to eliminate speckle noise. Therefore, the current study performs speckle noise
reduction to eliminate noise while maintaining the object of interest.

- | Image pre_processjng
b J

Initial segmentation
Binarization

Input Image

Post-Segmentation

Active Contour

Feature extraction on the

Segmented Image segmented ROI

Fi E2|53

Classification

Figure 2: Outline of the proposed system

The proposed model for the speckle noise reduction and ROI highlight include the application
of Wiener filter, the output of which for the wavelet transform is used to extract the low-frequency
sub-band and for segmentation. The Wiener filter was used to achieve two objectives. First, ROI is
smoothen for the wavelet transform and used for segmentation (Fig. 3). Second, the ROI texture
was enhanced to extract powerful features for the diagnosis stage. In this study, noise reduction
was achieved through the use of the Wiener filter, which is a linear filter, and its application
to an image is performed in an adaptive manner. This filter is specially designed to suit the
local variance of images and smoothens the boundaries of images when a huge variance exists.
When the variance is small, more smoothening exists. That is, the larger the variance, the lesser
the smoothening; and the lesser the variance, the more the smoothening. The Wiener filtering
approach has proven the ability to enhance results compared with linear filters. Through this
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filter, the edges of image and other areas of images with high frequency are preserved. The
reason is that this instance is inherently choosy compared with linear filters. However, the Wiener
filter is accompanied by a limitation, in which the requirement is additional computational power
compared with the linear filter, which uses minimal computational energy. The Haar wavelet was
used as a second stage to identify the low frequency sub-band LL from the high frequency ones.
This situation will facilitate the reduction, identify the noise and artifacts, and exclude them by
resizing the LL sub-band only. This model will assist us to highlight ROI and remove numerous
artifacts from the image.

ltrasound I . - i ;
Ultrasound Image Segmentation objective |« Filtered image

| T

| Haar Wavelet Resize the LL :

Wiener filter || transform | LLSub-band 1 sub-band

Filtered image > Diagnosis stage

Figure 3: Enhancement of ultrasound images

Our investigations in this area indicated that studies have exerted effort geared toward the
elimination of speckle noise in ultrasound images. Despite the relevance of speckle noise elim-
ination, it does not guarantee that image segments will be accurately produced. The reason is
that the accuracy with which images are segmented does not solely rely on the removal of
speckle noise from the image. That is, apart from speckle noise, other factors that influence
the accurate segmentation of images. However, one of the aims of this study is to minimize
speckle noise, while highlighting ROI for image segmentation. Thus, this research proposes an
approach that can smoothen images. This approach also aims to produce a clear ROI to easily
implement segmentation.

3.2 Initial Segmentation

The extraction of object from images can be achieved using any of the different methods
available for this purpose. Some of these methods include edge-, threshold-, and region-based
segmentations and clustering techniques. Some of the methods may be inappropriate for some
images because of the variance between the intensity values of images in different data sets. For
this reason, such complex cases were handled in this study through the use of the Viola—Jones
model [31,32]. This model is advantageous because it is able to perform some tasks as follows:
(1) Selection of the most relevant features from a large vector of features, such as the Harr
features; (2) Construction of weak classifier methods, in which the number of methods rely on the
number of the features selected by the optimization technique, and every classifier is dependent
on one of the features chosen; and (3) Construction of a robust classifier by boosting the weak
classifiers. The cascade model (i.e., Viola—Jones model) has been used for a long time to detect
objects. The current study will modify the idea and make it suitable for segmentation instead of
detection. Fig. 5 shows the proposed cascade model. The goal of the initial segmentation is to
separate the region of interest from the remainder of the ultrasound image. The main steps of
the proposed cascade model (modified Viola—Jones model) are as follows.
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(1) The method begins by choosing a specific number of samples as US images for the
training process. To train the model for the segmentation task (binarization), we took small
windows (11 x 11) from ROI and the regions outside ROI (non-ROI).

(2) A group of Haar features was extracted from the windows that cropped from the training
images. Fig. 4; shows the masks used to extract the Haar features. Note that we extracted
five types of Haar features.

