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Abstract: Cerebral Microbleeds (CMBs) are microhemorrhages caused by certain
abnormalities of brain vessels. CMBs can be found in people with Traumatic
Brain Injury (TBI), Alzheimer’s disease, and in old individuals having a brain
injury. Current research reveals that CMBs can be highly dangerous for indivi-
duals having dementia and stroke. The CMBs seriously impact individuals’ life
which makes it crucial to recognize the CMBs in its initial phase to stop deteriora-
tion and to assist individuals to have a normal life. The existing work report good
results but often ignores false-positive’s perspective for this research area. In this
paper, an efficient approach is presented to detect CMBs from the Susceptibility
Weighted Images (SWI). The proposed framework consists of four main phases
(i) making clusters of brain Magnetic Resonance Imaging (MRI) using k-mean
classifier (ii) reduce false positives for better classification results (iii) discrimina-
tive feature extraction specific to CMBs (iv) classification using a five layers con-
volutional neural network (CNN). The proposed method is evaluated on a public
dataset available for 20 subjects. The proposed system shows an accuracy of
98.9% and a 1.1% false-positive rate value. The results show the superiority of
the proposed work as compared to existing states of the art methods.

Keywords: Microbleeds detection; false-positive; deep learning; CNN

1 Introduction

Cerebral Microbleeds (CMBs) are chronic body fluid products having minor weights that are often
found in patients. Such patients are tormented by different diseases including TBI, Alzheimer’s Disease
(AD), and stroke [1]. The position of these CMBs shows etiology. The amount of these CMBs can
specify the severity of the possible cognitive impairment and intracerebral hemorrhage (ICH) [2]. Deep
CMBs in the thalamus are characteristically connected with hypertension, while the occurrence of labor
CMBs may also recommend cerebral amyloid angiopathy. These are the conditions in which protein
components in the brain amyloid starts building up in the cerebral [3]. Identifying CMBs could be
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medically critical to evaluate the advantages as well as threats in antitoxic medicine preparation for patients
specifically having stroke ailment [1]. Finally, the detection of CMBs is important for AD and TBI diagnosis
and prognosis.

Worldwide, probably more than 49-million individuals are getting TBI yearly [4]. In TBI, the high-level
occurrence of microbleeds makes it important to observe this disease [5]. Therefore, correct, error-free, and
consistent recognition of these microbleeds is crucial. Early and accurate diagnosis of the CMBs is still an
open research area due to the difficult nature of this problem and its impact on human life. Hence, early and
timely detection of CMBs is critical. As there are a lot of advancements in clinical diagnostics approaches,
small or insignificant units in the cerebral can be easily anticipated which are helpful in CMBs diagnosis [3].
Furthermore, manual segmentation and identification of microbleeds remain a difficult and time-consuming
task especially when the number of patients is very high. It is often noticed that manual segmentation results
in false-positive due to the small sizes of CMB and similar structure of healthy tissues. Further, a neuroimage
may contain more than one CMB. To detect these CMBs, usually MRI is usually used but SWI is extensively
utilized for detecting CMBs [6].

In SWI, weighting masks of susceptibility are produced from high filtered images and then multiplied
with the magnitude of images to generate complex images. The CMBs are minor sphere-shaped or oval
sections with very little intensity on SWI images [7]. There are numerous kinds of CMB, like veins in the
brain, blood, deposition of iron, and signal void because of low flow compensation [8]. Therefore, to
detect CMBs manually can be inefficient and error-prone which can be handled by utilizing automatic
CMB recognition algorithms. Generally, a two-phase algorithm is used for automatic detection of CMB,
where the first stage is for candidate stage detection followed by the classification phase for reducing
false-positive. There are various methods used for CMB detection recently that include both handcrafted
feature selection methods and the end to end deep learning methods. Both these methods have their
advantages and limitations as well. The CMB present in an image is usually extremely small and often
face false-positive issue due to similar objects present in the image. The end to end deep learning
methods are usually expensive in terms of computational cost and require a huge amount of labeled data
especially for semantic segmentation. Therefore, there is a need to divide this problem into multiple steps
to reduce false-positive which should be the focus of CMB detection methods.

