Computers, Materials & Continua K Tech Science Press

DOI:10.32604/cmc.2021.013399
Article

An Efficient Viewport-Dependent 360 VR System Based on Adaptive Tiled
Streaming

Tuan Thanh Le', Jong-Beom Jeong”, SangSoon Lee', Jaehyoun Kim” and Eun-Seok Ryu”"

"Department of Computer Engineering, Gachon University, Seongnam, 13120, Korea
’Department of Computer Education, Sungkyunkwan University, Seoul, 03063, Korea
*Corresponding Author: Eun-Seok Ryu. Email: esryu@skku.edu
Received: 05 August 2020; Accepted: 31 August 2020

Abstract: Recent advances in 360 video streaming technologies have enhanced
the immersive experience of video streaming services. Particularly, there is
immense potential for the application of 360 video encoding formats to achieve
highly immersive virtual reality (VR) systems. However, 360 video streaming
requires considerable bandwidth, and its performance depends on several factors.
Consequently, the optimization of 360 video bitstreams according to viewport tex-
ture is crucial. Therefore, we propose an adaptive solution for VR systems using
viewport-dependent tiled 360 video streaming. To increase the degrees of freedom
of users, the moving picture experts group (MPEG) recently defined three degrees
plus of freedom (3DoF+) and six degrees of freedom (6DoF) to support free user
movement within camera-captured scenes. The proposed method supports 6DoF
to allow users to move their heads freely. Herein, we propose viewport-dependent
tiled 360 video streaming based on users’ head movements. The proposed system
generates an adaptive bitstream using tile sets that are selected according to a
parameter set of user’s viewport area. This extracted bitstream is then transmitted
to the user’s computer. After decoding, the user’s viewport is generated and ren-
dered on VR head-mounted display (HMD). Furthermore, we introduce certain
approaches to reduce the motion-to-photon latency. The experimental results
demonstrated that, in contrast with non-tiled streaming, the proposed method
achieved high-performance 360 video streaming for VR systems, with a
25.89% BD-rate saving for Y-PSNR and 61.16% for decoding time.

Keywords: Virtual reality; 360 video; MPEG immersive; 6DoF; MCTS; viewport-
dependent

1 Introduction

Currently, virtual reality (VR) technology has become widely available, and various head-mounted
display (HMD) devices are available in the market. Moreover, the development of HMD devices and
their ecosystems has to meet the growing demand for both service quality and experience quality. The
introduction of 360 videos with up to 12K resolution, coupled with 5G high-speed connections, has
significantly solved issues regarding service quality. Furthermore, users’ experience of 360 videos over

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.013399
http://dx.doi.org/10.32604/cmc.2021.013399

2628 CMC, 2021, vol.66, no.3

the internet has improved substantially, owing to the continual enhancement of connection quality. With
regarding to improving the quality of experience (QoE) of VR systems, researchers have predominantly
focused on two aspects: (1) user interaction and (2) the quality of service and user requirements.
Moreover, various technological organizations and researchers have proposed several solutions. Certain
standards, such as 3DoF, 3DoF+, and 6DoF, have been developed, typically for enhancing user
experiences with regard to activities such as moving one’s head, turning, and walking in a VR
environment. Few studies [1,2] improved 3DoF+ and 6DoF to reduce video quality by employing various
methods such as size reduction and the elimination of correlations between videos [3].

A solution for QoE enhancement, depending on the required service quality, is to optimize video
transmission based on pertinent factors to reduce the bandwidth demand or delay time. Certain
prospective methods are tiled-based approaches such as those elucidated in [4,5]. These methods allow
the user’s primary area of interest to be transmitted with high quality and the remainder of the region to
be degraded to low-quality levels. The user’s viewport area is extracted from the compressed bitstream
using a motion-constrained tile set (MCTS) [6]. The MCTS encoder restricts inter-temporal prediction at
tile boundaries and eliminates correlation between tiles. Each tile can be extracted from a bitstream and
transmitted to the client. However, the existing extractor based on HEVC can only extract one tile at a
time. Therefore, multiple tiled bitstreams are extracted from one original bitstream. Consequently,
maintaining multiple decoders in the client is considerably challenging.

According to [7], a motion-to-photon latency of at least 20 ms is required for a 12K, 90 fps video
transmission to meet the criterion of immersive quality of experience. The motion-to-photon latency is
defined as the difference between the time corresponding to a user’s initial movement and the time when
the first image is rendered in the viewport. It includes the request time, video server processing time, time
required for transmission of the extracted bitstream to the video client, decoding time, and rendering time.
Therefore, reducing latency for live 360 video streams is considerably challenging.

Herein, we propose an adaptive 360 video streaming method for a single 360 video based on an MCTS
tiled-based stream, as demonstrated in Fig. 1. The results of the proposed system could also be applicable to
multiple 360 videos. In the proposed method, the viewport area and direction of view (FOV) are determined
based on the coordinates of the viewport and movement analyses of the user’s head. To this end, a video
client sends a request that includes details regarding the viewport area and other metadata to a 360-video
server. According to the client request information, the 360-video server calculates tiles that correspond to
the user’s viewport. In addition, the proposed method allows 360 video servers to extract multiple tiles
from one MCTS bitstream and collate them into a single bitstream, called an adaptive tiled bitstream.
Thus, the streaming server transfers the adaptive bitstream to the video client. The adaptive bitstream is
then decoded and rendered to generate the user’s viewport. Additionally, we developed a media delivery
system based on RTSP/TCP to optimize the transmission of videos, requests, and metadata. Our method
includes approaches for reducing the motion-to-photon latency and optimizing the QoE. Furthermore, our
experimental results demonstrate that the proposed method could achieve viewport-dependent VR
streaming with a reasonable motion-to-photon latency to feel immersive on 360 videos without motion-
sickness. Finally, based on the obtained results, we can upgrade the proposed method to provide a
solution for the simultaneous transmission of multiple 360 videos based on OMAF [8,9], TMIV [10], and
6DoF 360 video streaming.

The remainder of this paper is organized as follows: Section 2 elucidates the background to our study
and provides a brief overview of the literature on VR streaming. Section 3 introduces the methodologies that
are used in this study. Section 4 presents the proposed method, which entails a multiple-tile extractor and
packet delivery system. Section 5 presents the experimental results and compares the proposed method
with existing ones. Section 6 summarizes the conclusions and provides suggestions for future research.