—_——

. l (b) Line Features
E (c) Four-rectangle features

Figure 4: Haar cascade features

—

(3) To provide a trained model, the five types of Haar features were used as input to the weak
classifier with window labels (i.e., labels present as ROI and non-ROI). The output of this
stage is a trained cascade model (i.e., modified Viola—Jones model).

(4) During the training stage, the best Haar features will be selected to identify ROI from
non-ROI.

(5) Each type of Haar features has been used as input for one of the weak classifiers, and the
combination of the weak classifiers will result in a powerful and strong classifier.

(6) The testing stage includes scanning each image pixel by pixel in the testing set. For every
pixel found in the segmented US image is a minimal square area of the same window
measure with the pixel as the middle is built (11 x 11 window) and the Haar features type
that has been selected during the training. The pixel is classified by the trained cascade
model into two classes: “inside ROI” and “outside ROIL.”

AdaBoost is a boosting algorithm that is widely accepted and used. The use of this algo-
rithm has proven that a strong classifier can be produced when weak classifiers are combined.
Furthermore, AdaBoost has demonstrated a strong ability to efficiently combine simple statistical
learners and minimize errors during training, including errors related to vague conclusions [4]. The
two major steps are involved in the use of AdaBoost-based approach. The first step involves the
construction of a powerful classifier through the combination of weak classifiers. In the second
step, strong classifiers are combined sequentially to enable the construction of a boosted classifier
cascade. The manual cropping of many samples has been performed in this research, and the
vectors of each sample have been extracted using the Harr features. Some examples of a specific
m labelled training, such as (x1,yl),..., (xm, ym), are provided. In this case, x denoted a feature
vector and the labels yi e {—1,1}. In each round t=1,..., T, the computation of the s distribution
Dt is done. In the event that a weak hypothesis x — {—1,1} should be determined, a weak
algorithm is used thereafter. A weak learner is determined so that a hypothesis can be formulated
with low weighted error that is relative to Dz, as observed in Algorithm 1. The weighted sign that
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has been produced subsequent to the combination of the weak hypothesis is computed using the
final hypothesis as shown in Eq. (1):

T
h (x) = sign |:Z achy (x)j| (1

t=1

Algorithm 1:: Standard AdaBoost Algorithm

(x1,¥1), wee, (xm, ym) where x; € X,y; € {—1,+1}

Initialized: Di(i)= I/imforI=1,..m.

1. Train weak learner using distribution Dr.

2. Get weak hypothesis x — {—1,1}

3 Aim: select h: with low weighted error

D.exp (—e.vih (x;

Dois(i) = cexp ( z:yl e (x))

where Z: is a normalization Jactor (chosen so that Dt+1 will be a
distribution).

Qutput the final lnpothesis:

T
h(x) = sign [Z - hr(x)]

The cascaded classifier comprises stages and each stage possesses a strong classifier. Moreover,
each stage plays a critical role in ascertaining if a given sub-window is completely an ROI or non-
ROI. In the event that a non-ROI is not detected at a particular stage, the window is discarded
immediately. Meanwhile, in the event that a sub-window is detected as ROI, it is forwarded to the
subsequent stage of the cascaded classifier. This process is in accordance with the proposition that
the more stages passed by a specific sub-window, the possibility of having an ROI sub-window
is high. One of the most common problems observed in the classifiers that have just one stage is
the acceptance of additional false negative, while aiming to minimize the rate of false positives.
However, in the early stages of the staged classifiers, false positives are not the current concern
because the problem is expected to be solved in the next stages. Thus, the conditions in which
several false positives can be accepted in the early stages of such classifiers have been prescribed
by the Viola—Jones model. Thus, the cases of false negative are expected to be reduced in the final
stages of the staged classifier.

