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Abstract: Synchronization is one of the most important characteristics of
dynamic systems. For this paper, the authors obtained results for the nonlinear
systems controller for the custom Synchronization of two 4D systems. The
findings have allowed authors to develop two analytical approaches using the
second Lyapunov (Lyp) method and the Gardanomethod. Since the Gardano
method does not involve the development of special positive Lyp functions, it
is very efficient and convenient to achieve excessive system SYCR phenomena.
Error is overcome by using Gardano and overcoming some problems in Lyp.
Thus we get a great investigation into the convergence of error dynamics,
the authors in this paper are interested in giving numerical simulations of
the proposed model to clarify the results and check them, an important
aspect that will be studied is Synchronization Complete hybrid SYCR and
anti-Synchronization, by making use of the Lyapunov expansion analysis,
a proposed control method is developed to determine the actual. The basic
idea in the proposed way is to receive the evolution of between two methods.
Finally, the present model has been applied and showing in a new attractor,
and the obtained results are compared with other approximate results, and the
nearly good coincidence was obtained.

Keywords: Chaos; Lu model; anti-synchronization; hybrid synchronization;
Gardano’s method; nonlinear dynamical system

1 Introduction

Chaotic systems with real state variables are boing found and studied with increased attention
in several aspects of nonlinear dynamical systems, the first physical and mathematical model of
a chaotic system is the system of Lorenz, which only includes real variables discovered in 1963
and opens the way to other chaos systems such as the system of Chen, Lu’s system (2002), Liu’s
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system (2004), and the system of the Pan system (2009). Each system has a 3-D of differential
equations and just one positive Lyapunov exponent [1–5].

Exponent Lyapunov and nonlinear dynamic systems attractor play an important and actively
involved role in classifying these systems and have attracted increasing interest in engineering
application and different scientific research as, encrypting [6–9], engineering [10–13], and nonlinear
circuits [14]. One important application in the field of engineering is secure communication i.e.,
messages crazy by simple chaotic processes like these are not always secure. The suggestion is
that the higher dimensional hyperchaotic systems can be used to solve this problem, thereby the
randomness and unpredictability [15–20].

Rössler performed the first 4-D hyperchaotic system with real variables in 1979 with two
positive exponents of Lyapunov and discovered a further 4-D and 5-D hyperchaotic system
with three positive exponents of Lyapunov [21–25] and some other systems. In contrast to low
dimensions, dynamic systems with higher dimensions are effective and interesting [17–19].

Several papers on the subject today are dedicated to studying the new hyperchaotic systems
in higher dimensions (Dimension 5) [16]. But most of these research focuses on 4-D and 5-D
systems only, while a few kinds of researches are available in 6 dimensional nonlinear dynamical
systems [17–20]. The 4D system consists of ten-term operators with four parameters and different
features which include the Lyapunov exponents of balances and stability. The thrilling attractor
is one of the latest dynamic systems classifications, with recent research separating attractors
into self-enthusiastic or secret ones. Within the following paragraphs, the results of this work
are summarized.

• The synchronization of similar 4-D hyperchaotic systems are studied and is then theoreti-
cally introduced as an Engineering application to detect error dynamics between each and
its stable communication.

• Non-linear stability-based control methods in Lyapunov, Gardano approach design the
various controllers of synchronization phenomena.

• By comparing the results of the Lyapunov method with the Gardano method, the best
fitting controllers are found.

2 The Description of the Problem and Our Solution

We use the second Lyapunov method and the methods of Gardano, where we infer that
Lyapunov functions as a certain constructive tool as:

V (e)= 1
2

n∑
i=1

e2i = eTPe,

P= diag(1/2, 1/2, . . . , 1/2) (1)

There P is a regular function and the Lyapunov function derivatives

V̇ (e)=
n∑
i=1

eiėi =−eTQe (2)

Be certainly negative, i.e., Q is a positive, square matrix. Nevertheless, if the Q matrix is
defined as a negative, we will change the P matrix to ensure that a given Q matrix is obtained.
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While in Gardano [1–4], the distinguishing formula of Eq. (3) is considered in the 4D
hyperchaotic method

(λ+B4)
(
λ3 +B1λ

2 +B2λ+B3

)
= 0 (3)