From this line of research, in this study, an automatic approach is proposed for CMBs detection by using
SWI MRI images. The main goal is to build up a framework having an option to accomplish high sensitivity.
We show that with data pre-processing, the model gives high sensitivity value with few false positives, and
outperformed both manually extracted, and existing single-direct framework. To overcome the limitation of
currently proposed approaches, we have explored a wide variety of features including the textual and
statistical-based features. These features are based on size, geometry, and transform that differentiate
CMBs from other structures. The proposed approach consists of pre-processing from brain extraction,
Region of Interest extraction by using the k-mean algorithm, feature extraction, post-processing to
minimize the false positives, and classification using CNN. The proposed method is evaluated on a set of
20 subjects with 167 CMBs in total. The proposed approach has the following contributions:

� A segmentation-based approach is used to extract the most effective features relevant to CMB

� We explore different textual, statistical, and shape-based features in combination with deep learning
for an efficient CMB detection method

� An efficient method is proposed to minimize false-positive to improve the performance of
CMB detection

The rest of the paper is organized as follows: Section 2 summarizes the related work, Section 3 presents
methodology, Section 4 explains results followed by the conclusion.
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2 Literature Review

Many research groups have proposed an automated technique to detect CMB using different machine
learning-based algorithms. Most of the techniques are a combination of segmentation and feature
extraction from images. Lu et al. [9] proposed an approach to detect CMBs from the MRI by applying
machine learning algorithms. They achieved a performance accuracy of 90% with 93.0% sensitivity.
Hong et al. [10] used applied machine learning-based approaches by using the principal component
analysis to reduce the feature size. They applied a shallow neural network by backpropagation to predict
the CMBs and Non-CMBs and achieved an accuracy of 88.43%. Bian et al. [11] applied a 2-dimensional
radial symmetry transform on the low-intensity projections of SWI images and utilized shape features to
reduce false and achieved 86.5% sensitivity with 44.9 false positives per individuals. Tao et al. [12]
proposed a Genetic Algorithm (GA) with a backpropagation neural network approach to distinguish the
microbleed part from the non-microbleed parts and achieved an accuracy of 72.90%. Gagnon et al. [13]
applied machine learning-based approaches by using entropy measure and naïve base classifiers to
discriminate the CMBs and achieved 76.9% accuracy. Ourselin et al. [14] utilized RST to detect the
microbleeds and then applied a machine learning classifier named random forest for classification and
achieved 86% sensitivity.

Zhang et al. [15] utilized one hidden layer neural network with ReLU layers as an activation function to
diagnose microbleeds in the brain MRI and achieved an accuracy of 93.05%. Fazlollahi et al. [16] proposed a
random forest (RF) framework and achieved a 92.0% sensitivity with almost 16.8 false positives per
individual. Van den Heuvel et al. [17] also proposed a RF framework with shape-based features for
diagnosis of bleeds in TBI and achieved 89.1% sensitivity with almost 25.9 per subject false positives.
Though great sensitivity could be certainly attained in the initial phase in the second phase, the
performance is generally poor, leading to so many false positives. For example, Barnes et al. [18]
established a machine learning framework center on the SVM with shape as well as intensity features and
performed manual false-positive removal. Due to the difference in CMB’s shape and intensities on SWI
images, effective designs and robust features are important. This can be minimized by utilizing a CNN,
which has expressively enhanced the performance of object detection in the field of computer vision [5,19].

Dou et al. [20] proposed a CNN based framework by utilizing SWI images and achieved 93.2%
sensitivity with the false-positive per subject is 2.7. Chen et al. [21] proposed a more multifaceted
residual network using SWI images obtained at 7T and achieved 94.7%, sensitivity with 11.6 false
positives. The low accuracy or a huge number of false positives of these techniques is halfway brought
about by depending on SWI images alone. Especially, separating blood products is troublesome since
CMBs and other blood cells are dim/unclear on SWI images. Furthermore, the value of contrast in SWI
data is reliant on imaging parameters, particularly on a primary field value. These issues can be tackled
by utilizing both size and magnitude of the image with normalization [22]. Utilizing the k-mean classifier
to make clusters from stage images and reduce false-positive by using magnitude and area of CMB, for
example, microbleeds can be isolated from paramagnetic blood items dependent on the area.