3.3 Active Contour

The experiments performed in this study involved the use of ovarian and breast cancer
ultrasound images. Given that the extraction of the entire ROIs was not possible in some of the
images, active contour was used as a post-segmentation step to enable the complete extraction of
ROI with the correct boundary. In the proposed model, the use of active contours was employed.
The first type involved the use of a single seed point possessing numerous iterations. For this
reason, the detection of an object’s border in this active contour requires additional time. The
second type of active contour used in the current study was used based on the largest mask
through the detection of two points in the breast and ovarian cases. With this principle, the
number of iterations required is decreased, while enabling the growth of the active contour from
the external part of the sac based on the mask.
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Figure 5: Proposed cascade model (Viola—Jones model)

3.4 Feature Extraction

Local binary patterns (LBPs) are among the features used for texture classification [1]. LBP
operator refers to a technique that performs image transformation into integer labels or an array
of images, which provides description of an image’s microscopic appearances [3]. Statistics or
labels of the image, typically the histogram, is subsequently utilized to conduct a fine analysis of
images. The majority of the operators have been constructed to deal with monochromatic images.
However, studies have begun extending operators to deal with polychromatic images, volumetric
data, and videos.

The essential LBP presented by [§] is based on the presumption that texture has two locally
complementary viewpoints, namely, design and its quality. This study proposed LBP as a two-level
adaptation of the texture unit to depict the nearby textural designs. The initial adaptation of LBP
was applied in a 3 x 3-pixel piece of a picture. The pixels can be expressed as follows in Eq. (2):

5
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where ic is compared with the dark esteem of the central pixel (xc,) and -ic is the dark values of
the 8 encompassing pixels. In the event that in —ic> 0, (in—ic)=1,S(in—ic)=0. Fig. 6 shows an
example of how to calculate the essential LBP value.
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Figure 6: Example of a basic LBP

A basic LBP is inefficient in computing the pattern code of an individual pixel situated in
some neighborhood. An enhanced LBP is considered to enhance computation efficiency. Fig. 7a
shows that if we assume that a pixel (consequently denoted as pixell) has a gray value of 6,
then its LBP is Pattern 1 = 11110001. Another pixel that has a gray value of 7 holds LBP with
Pattern 2 = 00100101. The final trailing code “1” in Pattern 1 is obtained by comparing pixels 2
and 1, while the initial code “0” in Pattern 2 is obtained by executing the comparison of pixel
1 with pixel 2 (marked red in Fig. 7). A comparison between pixels 1 and 2 is performed twice,
followed by further reiteration to compare the two pixels. Through deeper analysis, an individual
code of LBP can be obtained through reiteration. In terms of an entire image, half of LBP
would offer a complete description of the local texture (indicated by the red lines in Fig. 7c).
Accordingly, a quasi-LBP is proposed as follows.

6 5 2 21 6 5 2 21

7 6 1 13 => Pattern 1=11110001 7 o 1 13

9 8 = 3 Pattern 2=00100101 9 8 7 3

12 6 11 12 6 3 11
(a) (b) (©

Figure 7: Comparison of two neighbor pixels’ LBP (A) original sub-image (B) binary code for
two pixels (C) LBP image

In computing an individual pixel’s LBP, as many as eight comparisons are executed in a
standard LBP technique. In a quasi-LBP proposed, the comparison is reduced by 50%, with
the range of code reduced from 0-255 to 0-15. This result would significantly improve the
performance of LBP in computing histogram. Even though the technique’s enhancement is not
rotation invariant, it may continue to be employed in background modeling with monocular
camera, which is attributed to the existence of the minute rotation in raw video obtained from
one camera. Thresholding is enforced by a center pixel value on pixels in the block, magnified by
the power of two, and with the aim to obtain the center pixel’s label. Eight pixels that exist in a
neighborhood would yield 28 =256 distinct labels, which is contingent on the neighborhood and
center pixels’ relative gray values. Texture analysis has widely adopted LBP descriptors attributed
to the efficiency of computation and flexibility to illumination fluctuations. Nevertheless, LBP
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descriptors may be incapable of capturing discriminative information completely because only the
sign information of vectors’ difference in a local region is utilized.

3.5 Classification

This study uses support vector machine (SVM) classifier because it is one of the methods
utilized in breast cancer diagnosis. This classifier performs a classification of malignant or benign
tumors in a shrunken set of features [3]. In the current study, the SVM classifier performed
classification on breast lesions. Poonguzhali and Ravindran (2006) proposed SVM as a statistical
learning concept. SVM inserts a hyperplane among classes and maintains the furthest distance
from the nearest data points. Data points appearing closest to the hyperplane are known as
support vectors. Widely used kernels include neural nets (sigmoid), Gaussian radial basis function
(RBF), polynomial kernel of degree “d,” and linear kernel [3].