Let

g=B3− 1
3
B1B2+ 2

27
B1

3 (4)

Δ=B3
2+ 4

27
B2

3− 2
3
B1B2B3− 1

27
B1

2B2
2+ 4

27
B1

3B3 (5)

This approach allows one to find the roots of the cubic equation (Eq. (3)) on the basis
of Δ as:

• If Δ= 0, then there are three roots in the second term of Eq. (3), but one is multiple:

λ1 =−2 3

√
g
2
− B1

3

λ2,3 = 3

√
g
2
− B1

3
(6)

• When Δ < 0, then three separate root terms have been described by the second term (3):

λi+1 = 6
√
16(g2−Δ) cos

cos−1 −g√
g2−Δ

+ 2π i

3
− B1

3
, i= 0, 1, 2. (7)

• When Δ > 0, then the second term of Eq. (3) has one real root and two complexes
conjugate roots with imaginary sections which do not vanish:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = 3

√
−g−√

Δ

2
+ 3

√
−g+√

Δ

2
− B1

3

λ2 =−1
2

⎛
⎝ 3

√
−g−√

Δ

2
+ 3

√
−g+√

Δ

2

⎞
⎠− B1

3
+ i

√
3
2

⎛
⎝ 3

√
−g−√

Δ

2
− 3

√
−g+√

Δ

2

⎞
⎠

λ3 =−1
2

⎛
⎝ 3

√
−g−√

Δ

2
+ 3

√
−g+√

Δ

2

⎞
⎠− B1

3
− i

√
3
2

⎛
⎝ 3

√
−g−√

Δ

2
− 3

√
−g+√

Δ

2

⎞
⎠

(8)

Here, to construct all roots with negative real parts, not choosing an appropriate nonlinear
controller U like the Lyapunov method is essential.

Briefly, this final point poses three fundamental questions. First, does the Lyapunov method
always succeed? Second, is the Gardano method better? Thirdly, how can these two approaches
be distinguished? This paper starts with two ways of answering these questions.
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3 System Portrayal

The Lorenz system was one of the most commonly studied 3-D chaotic systems. By adding
a linear feedback controller, the original design was changed into a 4-D and 5-D hyperchaotic
design. The new 4-D hyperchaotic system that contains is designed three positive Lyapunov Expo-
nents LE1 = 0.94613, LE2 = 0.28714, LE3 = 0.0047625, and one negative Lyapunov Exponents
LE4 =−12.4021. The 4-D system which is described by the following mathematical form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = a (x2 −x1)+x4

ẋ2 = cx1 −x1x3 −x2

ẋ3 =−bx3+x1x2

ẋ4 = hx4−x1x3

(9)

where the real state variables are x1,x2,x3,x4, and a,b, c,h, the all positive real parameters
are equal (10, 8/3, 34, 2.5), and this system is rich of dynamical properties. Figs. 1a and 1b
show the 3-D attractor of the system (9), while Figs. 2a and 2b display the 2-D attractor of
the structure (9).

(a) (b)

Figure 1: 3-D attractor of the system (9) in the (a) (x1,x3,x4) space; (b) (x1,x3,x2) space

3.1 Lyapunov Exponents and Dimensions
The numerical simulation of a = 10, b = 8/3, c = 34, h = 2, 5 was performed based on

Wolf Algorithm and MATLAB software. The initial value (15, 8, −1, −2) of the system (9)
was hyperchaotic, with three positive exponents of Lyapunov, i.e., LE1 = 0.94613, LE2 = 0.28714,
LE3 = 0.0047625.

The exponents of the plot of Lyapunov are shown in Fig. 3.
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(a) (b)

Figure 2: 2-D attractor of the system (9) in the (a) (x2,x3) plane; (b) (x1,x3) plane

Figure 3: 4-D hyperchaotic system exponents of Lyapunov

Dimensions of Lyapunov are found as:

DLE = j+ 1∣∣LEj+1
∣∣

j∑
i=1

LEi = 5+ LE1+LE2 +LE3

|LE4|
= 4.9002
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4 Synchronization Phenomena