CMC, 2021, vol.66, no.3 2629

viewport

— viewport-dependent request, 5[—
360 metadata '
G D g livering System (—

- - - Video Server 3500
Tile/ Tile/ Tile/ <)
Slice Slice Slice
Tile/ Tile/ Tile/ '8 "5
Slice | Slice | Slice
Tile/ Tile/ Tile/ PowerfUI PC
Slice Slice Slice HEVC Decoder

A
viewport

Oculus VR
= HMD

‘ Adaptive Tiled Bitstream

Multiple Tiles Delivering System
Extractor

MCTS Bitstream

Figure 1: Conceptual architecture of proposed system

2 Related Work

In this section, we discuss prior research on tile-based streaming of 360 videos. Furthermore, research
trends with regard to the enhancement of the QoE of 360 VR systems according to user’s movements
are introduced.

2.1 Tile-Based Streaming of 360 Videos

Currently, 360 VR video streaming services are highly promising; particularly, 360 VR systems that
employ tile-based streaming are vital in video optimization. This is because such systems can enable an
immersive experience in VR. The solution proposed in [11] is based on tile-based panoramic streaming,
whereby users receive a tiles set that match their region of interest (ROI); this solution employs a low-
complexity compressed domain video processing technique for using HEVC and HEVC’s extensions
such as scalable HEVC (SHVC) and multi-view HEVC (MV-HEVC). Additionally, it reduces the peak
streaming bitrate under changes in the ROI. This is vital for an immersive experience and low-latency
streaming. Furthermore, the solution uses open GOP structures without incurring playback interruptions,
thereby providing effective compression, better than that achieved by methods employing closed
GOP structures.

In [12], based on the MV-HEVC and SHVC standards, R.G. Youvalari et al. proposed viewport-
dependent methods that employ ROI coding for omnidirectional video streaming. The user’s viewport is
only a part of panoramic videos; thus, to reduce the high bandwidth usage, the part of the scene that
corresponds to the user’s FOV is transmitted at high quality, and the remainder is delivered at low quality.
Hence, their solution can reduce by more than 50% compared to the simulcast method.

In [4,5], the authors presented a novel tile-based streaming solution by transforming 360 videos into
mobile VR steams using HEVC and its extension, SHVC. The key idea is that the base layer is used in
encoding the entire picture, whereas the enhancement layer is used only for ROI tiles. HEVC and SHVC
allow the encoders to encode the bitstream, which can independently transmit tiles. Hence, the generated
bitstream is extracted in units of tiles. Based on the HEVC and SHVC standards, the extractor generates
the tiled bitstream for the user’s viewport. Consequently, the streaming system degrades both
computational complexity and network bandwidth. Experimental results proved that this solution could
reduce the network bandwidth by up to 47%.

The previous our mobile VR streaming projects contribute 360 video streaming can be approached in a
limited performance of mobile VR in [13—17]. Additionally, we conducted studies regarding native VR
[1-3]. These experiences enabled us to conduct an improved study on 360 video tile-based streaming for

2630 CMC, 2021, vol.66, no.3

a native VR system connected to a PC based on the advantages of HEVC coding. +. For more details of
HEVC’s advantages can be reviewed in [18].

2.2 3DoF+/6DoF 360 VR Video

Currently, 3DoF+ and 6DoF provide an immersive experience in VR. However, they require the
compression and streaming of multiple videos to support users’ body movements, which is considerably
challenging with HEVC. As HEVC is designed for single video compression, it requires a large
bandwidth and several decoders. Consequently, MV-HEVC [19] was proposed to compress multi-view
videos efficiently. MV-HEVC removes the correlation between multiple views at the codec level;
moreover, a MV-HEVC decoder can reconstruct the compressed multi-view videos. However, MV-HEVC
is not compatible with HEVC; therefore, the existing hardware acceleration employed for HEVC cannot
be used for MV-HEVC, and the implementation on mobile devices is difficult. Therefore, in MPEG-I,
HEVC (and not MV-HEVC) was employed as the reference software for 3DoF.

In January 2019, proposals on 3DoF+ were obtained with regard to MPEG-I [20]. The corresponding
system architecture contains pre-processing and post-processing modules with the existing HEVC codec.
To eliminate the correlations among multiple videos, the pre-processing module is included. Moreover,
the multiple-video correlation removal process is not carried out at the codec level; therefore, the system
can apply the future video codec, versatile video coding (VVC) [21]. In response to the call for proposals
on 3DoF+, five proposals [22-26] were submitted in March 2019. Among these, the proposal of
Technicolor and Intel [23] demonstrated the best results. Compared with HEVC anchor, this proposal
demonstrates a Bjontegaard delta rate (BD-rate) saving of 73.0% for the luma peak signal-to-noise ratio
(PSNR) and an average pixel rate ratio saving of 73.34%.

Based on the components of the proposed responses, MPEG-I announced TMIV. Notably, TMIV
supports pre-processing and post-processing for streaming multi-view videos to compress 6DoF videos
more efficiently. The block diagram of TMIV is presented in Fig. 2. As illustrated in the Fig. 2, TMIV
removes the correlations among multiple videos. More details regarding TMIV are provided in [10].
Using the informative areas of the atlases, the TMIV renderer generates a user’s viewport. In the last
MPEG meeting, several core experiments [27-29] were proposed to improve TMIV.

3 Adaptive VR Streaming—360 Tiled Stream

In this section, we present the proposed method that provides an adaptive viewport-dependent tiled
streaming system as shown in Fig. 3. The proposed system consists of three main components: Video
client, video streaming server, and packet delivery system. Video client collects the data of movement of
the user’s head and converting them to metadata (roll, pitch, yaw). It also handles the decoding and
rendering tasks. The streaming server encodes original YUV 360 videos into MCTS bitstreams and uses
these bitstreams to extract adaptive bitstream according to metadata from video clients. The packet
delivery system consists of two components: TCP socket programs and RTSP sender/receiver for
exchange request and streaming, respectively. Section 3.1 describes multiple tiles selections on streaming
server, and Section 3.2 presents a multiple-tiles extractor. Section 3.3 gives more details regarding the
delivery packet using RTSP over TCP. Finally, Section 3.4 identifies several options to reduce motion-to-
photon latency.