The main advantage of SVM classifiers is to discover the improved decision border, which
exemplifies the greatest decisiveness (maximum margin) amidst the classes. The SVM standard
begins from resolving the problems of linear separable and expands to treat the non-linear cases.
Fig. 8 shows a paradigm of the SVM framework of breast cancer.
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Figure 8: Example of SVM in recognized between malignant and benign cancer [&]

The SVM method used to classify a new sample created by computing the ratio (Sc¢) of the
testing sample x depends on the following Eq. (3):

Sc(x)zZoc,-K(si,X)—i—b 3)
i=1

4 Experiment Results

4.1 Data Set

One of the critical activities of research is the data collection process. At this stage, the
research must ensure the accuracy of the collected data to guarantee the reliability and integrity
of the study. Ultrasound images comprise the data used in this study. The choice of an appro-
priate data set is crucial to the testing of any kind of automatic system of image classification,
computer-based methods of diagnosis, and models of medical image segmentation. In general,
sample pictures of breast cancer classes have been provided to enable readers to judge whether
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the automated pattern recognition was achieved or not. The source of the data sets should
also be determined so that their importance and reliability to the study can be ascertained. The
experiments were carried out using 250 ultrasound images, 150 of which are malignant and the
remaining 100 are benign. The data set used by previous studies can be accessed from [33]. Apart
from the 250 ultrasound images acquired from the aforementioned sources, 100 images of ovarian
tumor were obtained from was collected from the oncology specialist hospital in Baghdad, Iraq. In
this data set of 125 images, 90 are benign, while the remaining 35 are malignant. The experimental
setup and implementation of the code to perform the analysis and the library used in this study
as Matlab 2020 b, with windows 10, Ram 8G, CPU core 17.

4.2 Segmentation Results

The execution of the proposed segmentation was also compared with the current methods
utilized to segment diverse types of US cases see Tab. 1. We used previous studies as bases to
determine that these techniques are well-known and efficient for distinctive types of US cases.
Evidently, the proposed mode achieved good results compared with Otsu’s method and that
with active contour. To see the affective of the proposed model we have shown the result of
the prepressing as well as segmentation in Fig. 9. Fig. 9 shows that pre-processing enabled us
to highlight ROI and reduce the artifacts. The proposed segmentation captured ROI from the
remainder of the images.

Table 1: Comparison of the segmentation result of the proposed system with other
current techniques

Data set type Using Using Proposed
Otsu’s Otsu’s method
threshold  threshold

and

active

contour

Breast cancer data set Number of images 250 250 250

Captured ROI 1571250 1771250 204/250
Accuracy 62.8% 69.14% 81.6%
Successful segmentation 154/250 173/250 197/250
(Avoiding
under-segmentation
problem)
Accuracy 74.4% 83.15% 78.8%

Opvarian tumor data set Number of images 125 125 125

Captured ROI 79/125 84/125 103/125
Accuracy 63.2% 67.2 82.4
Successful segmentation 73/125 77125 99/125

Accuracy 58.4% 61.6% 79.2%
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Figure 9: Shows the preprocessing and segmentation of six cases taken from the breast and
ovarian ultrasound images; (A and B) shows the breast cancer cases; (D and E) shows the ovarian
tumor cases

Fig. 10 shows two samples of images that taken from the data set. Those images has more
challenges and as we can see that border of those images is not clear and that has made the
images more difficulties. Therefore, we have applied the proposed method to highlight the border
of the ROI and make the ROI more clear. Then we applied the segmentation method to extract
the ROI as a binary object. We can see that the proposed method has extract the ROI without
under and over-segmentation problem.