4.1 The New Lorenz 4-D Hyperchaotic Systems are Synchronized
In this section one of the main applications of secure communication engineering is consid-

ered theoretical studies and numerical simulations. Therefore, the first system (called drive system)
represents the image or message information to be transmitted and, while the second system
represents noise following this information, it ensures that it is not penetrated. The second system
(called response system) assumes the machine (9) is a drive mechanism and is writable as,⎡
⎢⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣
−a a 0 1

c −1 0 0

0 0 −b 0

0 0 0 h

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
0 0 0

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣
−x1x3
x1x2

−x1x3

⎤
⎥⎦ (10)

A=

⎡
⎢⎢⎣
−a a 0 1
c −1 0 0
0 0 −b 0
0 0 0 h

⎤
⎥⎥⎦ , B=

⎡
⎢⎢⎣
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ , C=

⎡
⎣−x1x3
x1x2
−x1x3

⎤
⎦

A and BC represents parameters matrix and nonlinear part of the system (9) respectively.

While the response system is as follows:⎡
⎢⎢⎢⎢⎣
ẏ1

ẏ2

ẏ3

ẏ4

⎤
⎥⎥⎥⎥⎦=A

⎡
⎢⎢⎢⎢⎣
y1

y2

y3

y4

⎤
⎥⎥⎥⎥⎦+

⎛
⎜⎜⎜⎜⎝B

⎡
⎢⎣
−y1y3
y1y2

−y1y3

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎣
u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ (11)

and let U = [u1,u2,u3,u4]T is the nonlinear controller to be designed.

The synchronization error dynamics between the 4-D hyperchaotic system (10) and system
(11) is defined as ei = yi−xi, i= 1, 2, 3, 4 and satisfied that, lim

t→∞ ei = 0.

The dynamics of the error are defined as follows:⎡
⎢⎢⎢⎢⎣
ė1

ė2

ė3

ė4

⎤
⎥⎥⎥⎥⎦=A1

⎡
⎢⎢⎢⎢⎣
e1

e2

e3

e4

⎤
⎥⎥⎥⎥⎦+

⎛
⎜⎜⎜⎜⎝BD+

⎡
⎢⎢⎢⎢⎣
u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ , D=

⎡
⎢⎣
−e1e3−x3e1−x1e3

e1e2+x2e1+x1e2

−e1e3−x3e1−x1e3

⎤
⎥⎦

i.e.,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė1 = ae2− ae1 + e4+ u1

ė2 = ce1− e2− e1e3−x3e1−x1e3+ u2

ė3 =−be3+ e1e2+x2e1+x1e2 + u3

ė4 = he4− e1e3−x3e1 −x1e3+ u4

(12)
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The matrix A1 equal to A, i.e., A1 = A for identical systems. But, in non-identical systems
(different) the matrix A1 �=A.

Now, by designing several controllers based on Lyapunov and Gardano methods we will try
to control the error system (12), and compare them. Here arises the problem of the two methods,
which is the better method? Our questions are answered in the following theorems.

Theorem 1. If the regulator U of structure (12) is scheme as the following:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 =−ce2+x3e2−x2e3+x3e4

u2 =−ae1
u3 = x1e4+ e1e4

u4 =−e1− 2he4

(13)

The system (11) can then be tracked with two methods by system (10).

Proof. Replace the error dynamics (12) mechanism over control, we receive:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė1 = ae2− ae1+ e4− ce2 +x3e2−x2e3+x3e4

ė2 = ce1− e2 − e1e3−x3e1−x1e3− ae1

ė3 =−be3+ e1e2+x2e1+x1e2+x1e4+ e1e4

ė4 =−he4− e1e3−x3e1−x1e3− e1

(14)

We are now building a positively defined Lyapunov candidate, based on the Lyapunov method,

V (e)= eTPe= 1
2
e21+

1
2
e22+

1
2
e23+

1
2
e24 (15)

where P defines as in Eq. (1), Lyapunov’s derivative V(e) function is time-related as:

V̇ = e1ė1+ e2ė2+ e3ė3+ e4ė4

V̇ = e1 (ae2− ae1+ e4 − ce2+x3e2−x2e3+x3e4)+ e2 (ce1− e2− e1e3−x3e1 −x1e3− ae1)

+ e3(−be3+ e1e2+x2e1+x1e2+x1e4+ e1e4)+ e4(−he4− e1e3−x3e1 −x1e3− e1)

V̇ =−ae21− e22− be23− he24 =−eTQe (16)

where Q= diag(a, 1,b,h), so Q> 0. Consequently, V̇ (ei) is negative definite on R4. The nonlinear
controller is suitable and the complete synchronization is achieved.