3.1 Viewport Tile Selection for 360 Video

After a 360 video is transferred to a client, the client decodes the bitstream and forwards the
reconstructed video to a renderer. Then, the renderer generates a viewport depending on the user’s head
movement. From [30], we can verify that equirectangular projection (ERP) implies that if 360 video

CMC, 2021, vol.66, no.3 2631

encoders use a 2D plane video codec, they must project points on the 3D sphere onto a 2D plane video. Yu
et al. [30] proposed a method for viewport tile selection for a single 360 ERP video. Based on their outlook,
we implemented a viewport multiple-tile selector for a single 360 video.

Source views T Viewport
-
v TMIV Encoder TMIV Decoder
View Optimizer BaSIC view VO
Additional view: v1, ..., v14
R 2 Renderer
Atlas Constructor : :
: Inpainter
Pruner
c : ' N
A 4 -
Aggregator . Synthesizer
N N
v : :
Patch Packer :
- : : Controller
V' N
Atlases
Atlas Patch Occupancy
Map Generator
N
Basic view (v0) atlases Additional view (v1, ... ,v14) atlases

Video Encoder »| Video Decoder
Figure 2: The flow diagram of TMIV

360 Video Streaming Server Packet Delivery System

roll, pitch, yaw, metadata etc.

360 Cameras, Server Control TCP Socket TCP Socket
YUV videos Module Server Program Client Program
: HEVC Multiple Tiles | : : Adaptive Bitstream - NAL units Rendaran _1
MCTS Encoder Selector i Oculus SDK
: _ | Multiple Tiles Viewport
: Storage Server == Extractor Decoder

Figure 3: Architecture of viewport-dependent 360 VR streaming system

2632 CMC, 2021, vol.66, no.3

The rotation of a user’s head is represented by a rotation matrix, R, which is equivalent to the user’s head
being fixed at a regular position with the user looking down in the direction of the negative Z axis. The 3D
coordinates are transformed to 2D homogeneous coordinates using a viewport camera intrinsic matrix, K as
shown in Eq. (1) below:

i 0
K=10 f, ¢ (D
0 0 1

where f, and f, denote the focal length of the camera. For instance, let ¥/, denote the width of the viewport
and fov, denote the horizontal FOV per eye in the HMD. We have f .= (W,,/2)(1/tan(fov/2)). ¢, and ¢,
denote the coordinates of the principal point C in the viewport. Let VP denote viewport points on the

360 video, which are represented using Cartesian coordinates, and vp = [u, v, I]T denote the 2D
homogeneous coordinates of the viewport. Then, VP can be computed as in Eq. (2).

K 'vp
&~

where denotes the inverse matrix of K and HK’IVpH2 denotes the L2 norm of K~ 'vp. To obtain the
coordinates of the 2D 360 ERP video, we require points in spherical coordinates. A point, VP, in
Cartesian coordinates can be converted to a point in spherical coordinates using Eq. (3).

¢ = atan2(VP,, VP,)x180/n

VP = R 2)

0 = asin(VP,)*180/n 3)

The computed spherical coordinates can be converted to the corresponding point in the 2D 360 ERP
video using Eq. (4).

x = width * (0.5+¢/360)
v = height % (0.5 + 0/360) 4)

If the point vp is computed using Eq. (4), a tile that contains vp can be conducted using Eq. (5), where
tile,, pic,,, picy, tile,,, and tile; represent the tile index, picture width, picture height, tile width, and tile height,
respectively.

tile;= (y/tiley)*(pic,,/tile,,)+ x/tile,, Q)

In TMIV [10] and OMAF [9], the Euler angle represents the rotation of the user’s head using the roll,
pitch, and yaw, which correspond to rotation about the X, Y, and Z axes, respectively. As shown in Eq. (6), an
angle is generally represented in degrees, and it can be converted into radians to calculate the viewport area.
Here, «, 5, and y are angles (in radians) that represent the roll, pitch, and yaw, respectively.

O =0ldegree*T/ 180
B =0gegree*m/180 ©6)
Y :ydegree*n/lgo

As shown in Eq. (7), matrix R can be rewritten as the product of the matrices corresponding to rotations
about the X, Y, and Z axes.

CMC, 2021, vol.66, no.3 2633

1 0 0 cosp 0 sinfi| | cosy siny O
R=([0 coso —sina 0 1 0 siny cosy O @)
0 sinu cosa —sinfp 0 cosf 0 0 1

The aforementioned method is used to detect viewport tiles of a single 360 video that employs OMAF
and TMIV. The proposed method uses this solution to detect the tiles of MCTS bitstreams that are visible in
the viewport area. Therefore, the streaming server can exactly determine the tiles that need to be extracted
from the original MCTS bitstream.

3.2 Viewport Multiple-Tile Extraction

The latest version (ver. 16.22) of the HEVC reference software (HM) includes an MCTS tile extractor;
however, it allows the extraction of only one tile and generates an output bitstream containing only one tile.
Hence, the streaming system requires several decoders at the client side for a viewport area that consists of
several tiles. Furthermore, aggregating decoded video parts and rendering them on the HMD is time
consuming. Therefore, the motion-to-photon latency is extremely high. To solve these problems, we
implemented a multiple tile extractor. The extractor selects tiles according to tile indexes, which are
determined using viewport tile selection, presented in Egs. (2) and (5). Next, it extracts the selected tiles
from the MCTS bitstream and collates them into a single bitstream, called an adaptive viewport-
dependent bitstream.

The HEVC adaptive bitstream consists of a series of network abstraction layer (NAL) units. A detailed
explanation regarding the NAL units is presented in [31]. An HEVC bitstream consists of several kinds of
NAL units such as parameter sets (VPS), picture parameter sets (PPS), sequence parameter sets (SPS), slices
(which are in turn of different types), supplemental enhancement information (SEI), and end of bitstream
(EOB) units, as depicted in Fig. 4. The VPS, SPS, and PPS are the most important NAL units because
they contain the bitstream information that allows the decoder to interact with subsequent NAL units. A
slice consists of a header and a compressed video data field. As depicted in Fig. 5, the multiple-tile
extractor parses the input bitstream to read the PPS and obtains the key information: picture size, number
of tiles, tile size array, and coding tree unit (CTU) size. In an MCTS-based bitstream, the parameter sets
of each tile are stored as extraction information set (EIS) SEI messages.