4.3 Classification Strategy

This stage uses the images segmented correctly. The total number of ultrasound images
contained in the data set is 250, 100 of which are benign cases, while the remaining 250 are
ultrasound images. The images segmented correctly are 197, including 123 sample malignant and
74 benign images. For the ovarian images, we obtained 99 images out of the 125 segmented
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correctly, 67 of which are benign and 30 are malignant. A random portioning of the data set into
5 rounds is carried out, with the same number allocated to benign and malignant cases. There
are 50 images contained in each rounds and are equally divided into two parts (i.e., 25 benign
and 25 malignant). In each round (M), the testing portion is examined, whereas the remaining
portion of the data (subset-M) are used as the training set. Thus, each round is divided into K
folds (F1,F2,F3,...,Fk), with each fold having the same size as the others. Training and testing
are performed K times. F1 is used in the first iteration as a test set, whereas the remaining folds
are used as the training set. In the second iteration, F2 is used as a test set, and F1,F3,..., Fk
as training sets, and so on.

A)

(B)

Figure 10: Two samples from the breast and ovarian cases. (A) Breast case and (B) Ovarian case

The processes of testing and training are carried out repeatedly for K times with different
testing sets, and the performance of the classifier is regarded as the average performance of the
K tests. Eventually, all data were used for the purposes of training and testing. However, the
computational cost of testing the model is high because testing is performed K times. The same
experiment strategy was used for the ovarian ultrasound images to identify the malignant risk
in the early stage. The efficiency of the model is evaluated using the SVM classifier, while the
accuracy is evaluated based on the LBP feature.

4.4 Classification Results

This section presents the results from the experiments involving the two sets of data. The
proposed model was evaluated based on the results of the two experiments. Thus, in the first
stage, effort was exerted to address the problem of class imbalance between the malignant and
benign, which was achieved using a sample strategy described in this section. Each round involved
a random selection of 25 images of benign class, which were merged thereafter with the 25 images
of the malignant cases. The training sample was formed by combining the two classes. Testing
was performed repeatedly for 5 rounds. Each of the rounds involved the use of tow images as
testing set, and 48 images were used as the training set. Thus, testing and training were conducted
using each image. The evaluation of the system was done using an average of 20 rounds of tests.
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Tab. 2 shows the result for each round and we can see clearly the overall accuracy for the whole
rounds. In the breast cancer cases, the proposed model achieved 94.4% accuracy, 94.3% sensitivity,
and 94.4% specificity. For the ovarian cases, the proposed model achieved 96.4% accuracy, 96.7%
sensitivity, and 96.3% specificity, as shown in Fig. 11.

Table 2: Accuracy, sensitivity, and specificity for each round in experiment 1

Data set

Benign Malignant TN TP FN FP Accuracy Sensitivity Specificity

Breast images Round 1 25 25 23 24 2 1 %4 923 95.8
Round 2 25 25 24 24 1 1 96 96 96
Round 3 25 25 25 25 0 0 100 100 100
Round 4 25 25 22 21 3 4 86 87.5 84.6
Round 5 25 25 24 24 1 1 96 96 96
Accuracy 94.4% 94.3% 94.4%
Ovarian images Round 1 25 25 25 25 0 0 100 100 100
Round 2 25 25 25 25 0 0 100 100 100
Round 3 25 25 23 24 2 1 94 92.3 95.8
Round 4 25 25 24 21 1 4 90 95.4 85.7
Round 5 25 25 24 25 1 0 98 96.1 100
Accuracy 96.4% 96.7% 96.3%
100
99
98
97
96
95
94
93
92
91 e s
Accuracy Sensitivity Specificity
m Breast images 94.4 94.3 94.4
m ovarian images 96.4 96.7 96.3

Figure 11: Accuracy, sensitivity, and specificity of the proposed model in the breast and

ovarian images

In the second set of experiment, we used 50% of the images as testing and 50% as training,
as well as simultaneously used the training as testing and testing samples as training. For this
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case, we achieved 95.43% accuracy, 92.20% sensitivity, and 97.5% specificity when we used the
breast cancer images. For the ovarian tumor, we achieved 94.84% accuracy, 96.96% sensitivity, and
90.32% specificity, as shown in Tab. 3 and Fig. 12.