The characteristic equation between system (12) and control (13) is defined in Gardanomethod,
and according to Eq. (3),

(λ+ p)
(
λ3 +B1λ

2 +B2λ+B3

)
= 0

where⎧⎪⎨
⎪⎩
B1 = a+ h+ 1

B2 = 1+ a+ h+ a2 + c2− 2ac+ ah

B3 = ah+ a2h+ c2h− 2ach+ 1

(17)
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For simplified, we substitute the value of constants as a= 10, b= 8/3, c= 34, h= 2.5, in the
above equation can be rewritten as:

(λ+ (8/3))
(
λ3+ 13.5λ2+ 614.5λ+ 1466

)
= 0 (18)

Therefore, we have g = −1117, Δ = 2.6403 × 107. Since Δ > 0 than the roots are calculate
according to Eq. (8) as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = 3
√−2010.692480+ 3

√
3127.692480− 4.5

yields−→ λ1 =−2.4973

λ2 =−1
2

(2.003)− 4.5+ i

√
3
2

(−27.2459)
yields−→ λ2 =−5.5013− 23.5957i

λ3 =−1
2

(2.003)− 4.5− i

√
3
2

(−27.2459)
yields−→ λ2 =−5.5013+ 23.5957i

λ4 =−8/3

(19)

Of course, all roots with negative actual parts are successfully synced with system (11) and
system (10), therefore the Gardano method is efficient. The evidence is complete. Such tests are
numerically checked in Figs. 4 and 5. Where we take the drive system and the response system’s
initial values are (15, 8,−1,−2) and (−15,−10, 16, 8) respectively.

Figure 4: Anti-synchronization between systems (11) and (10) with control (13)
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Figure 5: The convergence of system (12) with controllers (13)

4.2 Anti-Synchronization
The non-linear control approach, which uses two theoretical methods, offers an anti-

synchronization between two related highly hyperchaotic systems. To stop collisions, it involves
two systems; the first (called drive systems) reflects the first, and the second (called the responses
system). This mechanism is the second train, which is used to ensure that there is no collision
with the first train. The second is used to prevent collisions. The first train will have a second
system. Suppose that the system (10) is the drive system and the reaction system (11).

The 4D hyperchaotic system (10) and system (11) are described as anti-synchronization error
dynamics as ei = yi+xi, i= 1, 2, 3, 4 and satisfied that, lim

t→∞ ei = 0.

The error dynamics is calculated as the following:⎡
⎢⎢⎢⎢⎣
ė1

ė2

ė3

ė4

⎤
⎥⎥⎥⎥⎦ =A1

⎡
⎢⎢⎢⎢⎣
e1

e2

e3

e4

⎤
⎥⎥⎥⎥⎦+

⎛
⎜⎜⎜⎜⎝BD+

⎡
⎢⎢⎢⎢⎣
u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ , D=

⎡
⎢⎣
−y1e3−x3e1+ 2y1x3

e1e2−x2e1−x1e2+ 2x1x2

−y1e3−x3e1+ 2y1x3

⎤
⎥⎦

i.e.,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė1 = ae2− ae1+ e4+ u1

ė2 = ce1− e2 − y1e3 −x3e1+ 2y1x3+ u2

ė3 =−be3+ e1e2−x2e1−x1e2+ 2x1x2 + u3

ė4 = he4− y1e3−x3e1+ 2y1x3 + u4

(20)



3320 CMC, 2021, vol.66, no.3

Theorem 2. For system (15) with nonlinear control U = [u1,u2,u3,u4]
T such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 = x3e2+x2e3+x3e4

u2 =−e1(c+ a)+ y1e3− 2y1x3+x1e3

u3 =−e1e2− 2x1x2+ y1e4

u4 =−e1 − 2he4− 2y1x3

(21)

Proof. From the above control (21) with the error system (20), we get:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė1 = ae2− ae1 + e4+x3e2+x2e3+x3e4