HEVC Bitstream

Figure 4: Syntax elements of HEVC bitstream

Read input Parse original Parse EIS SEI Identify targeted Replace original Code PSs, Convert input slices
parameters PPS messages tile/slice PSs slice header to output slices
- Targeted : - Number of tiles i - MCTS Sets i- Slice segment address: *
Slices’s : i-Picturesize : :-MCTSID - Picture size and CTU : Extracted Adaptive Bitstream
Indexes : :-Tile sizes array : : - Slice information : :- Array of tile sizes :[New VPS[New SPS[New PPS [Targeted Slice/Tile]--

- CTU size :i-VPS, SPS,PPS i~ Loop filter options :
P Pl : :-New VPS, SPS, PPS

Figure 5: Flow chart of multiple tile extraction

First, the proposed extractor parses the PPS of the input bitstream, and then it parses the EIS SEI
messages to acquire the parameter sets (PSs). Next, the extractor identifies the slices that possess the tiles

2634 CMC, 2021, vol.66, no.3

to be extracted. In MCTS-based tiled encoding, one slice contains one tile. According to slices’ segment
addresses, and the extractor can identify the targeted tile by compared to the input slice’s segment
address. Thus, the extractor identifies and extracts the targeted slices using the parsed key information.
However, the PSs obtained from EIS SEI messages are only for a single tile bitstream. Therefore, to
generate the multiple tile bitstream that has the same size as that of the input bitstream, the extractor
needs to perform the following special tasks: extracting the targeted slices; replacing certain parameters in
the parameter sets, such as picture size, loop filter options, and tiles-enabled flag; encoding the PSs and
slice header; and converting the input slices to output slices. Finally, the output adaptive bitstream
containing multiple tiles is generated.

The proposed extractor has advantages over the existing single tile extractor. It can reduce the number of
required decoders as well as the decoding time. The detailed experimental results of the proposed extractor
will be described in Section 4.

3.3 Packet Delivery System

As demonstrated in Fig. 6, to deliver the client request, including metadata such as roll, pitch, and yaw
data, we implemented a packet delivery system-based TCP socket. The TCP socket program is reasonable for
low metadata traffic. Additionally, we implemented the video stream delivery system using RTSP over TCP.
However, RTSP has a limitation in that it provides high performance only for a single connection, which is
aimed at serving one user at a time. Additionally, we considered MPEG/DASH [32] or HLS [33], which can
also be applicable to the proposed system. However, they perform accurately only for video sources such as
MP4 files. An MCTS bitstream has certain restrictions such as the packet overhead problem, high latency,
and high computational complexity. Therefore, rather than using RTSP in a centered model, we re-
designed the RTSP/TCP delivery system from a centered model to a distributed one, as demonstrated in
Fig. 6. Here, a video client can open a listening RTSP session on a specified port, Port,., when it
initializes the transmission of a viewport-dependent request to a video server. The metadata sent to the
server includes roll, pitch, yaw, other viewport metadata, and Port... According to the request, the
streaming server forwards the adaptive viewport-dependent bitstream accurately to the video client via a
special RTSP link in the format “rtsp://video_client IP address: Port,.’. To solve the problem when the
network failed, the server and client control modules will handle to reinitialize a new session. Using this
method, a streaming server can serve multiple clients simultaneously.

RTSP rtsp://video_client_IP_address:RTSP Rec. Port RTSP
Receiver B —— Adaptive Viewport-Dependent Bitstream Sender
51
on
" |

Client Control Cllent TCP Server TCP Server Control
Module Socket Prog Socket Prog. Module

viewport-dependent request,
metadata (roll, pitch, yaw, RTSP Rec. Port)

Head’s movement
detection

Figure 6: Flow chart of packet delivery system

CMC, 2021, vol.66, no.3 2635

3.4 Reducing Motion-to-Photon Latency

Motion-to-photon latency is defined as the time delay between a user’s initial head movement and the
rendering of the first image on the HMD. As illustrated in Fig. 7, the user’s head movement will cause the
occurrence of a “user viewport change event.” The video client will make an event of viewport change, and
then it creates a chunk request according to the viewport data. The motion-to-photon latency can be
computed as given in Eq. (8).

Streaming Server

F 1
: Extractor PR i |
c [}
! Lr L[] §
I == A o i !
1 123« [H > : : > g - >
] s|e|7]s|F ™ | g wos] 8 | %]
: Sub-picture bitstreams @quality 1 [E % 1 At
& 1 4
| Tl < - : a
| o b G- = -
H 8|l 8] s |
! Sub-picture bitstreams @quality 2 = ‘ = 1 D\:
! L | A L [} %
! A t3 - 1 =
L oo, RO 2 e SEO——— b
: Selected Tiles > 1 At, T
) 1)
I 2 \ <
Lo e v i i e),) ., i], ()]
ey | o
viewport i , H_J
| I =
< C le
| < - o |* T o
1 Decoding, = f Fa
! mapping Als | @3 I At, 2
1 Lo 1 ©
| < S T)
1 VR rendering 3 1
| 1
| . s o
| DASH/ Tile Priority Generator Tile selection, :
1 chunk request
\ R;.?: . Adaptive - - : At,
I C“ent Pred|cﬁon Network ---------------------- > g g I
Ly Model Bandwidth o9 |
1 Model o |
I 1
A_t]; ______________________ 1 LI
Figure 7: Motion-to-photon latency of the proposed system
Motion_to_photon_latency = At + At + Atz + Aty + Ats ®

where Aty denotes the processing latency between a user’s head movement and the client sending a viewport
change request; Az, the request latency; Aty the transmission latency; Az; the processing latency of the
streaming server between receiving the request and transmitting an adaptive bitstream to the delivery
system; and Ats the processing latency entailed in decoding and rendering a user’s viewport on the VR
HMD. A#, depends on the size of the metadata and client request. Therefore, to reduce Af,, we must
substantially decrease the size of the client request.