3 Methodology

The vast majority to automatically recognize techniques for CMB utilizes a pre-determined number of
features dependent on the shape, size, and intensity data. These features are insufficient to identify the CMBs
complex nature. When these methods are compared with previously mentioned strategies, the proposed
technique investigated a large feature-set to attain better performance. This proposed automatic approach
for the detection of CMB framework comprises three stages, i.e., skull stripping, selecting initial
candidate, Post-processing to reduce false positives, and used CNN for classification.
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3.1 Pre-Processing

The primary purpose of the high false-positive rate in the detection of CMB is complex from the skull in
MRI examines. The classification phase gets frequently confused and mixes the skull part with CMBs.
Therefore, an appropriate approach of skull stripping in the pre-processing step is exceptionally
significant for an efficient diagnosis of CMBs. An efficient skull stripping in the pre-processing step
brings about an extensive decrease in the number of false positives. In contrast to prior techniques, the
proposed method does not require much pre-processing.

The steps in pre-processing are just constrained to skull-removing from T2*—weighted neuroimages by
utilizing the BrainSuite Tool. Fig. 1 illustrates the general flow diagram of the proposed methodology. The
initial step of the methodology is to remove the skull from the actual brain part because this skull part
increases the false-positive rate. After skull stripping, the best candidate region is chosen from the k-mean
cluster, and post-processing is applied to discriminate true CMBs from false positives.

3.2 K-Mean Clustering

The preprocessed SWI brain image after removing the skull area, contains a lot of connected component
CMBs and false positives. Therefore, the k-mean clustering approach is proposed to overcome these
connected component issues. Conventional k-mean clustering is chosen where all the clusters are
completely reliant on a first center point that was selected initially. K-mean accepts Euclidean distance as
shown in Eq. (1) on which the clustering is performed by calculating similarity as well as a dissimilarity
measure. At first center point for the k-mean grouping is randomly picked for the whole image and then
distance amongst all pixels of an image is calculated. Pixels that have minimum distance value from the
individual center point are clustered together. This loop continues until a new mean value is determined
which then becomes centroid. This procedure converges until no change or alteration of value in the
mean of the image is observed. The proposed approach instates its center point by centroid determination
strategy as given in Eq. (2).

Figure 1: General flow diagram of the proposed framework
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(1)

mu ¼ ð m

k þ 1
� 1 : Kð Þ (2)

where k shows how many numbers of clusters will be formed, m represents the highest estimation of a pixel
in MRI, and the value of k varies from 1 to K. The center point determination procedure works by
guaranteeing major distinction between estimations of instated point, making it progressively efficient and
robust by congregating to the last point in minimum loops.

3.3 Reduce False Positives

False-positive means that you get a positive outcome for a negative value. These false positives create a
problem, especially when it comes to clinical images. The k-mean from the previous phase provides an
underlying segmentation of microbleeds. K-mean has a limitation as the CMBs are so tiny in size that it
can easily be confused with other brain normal tissues. For this reason, some changes are required to
reduce false positives from clusters produced by the k-mean algorithm. In our proposed work, we have
performed this step before feature extraction and classification which helps us to reduce the false-positive
rate significantly. The removal of false-positive is achieved by the removal of connected components and
shape-based regions.

3.4 Feature Extraction

The post-processed data is acquired by removing the false-positive step. In the next step, the data is
then forwarded to the feature extraction phase where different statistical, geometric, and local shape-
dependent features were extracted and stored in a feature vector file. A brief description of the extracted
feature is given in the below subsection. Tab. 1 shows the description of a distinct feature that we
extracted in this study.