Table 3: Accuracy, sensitivity, and specificity for each training and testing in experiment 2

Data set Benign Malignant TN TP FN FP Accuracy Sensitivity Specificity
Breast images 74 123 117 71 6 3 95.43 92.20 97.5
Ovarian images 67 30 28 64 2 3 94.84 96.96 90.32
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Figure 12: Accuracy, sensitivity, and specificity in the second set of experiment

Normally, the benchmarking is carried out either through the use of a standard dataset or
the utilization of methods utilized to the same problem domain or application. Moreover, the
benchmarking is achieved utilizing the best and modern approaches for our case studies cancers
segmentation and classification based on Viola—Jones model existed in the literature. Our proposed
method achieved better accuracy with other methods. Tab. 4 involves different benchmarking
approaches for several processes.

Table 4: The proposed method is compared with other methods, and selection criteria of the
comparison scheme

Data set Accuracy Sensitivity Specificity
Our proposed method 95.43 92.20 97.5
Uniform LBP (T =center) [15] 80 72.32 86.23
Uniform LBP (T = Mean) [15] 84.8 77.67 90.57
Uniform LBP (Sign Lower) [15] 86.8 82.52 89.79
Uniform LBP (Sign Upper) [15] 86.8 80.18 92.08

The main components affecting the yield of the region growing in US images are fully
automated US segmentation and the choice of the same measurements in the initial segmentation.
Fully automated segmentation for ovarian tumor remains a difficult task and challenging issue.
Thus, numerous ultrasound images in our database has been done for this purpose, with a
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particularly challenging process that may ruin the features extracted. There are two limitations
related to the tumor edge (i.e., missing and poor border), which have been used in in our study
to develop a new Viola—Jones model to segment ultrasound images for ovarian and breast cancer
cases and compute the number of malignant cases. This model deals with US cases, in which a
distinction exists between the background texture and ROI.

5 Conclusion

This study developed a Viola—Jones model to enable the segmentation of breast and ovarian
cancer ultrasound images. The results showed that the new approach was able to achieve signifi-
cant improvements in terms of tumor segmentation for benign and malignant cases, with varying
shapes and sizes of tumor. In different types of image analysis procedures, one of the most
important steps involves the accuracy and automation of tumor segmentation. This is particularly
true for the detection and diagnosis of ovarian and breast cancers. The hope is that the application
of the proposed approach will result in more focus on the aforementioned areas. In particular, the
objective is to develop and evaluate the efficiency of a new automated and computerized approach
that is capable of analyzing gynaecological ultrasound images to detect and classify abnormal
cases or objects that have an impact on the health of women. The computational examinations
conducted in this study are motivated by the technological advancements in imaging technologies,
advent of state-of-the-art models of data mining and machine learning, and image processing and
analysis theories. The segmentation result of the proposed system with other existing techniques
in breast cancer data set was 78.8%, while that in the ovarian tumor data set was 79.2%. In the
classification results, we achieved 95.43% accuracy, 92.20% sensitivity, and 97.5 specificity we used
the breast cancer images. For the ovarian tumor, we achieved 94.84% accuracy, 96.96% sensitivity,
and 90.32% specificity. For future studies, the data set used should be increased with additional
difficult cases, particularly in ovarian tumor cases using deep learning approaches.

Acknowledgement: The authors would like to acknowledge Fakulti Teknologi Maklumat dan
Komunikasi, Centre for Research and Innovation Management, Universiti Teknikal Malaysia
Melaka and Ministry of Education Malaysia for providing all facilities and support for this study.

Funding Statement: “This research received funding from Basque Country Government”

Conflicts of Interest: “The authors declare that they have no conflicts of interest to report regarding
the present study.”

References

[1] W. Wein, S. Brunke, A. Khamene, M. R. Callstrom and N. Navab, “Automatic CT ultrasound regis-
tration for diagnostic imaging and image-guided intervention,” Medical Image Analysis, vol. 12, no. 5,
pp. 577-585, 2008.

[2] L. Rundo, C. Militello, S. Vitabile, G. Russo, E. Sala et al, “A survey on nature-inspired medical image
analysis: A step further in biomedical data integration,” Fundamenta Informaticae, vol. 171, no. 1-4,
pp. 345-365, 2020.

[3] M. K. Abd Ghani, M. A. Mohammed, N. Arunkumar, S. A. Mostafa, D. A. Ibrahim et al., “Decision-
level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques,”
Neural Computing and Applications, vol. 32, no. 3, pp. 625-638, 2020.