Additionally, the performance of the delivery packet system based on the TCP socket, as described in
Section 3.3, affects At,. Based on the factors that affect the motion-to-photon latency, we propose the
following approaches to reduce the total latency: Optimizing tile size according to network bandwidth
condition; Using a prediction model to predict the movement of user’s head, then client can generate

2636 CMC, 2021, vol.66, no.3

bitstream request faster than before; Streaming both high-quality bitstream and low-quality bitstream to
client. These options can be described in sub-sections in below.

3.4.1 Optimization of Tile's Size

As illustrated in Fig. 7, to reduce the motion-to-photon latency, one approach is to reduce the workload
of the proposed system. From the network bandwidth point of view, we verified that at a specified network
bandwidth, the tile size of an adaptive bitstream can affect Az4. Furthermore, a small tile size reduces the
processing time Az; in the extraction of the adaptive bitstream. Moreover, a smaller viewport area
decreases the number of decoding and rendering operations. This means that the size of tile can affect
Ats. An adaptive network bandwidth model has been implemented to identify the network bandwidth
condition at the video client.

3.4.2 The Prediction for User'’s Head Movement

This prediction model is based on the notion that the video client can predict viewport tiles that are
required for an adaptive bitstream according to changes in the coordinates of eyes and the speed of the
user’s head movement. This reduces the processing latency At;.

3.4.3 High-Quality and Low-Quality 360 Streams

Rather than requesting a new chunk, the video client employs low-quality tiles corresponding to the
same location. Because the size of low-quality tiles is small, the video client can decrease the processing
time At#;. Additionally, without making a new request, the proposed system can reduce latencies Az3, Aty,
and Azs. As shown in Fig. 7, the extractor on streaming server parsed encoded bitstreams with quality
1 as high-quality video, and quality 2 as low-quality video. Thus, extractor can generate adaptive tiled
bitstream in various qualities of 360 videos according to details of selected tiles.

4 Experimental Results
4.1 Testbed Scenario

To test the performance of the proposed system, we built a test environment. We set up a streaming
server with the following configuration: Intel Xeon E5-2687W v4 CPU (24 cores, 48 threads total);
128 GB of memory; a GTX 1080 Ti GPU; and an Ubuntu 64 bit (gcc 6.3 v. 18.04) operating system.
Further, a video client PC with a Core 17-7700 4-core 8-threaded 4.2 GHz CPU, one Nvidia GeForce
1080 GPU, and 32 GB of memory with the Windows 10 operating system was employed. Both Oculus
Rift and Rift S were used as HMDs with Oculus SDK version 1.43. Additionally, the network
environment was installed using the internal network of Sungkyunkwan University. The mandatory
parameters of the experiments are presented in Tab. 1. The following original 4K videos are employed as
standard 360 video test sequences [34]: AerialCity, DrivingInCity, DringInCountry, and PoleVault le,
with the coding parameters set as presented in Tab. 2.

We used HM software with 360 libraries [35] as a video encoder to produce low-quality and high-quality
bitstreams using ERP. The libav-ffmpeg library [36] was employed to implement a fast video decoder with an
RTSP receiver. We used a method called weighted in sphere PSNR to calculate the distortion in the sphere to
verify the quality of the reconstructed 360 videos. To compute the dissimilarity between the reconstructed
360 video and original video, sphere PSNR or WS-PSNR uses a weighted metric to determine the
distortion in the spherical domain. FFmpeg tools [37], WS-PSNR software [38], VMAF [39], and V-
PSNR [40] were used as evaluation tools. More details on IV-PSNR and VMAF can be obtained via
standard documents regarding MPEG-I [41].

CMC, 2021, vol.66, no.3 2637

Table 1: System parameters for experiments

Parameters Values

QP 22,27,32,37,42
GOP 16

Framerate 30 fps
Intraperiod 32

FOV 90°x90°
Evaluation frames 90 frames
Segment duration 30 frames

Table 2: JCT-VC test sequences in detail

Parameters Values
Input bit depth 8 bits
Input chroma format 420
Frame rate 30 fps
Frame skip 0
Width in pixels 3840
Height in pixels 1920
Number of frames 300
Coding level 5.2

The test sequences were encoded using five quantization parameters (QPs). The first four QP values
were employed to encode the tile layer (high quality), and the last QP value was used to encode the base
layer (low quality). The group-of-pictures (GOP) value was set to 16, and the framerate was 30 fps. The
FOV of the viewport was 90° x 90°, and the evaluation frames were 90 frames that were partitioned into
smaller parts. Considering the streaming scenario, the videos were divided into 30 frame chunks. The
sum of viewport tiles of the chunk frames was selected. The viewport tiles were computed using the
proposed tile selection, based on Eq. (5); furthermore, they were extracted from the MCTS bitstream
using the proposed multiple tile extractor. At the client PC, the libav-ffpmeg library (with NVIDIA GPU
acceleration [42]) was employed to implement the fast HEVC decoder. After decoding, the decoder
generated the user’s viewport using the reconstructed video. Finally, the viewport was rendered on an
Oculus Rift S using our VR program, which was implemented based on the Oculus PC SDK [43]. To
generate the viewport, the user’s movement data were required. We considered the scenario of the user’s
movement in a fixed direction. For instance, the viewport setting for the movement scenario [90.00 90.00
90.00 0] implies that the horizontal and vertical FOVs were set to 90° and 90°, respectively, and the
center of the viewport was set at a 90° longitude and 0° altitude.

4.2 Performance Evaluation

In tiled 360 video streaming, the tile size directly affects the performance of the streaming service with
regard to several aspects such as decoding time and resource usage of the client [44]. To determine a

2638 CMC, 2021, vol.66, no.3

reasonable tile size for the proposed system, we performed various experiments using three tile sizes, 320 x
320, 640 x 640, and 960 x 960, on two test sequences, AerialCity and PoleVault le. See Tab. 3, the result
demonstrates that with a small tile size, 320 x 320, the proposed system can achieve the best BD-rate saving
0f 25.89% for Y-PSNR. Tile sizes of 640 x 640 and 960 x 960 yield BD-rate savings of 19.25% and 10.35%,
respectively. This is because for 3DoF+ 360 videos or traditional 360 videos, a smaller tile size can yield a
better encoding efficiency. Additionally, this tile size can provide the highest numbered results in VMAF,
MS-SSIM, and IV-PSNT tests. Fig. 8 depicts the rate-distortion (RD) curves of the non-tiled and
proposed tiled streaming methods for different tile sizes. As depicted in the figure, the proposed tiled
streaming method provided better results compared to those obtained via non-tiled streaming. Among the
test results obtained for various tile sizes, a tile size of 320 x 320 provides the best results; the basic
views of the tile layer are encoded using the tile size of 320 x 320.