3.4.1 Gray-Level-Occurrence-Matrix
GLCM is a co-occurrence framework and it is characterized over an image to be the appropriation of co-

existing values at a given set. The GLCM is ascertained how frequently a pixel with the dark level value

Table 1: Feature’s overview

Feature’s nomenclature Description of the features

F1: Variance This feature distinguished the CMBs particle from Non-CMBs
dependent on neighboring pixels of the image.

F2: Mean of intensity values This calculates the mean values of CMBs in brain image.

F3: Minimum intensity value This calculates the min value of grayscale in CMBs.

F4: Radon transform This calculates the shape-dependent feature of CMB.

F5: Wavelet transform This calculates the geometrical dependent feature of CMB.

F6: Median of intensity values This calculates the means of intensity values of CMB.

F7: Maximum box length This calculates the maximum larger difference amongst pixels of CMB.

F8: The orientation of CMB It shows the main structure of a CMB.

F9: Fourier transform Show geometry of CMB.

F10: Gaussian’s difference This calculates the edge dependent feature of CMB.
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i occur in an image either horizontally or vertically to neighboring pixels of value j. In GLCM, the number of
gray levels is equal to the number of rows and columns of pixels in an image.

In this study, we use a large number of intensity levels of GLCM, i.e., g × g for every combination of
(x, y). The formulation of GLCM in detecting pixels values of CMBs is illustrated in Fig. 2 for different gray
levels. The GLCM matrix has further different features such as entropy, correlation, and homogeneity.

3.4.2 Entropy
The entropy determines the pattern store in the image that is required for compression of data images.

This feature determines the data loss and it also calculates information in an image. It can be calculated as
shown in Eq. (3).X

� k ¼ I ; j ¼ 0ð Þ^ N � 1ð Þ lnðPijÞ Pij (3)

3.4.3 Correlation
This feature quantifies the direct dependence of the dark gray level of neighboring pixels in an image.

The digital correlation of image is an optical procedure that utilizes tracking and recording of image system
for an accurate 2 Dimensional and 3-Dimensional analysis of variations.

This is typically practiced by calculating the displacement, strain, and optical stream. However, it is
generally applied in numerous domains of science and image processing. It can be calculated as shown in
Eq. (4).

X
� Lj � 0
� �^

N � 1ð Þ lnðPijÞ 0
lð Þ j� lð Þ
r�r

� �� �
(4)

where, Pij shows the elements I,j of normalized-symmetrical GLCM, N represents the number of grayscale in
the image, µ represents the mean value of GLCM and r is the value of variance in referencing pixel of the
image in GLCM matrix.

3.5 Classification Using CNN

In numerous classification tasks, the CNN has been successful in imaging as well as text data
classification. In this study, after extracting features from CMB and non-CMB part of brain MRI, we
applied five layers CNN to classify the model. We utilized different hyperparameters and tuning of
parameters to achieve excellent performance results. Our proposed overall architecture of CNN is shown
in Fig. 3 where the extracted feature vector is passed to different convolutional layers along with filters to
distinguish CMBs from Non-CMBs.

Figure 2: Gray-level-co-occurrence-matrix features illustration
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In numerous, text and imaging classification approaches, CNN is considered efficient. In our proposed
study, we utilized five convolutional layers CNN with pooling layers along with tuning of different
hyperparameters and static vectors to attain excellent classification results. Our proposed architecture of
CNN is shown in Fig. 4. This proposed CNN framework trains on a large feature vector illustration by
passing the vector file through five convolutional filters and pooling layers. The main features of this
proposed framework are the five connected convolutional layers along with the max-pooling layer to train
a network that can distinguish microbleeds from non-microbleeds parts.