[4] M. A. Mohammed, B. Al-Khateeb, A. N. Rashid, D. A. Ibrahim, M. K. Abd Ghani et al., “Neural
network and multi-fractal dimension features for breast cancer classification from ultrasound images,”



CMC, 2021, vol.66, no.3 3181

[10]

[11]

Computers & Electrical Engineering, vol. 70, pp. 871-882, 2018.

S. Asgari Taghanaki, K. Abhishek, J. P. Cohen and G. Hamarneh, “Deep semantic segmentation of
natural and medical images: A review,” Artificial Intelligence Review, vol. 6, no. 1, pp. 14006, 2020.

D. Mahapatra, B. Bozorgtabar and R. Garnavi, “Image super-resolution using progressive generative
adversarial networks for medical image analysis,” Computerized Medical Imaging and Graphics, vol. 71,
pp. 30-39, 2019.

N. Arunkumar, M. A. Mohammed, M. K. Abd Ghani, D. A. Ibrahim, E. Abdulhay et al., “K-means
clustering and neural network for object detecting and identifying abnormality of brain tumor,” Sof?
Computing, vol. 23, no. 19, pp. 9083-9096, 2019.

O. I. Obaid, M. A. Mohammed, M. K. Abd Ghani, S. A. Mostafa and F. Taha, “Evaluating the per-
formance of machine learning techniques in the classification of wisconsin breast cancer,” International
Journal of Engineering & Technology, vol. 7, pp. 160-166, 2018.

N. Arunkumar, M. A. Mohammed, S. A. Mostafa, D. A. Ibrahim, J. J. Rodrigues et al, “Fully
automatic model-based segmentation and classification approach for MRI brain tumor using artificial
neural networks,” Concurrency and Computation: Practice and Experience, vol. 32, no. 1, ¢4962, 2020.

J. R. England and P. M. Cheng, “Artificial intelligence for medical image analysis: A guide for authors
and reviewers,” American Journal of Roentgenology, vol. 212, no. 3, pp. 513-519, 2019.

D. Blum, I. Liepelt-Scarfone, D. Berg, T. Gasser, C. la Fougere et al., “Alzheimer’s disease neuroimaging
initiative, controls-based denoising, a new approach for medical image analysis, improves prediction
of conversion to alzheimer’s disease with fdg-pet,” European Journal of Nuclear Medicine and Molecular
Imaging, vol. 46, no. 11, pp. 2370-2379, 2019.

L. Fang, X. Wang and L. Wang, “Multi-modal medical image segmentation based on vector-valued
active contour models,” Information Sciences, vol. 513, pp. 504-518, 2020.

Z. Zhang and Y. Han, “Detection of ovarian tumors in obstetric ultrasound imaging using logistic
regression classifier with an advanced machine learning approach,” IEEE Access, vol. 8, pp. 44999—
45008, 2020.

D. Q. Zeebarece, H. Haron, A. M. Abdulazeez and D. A. Zebari, “Machine learning and region
growing for breast cancer segmentation,” in Int. Conf. on Advanced Science and Engineering, Duhok, Iraq,
pp. 88-93, 2019.

D. Q. Zeebaree, H. Haron, A. M. Abdulazeez and D. A. Zebari, “Trainable model based on new
uniform LBP feature to identify the risk of the breast cancer,” in Int. Conf. on Advanced Science and
Engineering, Duhok, Iraq, pp. 106-111, 2019.

C. Mazo, C. Kearns, C. Mooney and W. M. Gallagher, “Clinical decision support systems in breast
cancer: A systematic review,” Cancers, vol. 12, no. 2, pp. 369, 2020.

F. Shaikh, J. Dehmeshki, S. Bisdas, D. Roettger-Dupont, O. Kubassova et al., “Artificial intelligence-
based clinical decision support systems using advanced medical imaging and radiomics,” Current
Problems in Diagnostic Radiology, 2020.

B. J. Erickson, P. Korfiatis, Z. Akkus and T. L. Kline, “Machine learning for medical imaging,”
Radiographics, vol. 37, no. 2, pp. 505-515, 2017.