Table 3: Performance of the proposed tiled streaming method for various tile sizes

Tiled Stream Y-PSNR (%) VMAF (%) MS-SSIM (%) IV-PSNR (%)

320 x 320 —25.89 -13.92 —18.84 —25.54
640 x 640 -19.25 -9.62 —14.47 -17.91
960 x 960 -10.35 2.53 —-2.13 —6.61
Average —18.49 =7.0 —11.81 -16.69
P |
41 1 ””
40
. 39
g
o 38-
zZ
&
ST 37
36 1 —te— 960x960
—o= 640x640
35 1 =N 320%320
== Non-Tiled

5 10 15 20
Bitrate (Mbps)

Figure 8: RD-curves for the non-tiled streaming and proposed tiled streaming methods on tile sizes

Fig. 9 presents the maximum memory usage under decoding and the decoding time for both the single
tile extractor and proposed multiple tile extractor. By partitioning 360 videos into 12 x 6 grid tiles, the single
tile extractor consumed 16.18 GB of memory and 13.2 s for decoding the viewport tiles, whereas the multiple
tiles extractor used only 3.1 GB of memory and 2.06 s, that is, 0.023 s per frame. Moreover, the multiple tile
extractor exhibited nearly similar decoding memory usage and time consumption for the three tile sizes.
Therefore, grid-tile partitioning can be employed to reduce the bandwidth without considerably affecting
the decoding resources. The required decoding time can be reduced when further optimization, such as
parallel tile decoding on HEVC codec embedded hardware, is conducted. Therefore, the advantage of
using the multiple tile extractor is verified, and we have used this for the overall experiment.

CMC, 2021, vol.66, no.3 2639

20
) 20
° 16.18
o 15 | —~
@© (6]
= 8 B 132
> (0]
S 10 |- E
S F 10 |
§ 6.332 o
= 5.414 £
5 9 4.927
3 o5 | 3.335
3.143
£ 3.126 3097 8 2,018 2,016 2,011
©
2, 0 | |
320x320 640x640 960x960 320x320 640x640 960x960
(@) (b)

[] single Tile Extractor [[21] Multiple Tiles Extractor

Figure 9: Performance comparison of the single and multiple tile extractors regarding (a) maximum
memory use and (b) decoding time

As presented in Tab. 4, the proposed method can achieve an average bitrate saving of 34.56%. The
bitrate saving is the highest for test-sequence AerialCity because the viewport area in AerialCity is at the
bottom- right corner as depicted in Fig. 10b. This test-sequence includes many objects that are very
realistic and moving, including the light effect on the scene for all of the tiles, and the bitrates that are
required for several tiles are almost similar. However, other test sequences have the most complex objects
in the view area and the tiles except the view only require a small amount of bitrate. For instance, the
viewport area for PoleVault le depicted in Fig. 10c, the viewport is in the most complicated portion of
the scene compared to other test-sequences. Consequently, the viewport of PoleVault le test-sequence
acquired the lowest bitrate saving. Additionally, Tab. 5 presents the BD-rate savings of the proposed tiled
streaming method compared to those of non-tiled streaming. With regard to luma PSNR, VMAF, and V-
PSNR, it provides an average BD-rate savings of 25.89%, 13.92%, and 25.24%, respectively. Finally,
from the outcomes of the proposed system, we confirmed that it also can be applied to 6DoF 360 video
streaming by warping multiple 360 video for multiple tiles selection.

Table 4: Bitrate savings of the proposed method

Bitstream Bitrate savings (%)
AerialCity —38.42
DrivingInCity —35.72
DrivingInCountry —36.22
PoleVault _le —27.88

Average —34.56

2640 CMC, 2021, vol.66, no.3

AerialCity

PoleVault_le viewport reconstructed video

(a) (©)

Figure 10: Output of the proposed system for (a) video source AerialCity and PoleVault le; user’s viewport
and reconstructed video for (b) AerialCity and (c) PoleVault le

Table 5: BD-rate savings of the proposed tiled streaming method

Tiled Stream Y-PSNR (%) VMAF (%) MS-SSIM (%) IV-PSNR (%)
AerialCity -19.95 —7.42 -13.13 —24.96
DrivingInCity —29.78 —21.68 —26.17 —27.71
DrivingInCountry —29.58 —20.52 —17.85 —24.32
PoleVault_le —24.25 —6.05 -18.21 -25.17
Average —25.89 -13.92 —18.84 —25.54

5 Conclusion

Herein, we proposed an adaptive 360 streaming solution for VR systems. The proposed approach
allowed the server to analyze the user’s viewport-dependent details and generate a unique bitstream that
includes the tiles that comprise the viewport area. The proposed system consisted of a viewport tile
selector and an extractor that allowed multiple-tile processing. Additionally, the areas corresponding to
the user’s viewport were selected, and the result could be extended for 6DoF 360 streaming by warping
multiple videos. The proposed extractor extracted all selected tiles from the MCTS source-view bitstream
and collated them into to one adaptive bitstream; then, the latter bitstream was transmitted to the client
via a packet delivery system. Furthermore, we suggested approaches for reducing the motion-to-photon
latency. In this regard, we performed an optimization based on the tile size. We found that a tile size of
320 x 320 was reasonable for the proposed 360 video-based tiled streaming system. The proposed
method demonstrated BD-rate savings of 25.89% for the Y-PSNR and decoding time savings of 61.16%
compared to previous non-tiled streaming methods or other methods that used a single tile extractor.
Furthermore, we plan to implement two other approaches to reduce the motion-to-photon latency in the

CMC, 2021, vol.66, no.3 2641

future. Moreover, an important objective for future work is the implementation of a real-time 6DoF tiled
streaming system based on the proposed method.