ė2 =−e2−x3e1− ae1+x1e3

ė3 =−be3−x2e1−x1e2+ y1e4

ė4 =−he4− y1e3−x3e1− e1

(22)

Now, based on the Lyapunov method:

The derivative of the Lyapunov function V (e) with respect to time is

V̇ = e1ė1+ e2ė2+ e3ė3+ e4ė4

V̇ = e1 (ae2− ae1+ e4+x3e2+x2e3+x3e4)+ e2 (−e2−x3e1− ae1+x1e3)

+ e3(−be3−x2e1−x1e2+ y1e4)+ e4(−he4− y1e3−x3e1− e1)

V̇ =−ae21− e22 − be23− he24 =−eTQe (23)

where Q= diag(a, 1,b,h) , so Q> 0. Consequently, V̇ (ei) is negative definite on R4. The nonlinear
controller is suitable and the anti-synchronization is achieved.

In Gardano method⎧⎪⎨
⎪⎩
B1 = a+ h+ 1

B2 = 1+ a+ h+ a2+ ah

B3 = ah+ a2h+ 1

(24)

After substituting the values of the constants (a,b,c,h), we get

(λ+ (8/3))
(
λ3+ 13.5λ2+ 138.5λ+ 276

)
= 0
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Therefore, we have g = −165, Δ = 96855.1644. Since Δ > 0 than the roots are calculate
according to Eq. (8) as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = 3
√−73.10781180+ 3√238.1078118− 4.5

yields→ λ1 =−2.4833

λ2 =−1
2

(2.017)− 4.5+ i

√
3
2

(−10.379)
yields→ λ2 =−5.5083− 8.9889i

λ3 =−1
2

(2.017)− 4.5− i

√
3
2

(−10.379)
yields→ λ2 =−5.5083+ 8.9889i

λ4 =−8/3

(25)

Of course, all roots with negative actual parts are successfully synced with the system (11)
and system (10), therefore the Gardano method is efficient. The evidence is complete. These results
are numerically checked in Figs. 6 and 7. Where the drive system and the response system initial
values are used (15, 8,−1,−2) and (−15,−10, 16, 8) respectively.

Figure 6: Anti-synchronization between systems (11) and (10) with control (13)

4.3 Hybrid Synchronization
Hybrid synchronization is a mixture of the previous two phenomena (Complete synchronization

andAnti-synchronization). There are thus two appropriate systems, one system (Called drive system),
the other system (Called response system). There are two systems. Assume that the drive system is
(10) and the reaction system is (11):



3322 CMC, 2021, vol.66, no.3

Figure 7: The convergence of system (20) with controllers (21)

The hybrid synchronization error dynamics is defined as ei = yi − xi, ej = yj + xj, i = 1, 3;
j= 2, 4, and satisfied that , lim

t→∞ ei = 0.

The error dynamics is calculated as the following:⎡
⎢⎢⎢⎢⎣
ė1

ė2

ė3

ė4

⎤
⎥⎥⎥⎥⎦=A1

⎡
⎢⎢⎢⎢⎣
e1

e2

e3

e4

⎤
⎥⎥⎥⎥⎦+

⎛
⎜⎜⎜⎜⎝BD+

⎡
⎢⎢⎢⎢⎣
u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ , D=

⎡
⎢⎣
−y1e3−x3e1+ 2y1x3

e1e2−x2e1−x1e2+ 2x1x2

−y1e3−x3e1+ 2y1x3

⎤
⎥⎦

i.e.,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė1 = ae2− ae1 + e4+ u1

ė2 = ce1− e2− y1e3−x3e1+ 2y1x3+ u2

ė3 =−be3+ e1e2−x2e1−x1e2 + 2x1x2+ u3

ė4 = he4− y1e3−x3e1+ 2y1x3+ u4

(26)

Theorem 3. If the nonlinear control U of error dynamical system (6) is designed as
the following:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 =−e2(a+ c)+ 2ax2 + 2x4 −x3e2+x2e3−x3e4

u2 =−2cx1 + 2y1x3 −x1e3

u3 = y1e2− e1e2+ 2x1x2+ y1e4

u4 =−e1 − 3he4+ 2y1x3

(27)
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Proof. Rewrite system (26) with control (27) as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė1 =−ae1+ e4− ce2 −x3e2+x2e3 −x3e4