The first convolutio layers contain 96 numbers of kernels. The output get from this layer becomes the
input of the second convolution layer having 256 kernels. Similarly, the next three convolution layers contain
384, 384, and 256 kernels, respectively. Unambiguously, the proposed framework implements a maximum
pool approach to capture more and high fine-tuned features from the feature vector. A fully connected and
softmax layers are added in between the last convolutional layer and output layer to get a more tuned feature
vector. This decreases the dimension of the model as well as enhances the performance of the model. In the
section, we explain our proposed study in detail. Suppose ei ∈ Rk is the vector in k dimensions relate to the i-
th number of features of the vector file, (i = 1 to m), the entire vector file is characterized with the features
concatenation e1:m = [e1…em] ∈ Rkm.

ci ¼ gcðCTei:jþh�1Þ (5)

In general, the feature starting from i-th to j-th is characterized by e1:m = [e1…em] ∈ [Rk (j − i + 1)].
Convolutional layer C ∈ Rkh is used on features in which ci represents the convolutional non-linear function
of activation, like ReLU functions. All the prejudiced terms are removed for conciseness and to keep
simplicity. The ci altogether makes a featured map c = [c1,…, cm] ∈ Rm linked to the filter v that is

Figure 3: Overview of proposed CNN framework

Figure 4: Proposed CNN framework with an example sentence
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applied. Multiple max-pooling filters are used along with five convolutional layers to get richer tuned and
semantic data at the final output layer.

Let t be the number of parameters that are utilized and output feature maps are [c(1),…,c(t)]. A max pool
process p(·) is used on each value of the feature map to generate a feature vector in dimension p, p(c(i)) ∈ Rp.
The resultant output from the pooling layer goes to the next fully connected layers with h number of hidden
points and with L units that are related to the values given to each label, symbolized by F ∈ RL in Eq. (6):

F ¼ Wogh Wh p c1ð Þ . . . p ctð Þ½ �ð Þ (6)

where Wh ∈ Rh × tp andWo ∈ RL × h is weight-related to the final layer of CNN i.e., the output layer, and gh
represents the activation function used in fully connected layers. In general, for classification purposes, a
maximum pool layer is utilized. It means that take the maximum value from the whole feature map. This
approach aims to take the maximum value, which means take values that have the highest number in
each feature map. In this way, every time, the max pool will generate the highest single value, and the
size of the final feature map is decreased this way. Furthermore, in our proposed approach, we utilized
hyperparameters including the bias-learn-factor and learning-rate-factor to get optimal results and instead
of generating only average values, we produce minimum, average, and maximum values and takes the
maximum values to get more sophisticated features. This max-pooling method will generate better
information per feature and send the larger rich information to the next connected layer. Fig. 5 illustrates
the pooling example that how pooling filters can minimize the feature vector size.

Figure 5: Graphical representation showing an example of feature vector selection using maximum pooling
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4 Experiment and Results

4.1 Dataset

The data samples utilized in this proposed study are SWI dataset of a total of 20 individuals for the
identification of Cerebral Micro Bleeds (CMB). These data samples are the same percentage of the great
size data set utilized in [23]. Many data samples have more than one cerebral in it. Fig. 6 shows a few
examples where a single MRI contains more than one CMB. These MRI data samples are produced from
a Philips-medical scheme of 3.0T by set the reiteration 17 ms in time, 512 × 512 × 150 in volume size,
the reverberation time of 24 ms, in-plane goals of 0.45 × 0.45 mm, and cut thickness of 2 mm and cut
separating of 1 mm. The entire dataset is marked by two experienced raters by following a micro-drain
functional rating-scale [24].

Now we have only used an axial perspective on 3D pictures. The data samples are separated into two
parts, i.e., 20% of testing and 80% of training. The training samples use a total of 104 CMBs data
samples from 14 individuals while 63 CMBs samples from 6 individuals have been utilized for testing.
Tab. 2 shows data samples utilized in this study.