Funding Statement: This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00765,
Development of Compression and Transmission Technologies for Ultra High-Quality Immersive Videos
Supporting 6DoF).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1T J. B.Jeong, D. M. Jang, J. W. Son and E. S. Ryu, “3DoF+ 360 video location-based asymmetric down-sampling
for view synthesis to immersive VR video streaming,” Sensors, vol. 18, no. 9, pp. 3148-3167, 2018.

[2] J.B.Jeong, D. M. Jang, J. W. Son and E. S. Ryu, “Bitrate efficient 3DoF+ 360 video view synthesis for immersive
VR video streaming,” in 2018 Int. Conf. on Information and Communication Technology Convergence, IEEE,
JeJu Island, Korea, pp. 581-586, 2018.

[3] J. B.Jeong, S. B. Lee, D. M. Jang and E. S. Ryu, “Towards 3DoF+ 360 video streaming system for immersive
media,” IEEE Access, vol. 7, pp. 136399-136408, 2019.

[4] J. W.Son, D. M. Jang and E. S. Ryu, “Implementing 360 video tiled streaming system,” in Proc. of the 9th ACM
Multimedia Systems Conf- ACM, Amsterdam, Netherlands, pp. 521-524, 2018.

[5] J. W. Son and E. S. Ryu, “Tile-based 360-degree video streaming for mobile virtual reality in cyber physical
system,” Computers & Electrical Engineering, vol. 72, pp. 361-368, 2018.

[6] R. Skupin, Y. Sanchez, K. Siihring, T. Schierl, E. S. Ryu et al, “Temporal MCTS coding
constraints implementation,” in 122th MPEG Meeting of ISO/IEC JTCI1/SC29/ WG11, San Diego, CA, USA,
m42423, 2018.

[7] M. L. Champel, T. Stockhammer, T. Fautier, E. Thomas and R. Koenen, “Quality requirements for VR,” in //6th
MPEG Meeting of ISO/IEC JTC1/SC29/WG11, Chengdu, China, m39532, 2016.

[8] S. Deshpande, Y. K. Wang, M. M. Hannuksela and S. Deshpande, “Preliminary WD of ISO/IEC 23090-2 2nd
edition OMAF JTC1/SC29/WG11,” in 127th MPEG Meeting of ISO/IEC JTC1/SC29/WG11, Gothenburg,
Stockholm, pp. 23090-23092, 2019.

[91 Y. K. Wang, “An overview of OMAF (for information),” in 121st MPEG Meeting of ISO/IEC JTC1/SC29/ WG11,
Gwangju, Korea, m41993, 2017.

[10] B. Salahieh, B. Kroon, J. Jung and M. Domanski, “Test model 3 for immersive video,” in /28th MPEG Meeting of
ISO/IEC JTC1/SC29/WG11, Brussels, Belgium, n18795, 2019.

[11] Y. Sanchez de la Fuente, R. Skupin and T. Schierl, “Video processing for panoramic streaming using HEVC and
its scalable extensions,” Multimedia Tools and Applications, vol. 76, no. 4, pp. 5631-5659, 2017.

[12] R. G. Youvalari, M. M. Hannuksela, A. Aminlo and M. Gabbouj, “Viewport-dependent delivery schemes for
stereoscopic panoramic video,” in 2017 3DTV Conf.: The True Vision-Capture, Transmission and Display of
3D Video (3DTV-CON), Copenhagen, Denmark, pp. 1-4, 2017.

[13] Y. I. Ryu and E. S. Ryu, “Video on mobile CPU: UHD video parallel decoding for asymmetric multicores,” in
Proc. 8th ACM Int. Conf. Multimedia Syst. (MMSys), Taipei, Taiwan, pp. 229-232, 2017.

[14] J. W. Son, D. M. Jang and E. S. Ryu, “Implementing motion constrained tile and viewport extraction for VR
streaming,” in Proc. of Network and Operating System Support on Digital Audio and Video Workshop
(NOSSDAYV), Amsterdam, Netherland, pp. 61-66, 2018.

[15] H. W. Kim, T. T. Le and E. S. Ryu, “360-degree video offloading using millimeter-wave communication for
cyberphysical system,” Transactions on Emerging Telecommunications Technologies, vol. 30, no. 4, ¢3506, 2018.

[16] T.T.Le, D.N. Van and E. S. Ryu, “Real-time 360-degree video streaming over millimeter wave communication,”
in Proc. of Int. Conf. on Information Networking, Chiang Mai, Thailand, pp. 857-862, 2018.

2642 CMC, 2021, vol.66, no.3

[17] T. T. Le, D. N. Van and E. S. Ryu, “Computing offloading over mmWave for mobile VR: Make 360 video
streaming alive,” I[EEE Access, vol. 6, pp. 66576—66589, 2018.

[18] T. Rahum and S. Y. Shin, “Subjective evaluation of ultra-high definition (UHD) videos,” KSII Transactions on
Internet and Information Systems, vol. 14, no. 6, pp. 2464-2479, 2020.

[19] M. M. Hannuksela, Y. Yan, X. Huang and H. Li, “Overview of the multi-view high efficiency video coding (MV-
HEVC) standard,” in 2015 IEEE International Conference on Image Processing, Quebec, Canada, pp. 2154—
2158, 2015.

[20] ISO/IEC JTC1/SC29/WG11, “Call for proposals on 3DoF+ visual,” in 125th MPEG Meeting of ISO/IEC JTC1/
SC29/ WG11, Marrakesh, Morocco, pp. n18145, 2019.

[21] J. R. Ohm and G. J. Sullivan, “Versatile video coding-towards the next generation of video compression,” in
Picture Coding Symp. 2018, San Francisco, CA, USA, 2018.

[22] M. Domanski, A. Dziembowski, D. Mieloch, O. Stankiewicz, J. Stankowski et al., “Technical description of
proposal for call for proposals on 3DoF+ visual prepared by Poznan university of technology (PUT) and
Electronics and telecommunications research institute (ETRI),” in 126th MPEG Meeting of ISO/IEC JTCI1/
SC29/ WG11, Geneva, Switzerland, m47407, 2019.

[23] J. Fleureau, F. Thudor, R. Dore, B. Salahieh, M. Dmytrychenko et al., “Technicolor-intel response to 3DoF+ cfp,”
in 126th MPEG Meeting of ISO/IEC JTC1/SC29/ WG11, Geneva, Switzerland, m47445, 2019.