ė2 = ce1− e2 − y1e3 +x3e1−x1e3

ė3 =−be3−x2e1+x1e2+ y1e2 + y1e4

ė4 =−2he4− y1e3+x3e1− e1

(28)

Now, based on the Lyapunov method:

The derivative of the Lyapunov function V (e) with respect to time is

V̇ = e1ė1+ e2ė2+ e3ė3+ e4ė4

V̇ = e1 (−ae1+ e4 − ce2−x3e2+x2e3−x3e4)+ e2 (ce1− e2− y1e3+x3e1−x1e3)

+ e3(−be3−x2e1+x1e2+ y1e2+ y1e4)+ e4(−he4− y1e3+x3e1− e1)

V̇ =−ae21− e22− be23− he24 =−eTQe (29)

where Q= diag(a, 1,b,h), so Q> 0. Consequently, V̇ (ei) is negative definite on R4. The nonlinear
controller is suitable and the anti-synchronization is achieved.

In Gardano method:⎧⎪⎨
⎪⎩
B1 = a+ 2h+ 1

B2 = 1+ a+ 2h+ c2 + 2ah

B3 = 2ah+ 2c2h+ 1

(30)

Figure 8: Anti-synchronization between systems (11) and (10) with control (13)



3324 CMC, 2021, vol.66, no.3

After substituting the values of the constants (a, b, c, h), we get

(λ+ (8/3))
(
λ3+ 16λ2 + 1222λ+ 5831

)
= 0

Figure 9: The convergence of system (26) with controllers (27)

Tab.1 shows the variance amongst second method of Lyapunov and Cardano’s method.

Table 1: The variance amongst second method of Lyapunov and Cardano’s method

S. No. Second method of Lyapunov Cardano’s method

1. Essentially, a quadratic function
is created.

Based on the origins.

2. Achieving conditions: A
quadratically appositive function is a
negative derivative.

Conditions: All roots with a very
negative component.

3. You need to often adjust this feature. No modification required.
4. Agreements with structures via

co-factor systems (Lyapunov
function)

Directly (no co-factor)
processes structures.

5. In a while, crashed. Still effective.
6. You did not have to find the

solution.
The solution needs to be found.

7. Dig in the late 19th century. Discovered at the beginning of the
16th century

The structure of the subject of synchronization phenomena in two methods is shown in
Fig. 10.



CMC, 2021, vol.66, no.3 3325

Figure 10: A diagram showing the structure of the subject of synchronization phenomena in two
methods

Therefore, we have g = −382.926, Δ = 2.177149231 × 108. Since Δ > 0 than the roots are
calculate according to Eq. (8) as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = 3
√−7186.120027+ 3

√
7569.045953− 5.3

yields→ λ1 =−4.9965

λ2 =−1
2

(0.337)− 5.3+ i

√
3
2

(−38.932)
yields→ λ2 =−5.4684− 33.7157i

λ3 =−1
2

(0.337)− 5.3− i

√
3
2

(−38.932)
yields→ λ2 =−5.4684+ 33.7157i

λ4 =−8/3

(31)
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In addition, all roots with negative actual parts are successfully synced with system (11) and
system (10), therefore the Gardano method is efficient. The evidence is complete. Such tests are
numerically checked in Figs. 8 and 9. Where the drive system and the response system initial
values are used (15, 8,−1,−2) and (−15,−10, 16, 8) respectively.

Thus, all questions in this section are answered in these theorems, and the following table
indicates that the Cardano method is stronger than the Lyapunova method.

5 Conclusions

The second method Lyapunov and the Cardano method are based on nonlinear models and
two theoretical approaches. We have been trying to grasp the discrepancies in each process and
how to achieve synchronization? Within this article, two identical 4D hyperchaotic systems deal
with the synchronization phenomena. What is the best method? This paper, therefore, answers all
these questions in the Cardano method and makes notice that a supporting function, like the
Lyapunov method, should not be created or modified. The Cardano process is better than the
Lyapunov procedure. The computational simulation was used to describe the same findings.

The following scheme shows the topics of research:
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