L. Pizzuti, E. Krasniqi, C. Mandoj, D. Marinelli, D. Sergi ef al, “Observational multicenter study
on the prognostic relevance of coagulation activation in risk assessment and stratification in locally
advanced breast cancer. Outline of the ARIAS Trial,” Cancers, vol. 12, no. 4, pp. 849, 2020.

B. Kaur, K. S. Mann and M. K. Grewal, “Ovarian cancer stage based detection on convolutional
neural network,” in 2nd Int. Conf. on Communication and Electronics Systems, Coimbatore, India,
pp. 855-859, 2017.

J. A. Watkins, S. Irshad, A. Grigoriadis and A. N. Tutt, “Genomic scars as biomarkers of homologous
recombination deficiency and drug response in breast and ovarian cancers,” Breast Cancer Research, vol.
16, no. 3, pp. 211, 2014.

N. Harrington, “Segmentation of human ovarian follicles from ultrasound images acquired’ in vivo’
using geometric active contour models and a naive bayes classifier,” Ph.D. dissertation. University of
Saskatchewan, Canada, 2007.



3182 CMC, 2021, vol.66, no.3

[23] M. Landgren, N. C. Overgaard and A. Heyden, “Segmentation of the left heart ventricle in
ultrasound images using a region based snake,” in Medical Imaging: Image Processing, Florida,
United States, vol. 8669, 866945, 2013.

[24] J. L. Mateo and A. Fernandez-Caballero, “Finding out general tendencies in speckle noise reduction
in ultrasound images,” Expert Systems with Applications, vol. 36, no. 4, pp. 7786-7797, 2009.

[25] R. Rodrigues, A. Pinheiro, R. Braz, M. Pereira and J. Moutinho, “Towards breast ultrasound image
segmentation using multi-resolution pixel descriptors,” in Proc. of the 21st Int. Conf. on Pattern
Recognition, Tsukuba, Japan, pp. 2833-2836, 2012.

[26] A. Ciurte, X. Bresson, O. Cuisenaire, N. Houhou, S. Nedevschi ez al., “Semi—supervised segmentation
of ultrasound images based on patch representation and continuous min cut,” PLoS One, vol. 9, no.
7, pp. €100972, 2014.

[27] D. B. Nelson, A. L. Hanlon, G. Wu, C. Liu and D. N. Fredricks, “First trimester levels of BV-
associated bacteria and risk of miscarriage among women early in pregnancy,” Maternal and Child
Health Journal, vol. 19, no. 12, pp. 2682-2687, 2015.

[28] T. J. Hanchard, “Novel early first trimester ultrasound measures in the prediction of miscarriage, small-
for-gestational age neonates and maternal hypertensive disorders,” Ph.D. dissertation. University of
Sydney, Australia, 2020.

[29] R. Deshpande, R. E. Ramalingam, N. Chockalingam, R. Naemi, H. Branthwaite et al, “An auto-
mated segmentation technique for the processing of foot ultrasound images,” in IEEE Eighth Int.
Conf. on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, pp. 380—
383, 2013.

[30] L. Li, Y. Fu, P Bai and W. Mao, “Medical ultrasound image segmentation based on improved
watershed scheme,” in 3rd Int. Conf. on Bioinformatics and Biomedical Engineering, Beijing, China,
pp. 1-4, 2009.

[31] S. Agrawal and P. Khatri, “Facial expression detection techniques: Based on viola and jones algo-
rithm and principal component analysis,” Fifth Int. Conf. on Advanced Computing & Communication
Technologies, Haryana, India, pp. 108-112, 2015.

[32] J. Ma, F. Wu, T. A. Jiang, J. Zhu and D. Kong, “Cascade convolutional neural networks for auto-
matic detection of thyroid nodules in ultrasound images,” Medical Physics, vol. 44, no. 5, pp. 1678-
1691, 2017.

[33] P. S. Rodrigues, “Breast ultrasound image dataset,” Version 1, 2017. [Online]. Available:
https://data.mendeley.com/datasets/wmy84gzngw/1.


https://data.mendeley.com/datasets/wmy84gzngw/1