Figure 6: Single and multiple cerebral microbleeds in the brain MRI

Table 2: Dataset overview

No. of data sample Training Testing

Individuals 14 6

Microbleeds 104 63
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4.2 Performance Evaluation

To assess the performance of our proposed framework, we use overall accuracy described as how neat
the values, which are supposed to be measured, are to actual true values. Sensitivity is described as the
calculated dimensions of true values that are true too. The specificity is described as calculated
dimensions of false values that are predicted as false as well. The precision that is described as overall
how accurate all measurements to the other measurements. These measures can be mathematically
defined as:

Accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ (7)

Sensitivity ¼ TPð Þ= TP þ FNð Þ (8)

Specificity ¼ TNð Þ= TN þ FPð Þ (9)

Precision ¼ TPð Þ= TP þ FPð Þ (10)

where TP defines as the true positives that are also predicted as positive in output, TN defines as the true
negative that is positive but predicted as negative in output. FP is defined as false positives that are
negative but predicted as positive in output and FN is defined as false negatives that are positive but
predicted as negative in output.

4.3 Results and Discussion

The data is split into an 80:20 ratio where 80% data are used for training and 20% was utilized for the
testing purpose. Both the divisions have guaranteed to have both classes of CMBs and Non-CMBs. The
proposed technique investigated a large feature-set to attain better performance. The primary purpose of
the high false-positive rate in the detection of CMB is a highly intense and complex skull in MRI
examines. The classification phase gets frequently confused and mixes the skull part with CMBs. For this
reason, we removed the outer part of the skull from the brain MRI. Fig. 7 shows the graphical
illustration, as well as the original skull, stripped brain image, in which the skull part was removed from
the actual inner brain to reduce the error of false positives.

As discussed earlier, CMBs are minute particles having a tiny size and the trouble in detecting
microbleeds is because of the presence of similar healthy cells. The k-mean clustering algorithm is also
called hard clustering. This algorithm is simple and fast, but its limitation is that it cannot fragment
CMBs very efficiently if it is malignant.

It depends on an iterative procedure that partitions the neuroimage into different clusters. The data points
or the pixels are grouped in the best possible way such that if any specific data point has a place with a
specific cluster. Fig. 8 shows some sample clusters generated by k-mean. We generate four different

Figure 7: Removed skull part from the brain MRI
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clusters from k-mean and select the best one with the region of interest and less false-positive values. It can be
seen in Fig. 8 that cluster K2 has a very prominent region of interest and false positives are also less,
therefore, we choose cluster 1.

Furthermore, in detecting CMBs by utilizing a regular k-mean approach the desired results are difficult
to achieve. We made changes in the traditional approach as it is not powerful enough for CMBs. We are
required to design a more efficient algorithm that can handle this difficult problem without depending
upon pre-processing and other steps. To get smooth and accurate detection if any non-micro bleed part is
detected as CMBs, it will highly impact the overall classification of neuroimaging. Figs. 9 and 10 show
the Non-CMBs and CMBs region in brain images, respectively.

Figure 8: Four cluster samples generating by k-mean clustering

Figure 9: 6 × 4 = 24 samples of false classes of Non-CMBs particles

CMC, 2021, vol.66, no.3 2311



Above all, the experiments were performed on Train_set of data samples which incorporates
14 individuals with CMBs. K-mean classifier is utilized for the subset in Train_set that had CMB to get
104 CMB from everyone in 14 individuals. At that point, some threshold values were used to get a
region of interest arbitrarily from the sample’s size of MRI without CMB. After the ROI extraction
process, only 334 ROIs were selected the extra particles were removed other than CMB based on size.
Feature extraction is performed by considering 104 competitors and 334 non-bleeds. A Five-layer CNN
framework is utilized for the characterization of the element vector.

After reducing the false positives from MRIs, statistical, Gaussian difference, Fourier transform, mean,
median, variance, and geometrical based features were extracted from images. We applied a five-layer CNN
model to classify the data samples into CMBs and Non-CMBs class. This proposed approach is assessed in
the word of accuracy and precision. Tab. 3 shows the performance evaluation values utilizing a CNN of our
proposed framework in terms of accuracy, precision, specificity, and sensitivity.