[24] B. Kroon and B. Sonneveldt, “Philips response to 3DoF+ visual cfp,” in /126th MPEG Meeting of ISO/IEC JTC1/
SC29/ WG11, Geneva, Switzerland, m47179, 2019.

[25] V. K. M. Vadakital, K. Roimela, L. Ilola, J. Kerdnen, M. Pesonen et al., “Description of Nokia’s response to
cfp for 3DOF+ visual,” in 126th MPEG Meeting of ISO/IEC JTCI1/SC29/ WGI11, Geneva, Switzerland,
m47372, 2019.

[26] B. Wang, Y. Sun and L. Yu, “Description of Zhejiang University’s response to 3DoF+ visual cfp,” in 126th MPEG
Meeting of ISO/IEC JTC1/SC29/ WG11, Geneva, Switzerland, m47684, 2019.

[27] H. H. Kim, Y. U. Yoon, J. G. Kim, G. S. Lee, J. Y. Jeong et al, “MPEG-I visual CE3-related: CTU-based
packing,” in /28th MPEG Meeting of ISO/IEC JTC1/SC29/ WG11, Geneva, Switzerland, m49055, 2019.

[28] S. B. Lee, J. B. Jeong and E. S. Ryu, “CE3: Viewport-dependent patch grouping using HEVC tiles,” in /28th
MPEG Meeting of ISO/IEC JTC1/SC29/ WG11, Geneva, Switzerland, m50818, 2019.

[29] B. Salahieh and J. Boyce, “Intel response to immersive video CE1: Group-based TMIV,” in 128th MPEG Meeting
of ISO/IEC JTC1/SC29/ WG11, Geneva, Switzerland, m49958, 2019.

[30] M. Yu, H. Lakshman and B. Girod, “A framework to evaluate omnidirectional video coding schemes,” in
2015 IEEE Int. Sym. on Mixed and Augmented Reality, Fukuoka, Japan, pp. 31-36, 2015.

[31] V. Sze, M. Budagavi and G. J. Sullivan, High Efficiency Video Coding. Switzerland: Springer, 2014. [Online].
Available: https://www.springer.com/gp/book/9783319068947.

[32] N. Kim and B. D. Lee, “Analysis and improvement of MPEG-DASH-based internet live broadcasting services in
real-world environments,” KSII Transactions on Internet and Information Systems, vol. 13, no. 5, pp. 2544-2557,
2019.

[33] Ed R. Pantos, “RFC 8216: HTTP live streaming specification document, Cupertino, CA, USA,” 2017. [Online].
Available: https://developer.apple.com/streaming/.

[34] J. R. Ohm and G. Sullivan, Joint Collaborative Team on Video Coding Standard Development. Kyoto, Japan:
ITU, 2010. [Online]. Available: https://www.itu.int/dms_pub/itu-t/oth/46/01/T46010000010001 PDFE.pdf.

[35] ITUT SG16 WP3 & ISO/IEC JTC1/SC29/WGT1, “Ver. 16.22, HM-high efficiency video coding,” 2020. [Online].
Available: https://vcgit.hhi.fraunhofer.de/jct-ve/HM.

[36] F. Bellard, “Ver. 4.3.1, FFMPEG library audio video,” 2020. [Online]. Available: https://github.com/FFmpeg/
FFmpeg.

[37] F. Bellard, “Ver. 4.2, FFmpeg tools,” 2020. [Online]. Available: https://www.ffmpeg.org/.

[38] MPEG Explorations 3DoFplus, “Ver. 2.0.1, The ERP WS-PSNR software,” 2019. [Online]. Available: http://
mpegx.int-evry.fr/software/MPEG/Explorations/3DoFplus/ERP_WS-PSNR.

https://www.springer.com/gp/book/9783319068947
https://developer.apple.com/streaming/
https://www.itu.int/dms_pub/itu-t/oth/46/01/T46010000010001PDFE.pdf
https://vcgit.hhi.fraunhofer.de/jct-vc/HM
https://github.com/FFmpeg/FFmpeg
https://github.com/FFmpeg/FFmpeg
https://www.ffmpeg.org/
http://mpegx.int-evry.fr/software/MPEG/Explorations/3DoFplus/ERP_WS-PSNR
http://mpegx.int-evry.fr/software/MPEG/Explorations/3DoFplus/ERP_WS-PSNR

CMC, 2021, vol.66, no.3 2643

[39] Netflix Inc., “Ver. 1.5.2, The VMAF software,” 2020. [Online]. Available: https://github.com/Netflix/vmaf.

[40] MPEG-I, immersive video, MPEG 127-Gothenburg, “Ver. 2.0, The IV-PSNR evaluation tool for immersive
video,” 2020. [Online]. Available: https://gitlab.com/mpeg-i-visual/ivpsnt

[41] A. Dziembowski, “Software manual of IV-PSNR for immersive video,” in 128th MPEG meeting of ISO/IEC
JTC1/5C29/ WG1,n18709, 2019.

[42] NVIDIA Corporation, “Ver. 4.3, using FFmpeg with NVIDIA GPU hardware acceleration,” 2020. [Online].
Available: https://developer.nvidia.com/ffmpeg.

[43] Facebook Inc., “Ver. 1.43, The oculus PC SDK for windows,” 2020. [Online]. Available: https://developer.oculus.
com/downloads/package/oculus-sdk-for-windows/.

[44] A. Zare, A. Aminlou, M. M. Hannuksela and M. Gabbouj, “HEVC-compliant tile-based streaming of panoramic
video for virtual reality applications,” in Proc. of the 24th ACM Int. Conf. on Multimedia, Amsterdam, Netherland,
pp. 601-605, 2016.

https://github.com/Netflix/vmaf
https://gitlab.com/mpeg-i-visual/ivpsnr
https://developer.nvidia.com/ffmpeg
https://developer.oculus.com/downloads/package/oculus-sdk-for-windows/
https://developer.oculus.com/downloads/package/oculus-sdk-for-windows/

	An Efficient Viewport-Dependent 360 VR System Based on Adaptive Tiled Streaming
	Introduction
	Related Work
	Adaptive VR Streaming—360 Tiled Stream
	Experimental Results
	Conclusion
	References