Figure 10: 4 × 6 = 24 samples of true classes having CMBs in brain MRI

Table 3: Performance evaluation using CNN for the detection of CMBs

Performance measurements Percentage values

Accuracy 98.9

Precision 96.9

Specificity 98.0

Sensitivity 99.9

2312 CMC, 2021, vol.66, no.3



After extracting the features from ROIs in testing data, the resulted vector was then examined for
classification through the CNN approach. In this experiment, we achieved 98.9% accuracy with 1 false-
positive per CMB. We also generate a confusion matrix for all the training as well as testing data samples
to observe the performance of the proposed study. We utilized the CNN approach with five convolutional
layers and hyperparameters to discriminate microbleeds from non-micro bleeds. CMBs are so tiny in size
and there may be more than 2 CMBs in one MRI. So, it is a challenging task to reduce false-positive and
diagnose CMBs. To evaluate the performance of our proposed model, we compared the performance
result of our model with state-of-art methods in terms of accuracy measure and sensitivity. To make a
comparison method clear, we have used accuracy and sensitivity.

Different research groups Lu et al. [9], Hong et al. [10], Tao et al. [12], Wang et al. [25], and Ateeq et al. [26]
utilized state of the art machine learning approaches to diagnose cerebral microbleeds from brain MRI. It can be
seen from Tab. 4 that our proposed model achieved promising results in terms of performance accuracy and
sensitivity. It is noticeable that the proposed study produces very good results in terms of false positives. It is
worth mentioning here that most of the existing systems require a post-processing step to manually reduce
false-positive rate. However, the proposed work is fully automated and there is no need to perform any post-
processing step to reduce false-positive rate. As the proposed system requires no manual post-processing step
for false-positive reduction, therefore, results are better or comparable to existing systems. The comparison
should be made keeping in mind that our proposed system requires no post-processing step for false-positive
reduction. Even then the performance of the proposed system is very good. Tab. 5 shows the comparison of
false positives per individual as well as a comparison as per microbleeds.

Table 4: Comparison of the proposed model with state-of-the-art approaches in term of the accuracy measure

Author Technique Sensitivity (%) Accuracy (%)

Lu et al. [9] Machine Learning SVM 93.0 90.0

Hong et al. [10] PCA + Shallow Neural Network 88.47 88.3

Tao et al. [12] GA + NN 72.90 72.90

Wang et al. [25] CNN 97.22 97.35

Ateeq et. al. [26] QDA and SVM 93.7 97.3

Our Proposed CNN 99.9 98.9

Table 5: Comparison of the proposed model with others in terms of false-positive values per subject and CMB

Authors Sensitivity rate (%) False-positive value/sub False-positive value/micro bleed

Ateeq et al. [26] 90.5 65.8 6.3

Saghier et al. [27] 50 – –

Bames et al. [8] 81.7 107.5 5.4

Ghafryal et al. [7] 90.9 4.1 1.8

Bian et al. [28] 86.5 44.9 1.5

Dou et al. [29] 89.4 7.7 0.9

Chen et al. [21] 89.1 6.4 –

Douh et al. [23] 93.16 2.74 –

Heuvel et al. [30] 89 25.9 0.29

Proposed Method 99.9 1.5 –

CMC, 2021, vol.66, no.3 2313



5 Conclusion

A Computer-Aided framework for characterizing ROIs is extensively useful for the diagnosis of CMBs.
These frameworks can face a few impediments regarding affectability and false positives. The manual
extraction of microbleeds is tough and takes a lot of time. Thus, the diagnosis of microbleeds and its
classification from weighted images is still so challenging. The key objective of this proposed study to
design an approach that is fully automated in reducing false positives and diagnosing CMB from the SWI
images without any manual work. Another objective of this research is to enhance the performance
accuracy of the system. The proposed work used CNN and clustering to reduce false positives. The
proposed framework can recognize CMBs from non-CMB precisely, which gives a diagnosing reference
to specialists. The proposed system handles a two-class binary classification issue. The performance
accuracy, sensitivity, and specificity of the system are 98.9%, 99.9%, and 98% respectively. Concerning
the future bearings of this work, CMBs identification can be additionally researched by utilizing further
developed neural networks and transfer learning approaches. Additionally, the proposed framework can
be improved by developing up a progressively complex feature extraction procedure.
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